MINISTRY OF EDUCATION OF THE REPUBLIC OF BELARUS

ESTABLISHMENT OF EDUCATION BREST STATE TECHNICAL UNIVERSITY

DEPARTMENT OF APPLIED MECHANICS

RESEARCH THE MOVEMENT OF THE MECHANICAL SYSTEM BY MEANS OF THE PRINCIPLE OF D'ALEMBERT LAGRANGE

Tasks and methodical instructions

for performing calculated graphic works on a course «Theoretical mechanic»
for students of a specialty 1-700201 Industrial and civil engineering

The theoretical mechanics is one of the main all-technical disciplines which are the base for studying of special disciplines and training of the qualified engineers of technical specialties. For accuirement of skills of engineering calculations students perform calculated graphic works on the main sections of a course.

The present methodical instructions contain brief theoretical material on the Chapter «The general equation of dynamics», section «Dynamics», and condition of tasks for performance of calculated graphic works.

Authors: A. Veremeichik, associate professor
A. Zheltkovich, associate professor
B. Holodar, associate professor

CONTENTS

Introduction 4
Instructions on registration of calculated graphic works 4
Short theoretical data 4
Tasks to calculated graphic works 5
Example of the solution of a task. 9
Bibliography 13

INTRODUCTION

Tasks and methodical instructions correspond to basic curriculum (academic plan) of technical specialties and inchude short theoretical data, conditions of a task for performance of calculated graphic work and examples of calculations. At defense of calculated graphic work it is necessary to answer the questions connected with its performance and to solve control problems of its sabject.

INSTRUCTIONS ON REGISTRATION OF CALCULATED GRAPHIC WORKS

1. Calculated graphic works are performed on standard sheets of the A4 format ($210 \times 297 \mathrm{~mm}$) with a stamp of 15 mm and the indication of numbering of pages.
2. Registration order: the title page with the indication of option; a task with the indication of basic data and schemes of designs; the text of the decision with necessary explanations and schemes; conclusions; list of literature.
3. Drawings and schemes are carried out with observance of rules of graphics and scales of the standard of wniversity.
4. A text part is carried out according to execution requirements of text documents. Calculations are carried out in a general view, in the received expressions values of the sizes, the numerical result with the indication of dimension are substituted (entering them). The corresponding dimensions of the received values are specified in the answer. All calculations are made in decimal fractions to within the third sign after a comma.
5. All drawings (schemes, schedules, etc.) bave to be numbered, designated, mentioned in the text.

1. SHORT THEORETRCALDATA

The general equation of dynamics is applied to a research of the movement of not free mechanical systems, bodies or points of which move with some accelerations. According to Dalamber's principle the set of the active forces applied to mechanical system, forces of constraint reaction and forces of inertia of all points of system forms the balanced system of forces.

If to apply the principle of virtual displacement (Lagrange's princaple) to such system, then we will receive the integrated principle of Lagrange-Dalambera or the general equation of dynamics: At the displacement of not free mechanical system with bilateral, ideal, stationary and holonomis of constraint reaction the sum of elementary works of all active forces and forces of inertia applied to points of system on any possible displacement of system is equal to zero:

$$
\sum_{k=1}^{n} \delta A_{k}^{a}+\sum_{k=1}^{n} \delta A_{k}^{\phi}=0 .
$$

Expression can give other equivalent forms: a) in the form of a scalar product of vectors

$$
\sum_{k=1}^{n}\left(\overline{F_{k}}+\widetilde{\Phi_{k}}\right) \cdot \overline{\delta r_{k}}=0
$$

b) in an analytical look

$$
\sum_{k=1}^{\pi}\left[\left(F_{k x}+\Phi_{k y}\right) \delta x_{k}+\left(F_{k y}+\Phi_{k y}\right) \delta y_{k}+\left(F_{k x}+\Phi_{k z}\right) \delta z_{k}\right]=0 .
$$

In these equations force of inertia of a material point $\overline{\phi_{k}}=-i m_{k} \overline{a_{k}}$, and its projection to axes of coordinates $\Phi_{k x}=-m_{k} \ddot{x}_{k}, \Phi_{k y}=-m_{k} \ddot{y}_{k}, \Phi_{k z}=-m_{k} \ddot{H}_{k}$, then the equations can be presented in the following form:

$$
\begin{gathered}
\sum_{k=1}^{n}\left(\overline{F_{k}}-m_{k} \overline{a_{k}}\right) \cdot \delta \overline{r_{k}}=0, \\
\sum_{k=1}^{n}\left[\left(F_{k s}-m_{k} \ddot{x}_{k}\right) \delta x_{k}+\left(F_{\phi_{k}}-m_{k} \ddot{y}_{k}\right) \delta y_{k}+\left(F_{k z}-m_{k} z_{k}\right) \delta \ddot{z}_{k}\right]=0
\end{gathered}
$$

2. TASKS TO CALCULATED GRAPHIC WORK

On the schemes given below, options of mechanical systems are given. Bodies of systems can move in the vertical plane under the influence of forces of weight, elastic forces of springs, friction forces (sliding and rolling friction) and the set active forces. Threads are considered as weightless and inextensible, their inclination is identical with an inclination of the corresponding basic planes. Rolling of bodies happens without slipping. All schemes need to be added with a spring of the set rigidity c which one end is fixed on a body l, and the second fastens to the motionless surface located at some distance before this body.

