

Рисунок 5 – Поверхность температуры и уровни температуры (изотермы) для сечения, перпендикулярного оси Ox, при t = 4 с

Основываясь на данных по техническим характеристикам плазмотрона, теплофизическим и механическим свойствам обрабатываемых материалов и их прогнозируемым структурным параметрам после теплового воздействия, с использованием полученных результатов могут быть назначены конкретные режимы термообработки с последующим их уточнением в процессе технологических экспериментов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Лазерная и электронно-лучевая обработка материалов: Справочник / Н. Н. Рыкалин [и др.]. – М. : Машиностроение, 1985. – 496 с.

2. Рыкалин, Н. Н. Расчеты тепловых процессов при сварке / Н. Н. Рыкалин. – М.: ГНТИ машиностроительной литературы, 1951. – 296 с.

3. Карлслоу, Г. Теплопроводность твердых тел / Г. Карлслоу, Д. Эгер. – М. : Наука, 1964. – 487 с.

УДК678:661.66:620.1

ПОВЕРХНОСТНЫЕ ЭФФЕКТЫ В ФОТОПОЛИМЕРНЫХ НАНОКОМПОЗИЦИОННЫХ МАТЕРИАЛАХ

Овчинников Е. В.¹, Хвисевич В. М.², Эйсымонт Е. И.¹, Веремейчик А. И.², Возняковский А. А.³

 Гродненский государственный университет им. Янки Купалы, г. Гродно, Республика Беларусь
Брестский государственный технический университет, г. Брест, Республика Беларусь
Физико-технический институт им. А. Ф. Иоффе, г. Санкт-Петербург, Российская Федерация

Смачивание поверхностей твердых материалов вызывает огромный интерес со стороны фундаментальных и прикладных отраслей научной деятельности. Явление смачивания играет важную роль во многих промышленных процессах,

таких как смазывание, нанесение покрытий из жидкой фазы, закалка твердых материалов распылением жидкой среды и т. д. В данных технологических подходах широко применяются нанокомпозиционные полимерные материалы, для которых требуется высокое качество подготовки поверхности для улучшения эксплуатационных свойств, связанных со смачиваемостью: адгезия, антикоррозионная защита, износостойкость, биосовместимость, защита от обрастания и т. д. И наоборот, если несмачивающая жидкость попадает на поверхность уже покрытой смачивающей жидкостью, она будет коагулировать, сводя к минимуму его контактный угол с твердым телом.

Если рассмотреть смачивание водой твердого тела, с большими значениями краевого угла, и смачивание продуктами нефти, в частности масла с малыми краевыми углами при смачивании твердого тела, то в случае комбинированной системы взаимодействия данных материалов, в частности, масло-вода-твердое тело, баланс возникающих сил взаимодействия приведет к значению краевого угла смачивания, отличающегося от исходных значений между жидкостями и поверхностью твердого тела. Баланс сил определяется поверхностным натяжением, контролирующим смачиваемость между твердым телом и жидкостями, а также межфазное натяжение между жидкостями [1].

Шероховатость поверхностных слоев твердого тела играет важную роль в процессах смачивания различными жидкостями, различающимися молекулярной массой и химическим составом. Обычно используемые гидрофобные поверхности обладают высокими значениями краевого угла смачивания. Данный эффект может усиливаться с возрастанием шероховатости твердых поверхностей. В частности, формирование на поверхности твердого тела восковых слоев приводит в существенном увеличению антиадгезионного процесса для полярных растворителей, включая воду [2]. В работе [3] рассмотрены поверхностные свойства наночастиц и их взаимодействие с надмолекулярными и молекулярными структурами полиэтилентерефталата. В частности, формирование полимерных слоев на поверхности наночастиц кремнезема является эффективным методом повышения гидрофобности данных низкоразмерных частиц [4].

Исследование смачиваемости включает измерение краевого угла, который измеряется у капли жидкости. Данная система, связанная с измерением краевого угла смачивания, состоит из трех фаз: твердая, жидкая и газообразная. В качестве базовой модели для расчета удельной поверхностной энергии использовалось уравнение Юнга. Данное выражение связывает краевой угол с тремя задействованными межфазными свободными энергиями: твердое тело-пар, жидкость-пар и твердое тело-жидкость. На поверхности твердого тела контактный угол капли жидкости можно описать следующим уравнением Юнга:

$$\sigma_{\rm TF} = \sigma_{\rm TW} + \sigma_{\rm WF} \cos\Theta, \qquad (1)$$

где σ_{тт} – поверхностное натяжение на границе раздела твердое тело-газ (TГ), σ_{тж} – поверхностное натяжение на границе раздела твердое тело-жидкость (ТЖ), σ_{жг} – поверхностное натяжение на границе раздела жидкость-газ.

