Список цитированных источников

- 1. Методика прогнозирования масштабов заражения сильнодействующими ядовитыми веществами при авариях (разрушениях) на химически опасных объектах и транспорте: РД 52.04.253-90.
- 2. Котов, С.Г. Программные средства расчета зон поражения при авариях на технологических установках, содержащих СДЯВ / С.Г. Котов, В.А. Саечников, Д.С. Котов // Проблемы и перспективы развития транспортных систем и строительного комплекса: материалы II Междунар. науч.-практ. конф. Гомель: БелГУТ, 2008. 329 с.
- 3. Котов, Д.С. Программное средство расчета масштабов заражения сильнодействующими ядовитыми веществами / Д.С. Котов, В.А. Саечников // Традиции, тенденции и перспективы в научных исследованиях: материалы IV международной студенческой научно-практической конференции: в 2 ч. / редкол.: О.А. Еремеева [и др.] Чистополь: ИНЭКА, 2009. Ч. 1. С. 310–311.

УДК 681.5:004.42

АВТОМАТИЗАЦИЯ ЭТАПА ПОДГОТОВКИ ИСХОДНЫХ ДАННЫХ ДЛЯ КОМПЬЮТЕРНОЙ ПРОГРАММЫ «ТВИНД»

Кофанов В.А.

УО «Брестский государственный технический университет», г. Брест

Нередко при решении сложных задач строительной физики приходится использовать большой объем исходных данных. И чем более достоверную информацию мы хотим получить, тем больше увеличивается объем этих данных. Например, для того, чтобы использовать компьютерную программу «ТВиНД», зарегистрированную в Национальном центре интеллектуальной собственности (свидетельство №139), для расчета нестационарных температурно-влажностных полей в ограждающих конструкциях от воздействий окружающей среды, необходимо задать значительный массив данных о состоянии окружающей среды в различные моменты времени. Количество этих данных зависит от дискретности измерений состояния окружающей среды и от времени, в диапазоне которого мы проводим расчеты.

В качестве исходных данных, характеризующих воздействие окружающей среды на ограждающую конструкцию, используются температура, относительная влажность воздуха и атмосферные осадки. Получить информацию об этих трех параметрах представлялось возможным двумя способами.

Первый способ предполагал поездку на выбранную метеостанцию и проведение на ней кропотливой работы по переносу данных с бумажных носителей в электронный формат, так как метеостанции данные о фактическом состоянии окружающей среды в электронном формате не предоставляют. Ручной ввод этих данных приводит к нецелесообразности использования компьютерной программы, которая создается для сокращения времени расчета, поэтому первый способ на этапе накопления данных в дальнейшем может использоваться только в исключительных случаях.

Второй способ заключается в получении данных с сайтов сети Интернет и на первый взгляд является наиболее приемлемым для получения информации о фактическом состоянии окружающей среды. Тем не менее данный способ имеет свою специфику. Информацию с сайтов можно было получить одним файлом с расширением «*.txt» или «*.csv», а также с различной кодировкой «ANSI», «UTF-8» и «Unicode». Приложение Microsoft Excel позволило импортировать полученный из сети Интернет файл после выбо-

ра корректных настроек импорта. После этого путем несложных манипуляций можно экспортировать данные температуры, относительной влажности воздуха и атмосферных осадков в отдельный файл, который впоследствии будет использоваться программой «ТВиНД». В сравнении с первым способом второй имеет значительные преимущества, выигрывая в доступности и в скорости получения информации. Однако из-за того, что файлы с различных сайтов отличаются друг от друга структурой содержащихся в них данных, то дальнейшее их накопление в приложении Excel вызывает неудобства, связанные с большим количеством операций по их форматированию и преобразованию к единому шаблону, что приводит к увеличению времени накопления информации.

Содержание файлов, полученных из сети Интернет, можно разделить на два блока. В первом блоке содержится различная информация, среди которой стоит отметить следующую: адрес сайта, с которого был получен файл, код метеостанции, наименование и порядок полей данных. Второй блок представляет собой набор символов расположенных в порядке, определенном в начале файла, и разделенных между собой запятыми либо точкой с запятой. Кроме этого, файлы могут иметь следующие недостатки:

- первый блок в файле может отсутствовать;
- в каждом файле свой определенный порядок полей;
- данные в файле могут располагаться в обратном хронологическом порядке;
- в файле могут отсутствовать данные измерений параметров окружающей среды в различные моменты времени;
- в файле могут отсутствовать данные одного из трех параметров окружающей среды, необходимых для выполнения расчетов в программе «ТВиНД».