Для гладких поверхностей краевой угол Θ лежит в диапазоне $0 < \Theta < 90^{\circ}$ и обладает хорошей смачивающей способностью, жидкость будет растекаться по большой площади поверхности. Контактный угол воды зависит от шероховатости поверхности и объясняется двумя моделями, известными как модель Венцеля и модель Кассье. Венцель ввел модель, описывающую смачивание шероховатых поверхностей, в то время как Кассье показал взаимосвязь смачивания поверхности с химической неоднородностью. Согласно Венцелю, жидкость удерживает тесный контакт с микроструктурой поверхности и полностью смачивается жидкостью. Полное смачивание шероховатой поверхности записывается как

$$\cos\Theta_{\rm w} = r\cos\Theta, \tag{2}$$

где Θ_w – краевой угол смачивания Венцеля на шероховатой поверхности, r – коэффициент шероховатости поверхности, Θ – краевой угол смачивания Юнга на гладкой поверхности того же материала.

В уравнении (2) значения г всегда больше единицы. Следовательно, увеличение параметров шероховатости поверхности фактически всегда увеличивает смачиваемость твердой поверхности. Кассье предложил уравнение для гидрофобной поверхности с большими значениями шероховатости. С увеличением шероховатости поверхности воздух проникает в гидрофобную границу твердой и жидкой фаз. Предполагается, что граница раздела состоит из твердого тела и воздуха. Частичное смачивание шероховатой поверхности можно оценить по уравнению Кассье:

$$\cos\Theta_c = \gamma_1(\cos\Theta_1) + \gamma_2(\cos\Theta_2), \tag{3}$$

где Θ_1 – угол контакта компонента 1, присутствующего в композиционном материале, с долей площади поверхности γ_1 ; Θ_2 – угол контакта компонента 2 с долей площади поверхности γ_2 .

Обе модели объясняют, как шероховатость поверхности влияет на значения краевого угла смачивания. Водоотталкивающая способность различных материалов оказала большое влияние на развитие ряда технических областей применения жидкостей, в частности текстильная промышленность, строительство, т. к. необходимо было решать такие задачи, как самоочистка материалов и сооружений, защита от старения, разделение масляно-водных эмульсий и т. п.

Объектом исследований являлись полимерные композиционные материалы, модифицированные графеновыми наноструктурами. Углеродные и графеновые частицы были получены из различного органического сырья (лигнин, целлюлоза, крахмал и др.) методом самораспространяющегося высокотемпературного синтеза (CBC).

Для изготовления образцов композиционных материалов использовали фотополимерную смолу марки Nova3D. Для модифицирования фотополимерной матрицы применяли мультилисты графена (ТУ 23.99.14.130-006-16720618-2018). Концентрация модификатора составляла от 0,1 % мас. до 2 % мас. Образцы для исследований формировали на оборудовании для аддитивного получения полимерных изделий из фотополимерных смол марки SparkMaker (3D-принтер). Дополнительно полученные образцы обрабатывались УФ-излучением в течение 300 с.

Также для изготовления образцов композиционных материалов использовали фотополимерную смолу марки Anycubic 450 nm. Для модифицирования фотополимерной матрицы применяли графеновый модификатор, полученный из шихты «70 % мас. глюкоза – 30 % мас. нитрат аммония» и шихты «70 % мас. целллюлоза – 30 % мас. нитрат аммония». Концентрация модификатора составляла от 0,0025 % мас. до 4 % мас. Данные образцы также получали методом 3Dпечати.

Оценку удельной поверхностной энергии полимерных композиционных материалов на базе фотополимерных смол, модифицированных графеновыми наноструктурами, проводили по величине краевого угла смачивания (метод «неподвижной капли»). В соответствии с методикой исследования определяли значения краевого угла смачивания как минимум двух жидкостей с известными значениями параметра у на твердой поверхности. Значения параметра у твердого тела оцениваются на основе теоретические моделей Юнга, Оунса-Вендта, Неймана или Ву. В качестве жидкостей, применяемых для исследований, использовали дистиллированную воду и вазелиновое масло.

Результаты исследований удельной поверхностной энергии образцов на базе фотополимерной смолы в зависимости от концентрации нанодисперсных графеновых частиц, получаемых CBC-синтезом, представлены в таблицах 1–3.

Установлено, что введение нанодисперсных углеродных частиц в высокомолекулярную матрицу на основе фотополимера приводит к существенному изменению значений удельной поверхностной энергии. Зависимость значений удельной поверхностной энергии композиционных материалов от концентрации модификатора имеет не линейный, а параболический характер. На вид зависимости существенное влияние оказывает структура и предыстория углеродного модификатора.

Таблица 1 – Значения удельной поверхностной энергии образцов из фотот	по-
лимерной смолы Anycubic, модифицированной ГПС, полученными из ших	кты
«70 % мас. глюкоза – 30 % мас. нитрат аммония»	

Парамотр	Значения при концентрации модификатора, % мас.				
Параметр	0	0,025	1,0	2,0	4,0
Угол смачивания вазелинового масла, град	26,53	64,43	51,50	60,45	22,81
Угол смачивания водой, град	64,43	62,57	57,02	67,78	65,35
Работа адгезии вазелинового масла, мДж	56,84	42,95	48,68	44,80	57,65
Работа адгезии воды, мДж	103,02	105,11	111,13	99,17	101,97
Дисперсионный компонент поверх- ностной энергии, мДж/м ²	10,15	36,21	33,20	23,93	8,40
Полярный компонент поверхностной энергии, мДж/м ²	86,43	127,59	133,40	102,89	81,64
Поверхностная энергия, мДж/м ²	96,58	163,80	166,59	126,82	90,03

Таблица 2 – Значения удельной поверхностной энергии образцов из фотополимерной смолы Anycubic, модифицированной ГПС, полученными из шихты «70 % мас. целлюлоза – 30 % мас. нитрат аммония»

Парамотр	Значения при концентрации модификатора, % мас.				
Параметр	0,0025	0,0375	0,05	0,1	0,2
Угол смачивания вазелинового масла, град	32,91	39,43	47,23	26,99	39,47
Угол смачивания водой, град	65,82	69,91	79,98	70,43	41,83
Работа адгезии вазелинового масла, мДж	55,19	53,17	50,37	56,73	53,16
Работа адгезии воды, мДж	101,44	96,68	84,48	96,06	125,58
Дисперсионный компонент поверхностной энергии, мДж/м ²	10,76	9,13	3,69	5,22	46,92
Полярный компонент поверхностной энергии, мДж/м ²	85,53	76,48	51,43	67,58	176,18
Поверхностная энергия, мДж/м ²	96,29	85,60	55,12	72,80	223,11

Параметр	Значения при концентрации модификатора, % мас.				
	0	0,1	0,6	2,0	
Угол смачивания вазелинового масла, град	37,52	26,90	16,10	23,95	
Угол смачивания водой, град	85,61	77,74	81,23	70,22	
Работа адгезии вазелинового масла, мДж	53,79	56,75	58,82	57,42	
Работа адгезии воды, мДж	77,47	87,24	82,93	96,31	
Дисперсионный компонент поверхностной энергии, мДж/м ²	0,13	1,24	0,03	4,80	
Полярный компонент поверхностной энергии, мДж/м ²	32,05	46,73	34,96	66,87	
Поверхностная энергия, мДж/м ²	32,19	47,97	34,98	71,67	

Таблица 3 – Значения удельной поверхностной энергии фотополимера Nova3D, модифицированного ГПС

Исследования проведены в рамках выполнения проекта БРФФИ № Т21РМ-169.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Fundamentals of wettability / W. Abdallah [et al.] // Oilfield Review. -(2007). -19(2). -44-61.

2. Puliyalil H. Recent advances in the methods for designing superhydrophobic Surfaces / H. Puliyalil, G. Filipic, U. Cvelbar // Surfaces Energy / Edited by M/ Aliotkhazraei. – 2015. – December 16th. – P. 311–335.

3. Dispersibility of hydrophilic and hydrophobic nanosilica particles in polyethylene terephthalate films: evaluation of morphology and thermal properties / M. Parvinzadeh Gashti [et al.] // Polymers and Polymer Composites. – 2015. – Vol. 23 (5). – P. 285–295.

4. Zou H. Polimer / silica nanocomposites: preparation, characterization, properties, and applications / Hua Zou, Wu Shishan, Jian Shen // Chemical reviews (American chemical society). – 2008. – Vol. 108 iss: 9. P. 3893–3957.

УДК 621.794.6

СТРУКТУРА И СВОЙСТВА ФУНКЦИОНАЛЬНЫХ КОМПОЗИЦИОННЫХ ЭЛЕКТРОЛИТИЧЕСКИХ ПОКРЫТИЙ

Овчинников Е. В.¹, Хвисевич В. М.², Эйсымонт Е. И.¹, Веремейчик А. И.², Исраа Акрам¹

 Гродненский государственный университет им. Янки Купалы, г. Гродно, Республика Беларусь
Брестский государственный технический университет, г. Брест, Республика Беларусь

Тонкопленочные ингибиторы изнашивания трибосистем, сформированные из активной газовой фазы, растворов, ротапринтными и плазмохимическими методами, широко применяют в триботехнике, в т. ч. прецизионной [1–4].