В связи с этим в среде программирования «Delphi 7» была создана программа «Weather data - ТВиНД», которая, учитывая перечисленные особенности импортируемых файлов, выполняет функции накопления, хранения и обработки данных, содержащих сведения о фактическом состоянии окружающей среды. Внешний вид программы показан на рисунке 1.

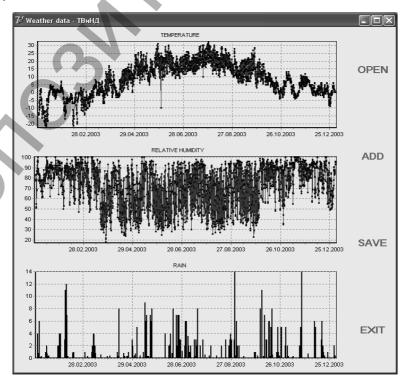


Рисунок 1 – Внешний вид компьютерной программы «Weather data - ТВиНД»

Программа «Weather data - ТВиНД», открывая файл с данными, автоматически определяет адрес сайта, с которого получен файл, и порядковые номера полей данных, с которых необходимо считывать информацию. После этого создается отдельный массив, в который записывается значение даты и времени измерения, температуры, относительной влажности воздуха и атмосферных осадков, а также ссылки на последующий и предыдущий массивы. Такая конструкция хранения данных позволяет добавлять значения параметров одновременно в начало и в конец списка и тем самым обрабатывать данные, которые записаны в файле в обратном хронологическом порядке.

Если информация на какой-то определенный момент времени отсутствует, то создается пустой массив, содержащий только дату и время измерения и ссылки на соседние массивы. Когда мы добавляем новый файл, программа считывает из него записи и, если таковых данных нет в списке, заполняет пустые массивы. Таким образом, происходит накопление данных, а также решается проблема пропущенных или отсутствующих в файлах данных.

Накопленные данные экспортируются в три текстовых файла отдельно для температуры, относительной влажности воздуха и атмосферных осадков, которые являются исходными данными для программы «ТВиНД».

Использование программы «ТВиНД» совместно с разработанной программой «Weather data - ТВиНД» позволяет значительно сократить время на подготовку исходных данных, связанных с описанием температуры, относительной влажности воздуха и атмосферных осадков.

УДК 004.384:658.5

СИСТЕМА ЭЛЕКТРОННОГО ДОКУМЕНТООБОРОТА «СИГМА»

Крощенко А.А.

УО «Брестский государственный университет имени А.С. Пушкина», г. Брест

Системы электронного документооборота (СЭД) относятся к наиболее востребованным системам автоматизации бизнес-процессов на предприятии. Следуя [1], СЭД – организационно-техническая система, обеспечивающая процесс создания, управления доступом и распространения электронных документов в компьютерных сетях, а также обеспечивающая контроль над потоками документов в организации. Подобные системы решают массу проблем, переводя документооборот на новый уровень автоматизации. К задачам, решаемым СЭД, относятся [2]: поддержка системы контроля качества, формализация деятельности каждого сотрудника, экономия ресурсов за счет сокращения бумажной документации и связанные с ней освобождение физического места для хранения документов и уменьшение затрат на копирование и доставку документов в бумажном виде и другие. К существующим СЭД-решениям можно отнести такие системы, как «СотрануМеdia», «DIRECTUM», «Канцлер» и другие, а также бесплатные (ореп source) системы «Alfresco» и «Nuxeo». Следует отметить, что коммерческие решения достаточно дороги и требуют доработки со стороны разработчиков при внедрении. Бесплатные системы лишены первого недостатка, но, как правило, требуют существенной доработки.

Перед нами была поставлена задача создания системы электронного документооборота и внедрения ее в работу подразделений УО «БрГУ им. А.С. Пушкина».