The condition of system at <0 is a condition of static balance. It is provided with action of forces of weight, friction and spring elastic force. At ≤ 0 the active force of F^{x} is applied to a body I and its direction of action matches the direction of displacement of this body specified on schemes $S_{I} \leq S \leq S_{2}$, and the values of force depends on the reached displacement. (S - intermediate position of a trajectory of the displacement of a body $I ; S_{1}$-initial position of a body l at $t=0 ; S_{2}$-final position).

By means of Dalamber-Lagrange's principle to define the law of the displacement of a load 1. To neglect the mass of threads and elastic elements. To consider flexible threads inextensible. Swing of the skating rink representing the uniform cylinder happens without sliding. Numbers of schemes get out of the figure 1. To accept numerical data on table 1.

Explanations to designations and numerical data:

$m_{1}, m_{2}, m_{3}, m_{4}$ - the mass of bodies I-4 expressed through a certain weight m,
\boldsymbol{R}, r-radiuses of circles of wheels (indexes indicate the corresponding body),
i_{2}, i_{3} - radiuses of gyration of the bodies with respect to (w.r.t) axis passing through their centers of masses (if radiuses of inertia of a body aren't set, then it is considered a uniform disk),
α and β - angles of the planes inclination,
f and δ - friction coefficients of stiding and rolling (respectively).
Masses is set in kilograms, the linear sizes -- in meters, angles - in radians.
The mass of bodies are accepted on formulas

$$
m_{1}=K_{m 1} m, \quad m_{2}=K_{m} 2 \cdot m, \quad m_{3}=K_{m}{ }^{3} m, \quad m_{4}=K_{m 4} \cdot m .
$$

Radiuses of wheels $R_{2}=0.30 \mathrm{~m}, R_{3}=0.10 \mathrm{~m}$ (if there is no instruction on the scheme),

Radiuses of gyration $i_{2}=0.20 .2 \mathrm{~m}, i_{3}=0.15 \mathrm{~m}$.
Friction coefficient of sliding $f=0.2$, rolling friction coefficient $\delta=0.25 \cdot 10^{-2} \mathrm{~m}$.
Angles $\mu=K_{\alpha} \cdot \pi / 12$ and $\beta=K_{\beta} \cdot \pi / 12$.
To accept spring constant on a formula $c=K_{c} \cdot m_{1} g / L$, where $g=9.81 \mathrm{~m} / \mathrm{s}^{2}, L=1.0 \mathrm{~m}$.
All numerical coefficients ($\boldsymbol{K}_{m 1}, \ldots, K_{C}$) and dependence of $\boldsymbol{k}^{[}(S)$ are specified by the teacher at delivery of a task, for example, as it is specified in the table 1.

Table 1 - Table of basic data

No one by one	2	3	4
$\bar{K}_{\text {mi }}$	1.0	1.0	1.0
$K_{m *}$	2.0	3.0	1.0
$K_{m ;}$	2.0	1.0	2.0
$K_{\text {m }}$	1.0	1.0	1.0
K_{a}	$\because 3.0$	2.0	4.0
K_{β}	3.0	4.0	2.0
K_{c}	2.0	3.0	I. 0
$F^{*}(S)$	$\operatorname{Mg} \cdot \operatorname{Sin}\left(\pi / 2 / 2 S_{2}\right)$	$\mathrm{Mg}^{(1 / S} \mathrm{S}_{2}$	$\mathrm{Mg} \cdot\left(\mathrm{S} / \mathrm{S}_{2}\right)^{2}$
M	3.0.m	$3.0 \cdot \mathrm{~m}$	3.0 m
S_{2}	0.5	0.5	0.5

Schemes of mechanisms are shown (figure 1).

1	2
	4 $\begin{aligned} & R_{3}=R_{1}=R_{2} \\ & r_{2}=r_{1}=0,5 R_{2} \end{aligned}$
7	
	10 $r_{4}=r_{3}=r_{2}=0,5 R_{2}$

Figure 1-Schemes of tasks by options

Figure 1-Schemes of tasks by options
Work is performed in the sequence:

- to show the scheme of the mechanism, supplemented by a spring;
- show all existing in the system of external forces and moments;
- to make calculated schemes and to define static deformation of a spring ***;
- to show system in any position (at $\boldsymbol{S}_{1}<\boldsymbol{S}<\boldsymbol{S}_{2}$);
- to find virtual work of the applied forces;
- to find acceleration of the first body, to carry out calculations for $S=S_{2}$.
*** the static deformation of a spring is allowed to define by the principle of virtual displacement (Lagrange's principle).

Example:

Basic data: $K_{m i}=3, K_{m 2}=1, K_{m 3}=1, K_{m 4}=2, K_{a}=4, K_{c}=1$, $M=3 \cdot m, S_{2}=0,5 . F^{(u)}(S)=M \cdot g \cdot e^{\left(\frac{S}{S_{2}}\right)}=3 \cdot m \cdot g \cdot e^{\left(\frac{g}{0.5}\right)}=3 \cdot g \cdot m \cdot e^{2,0 \cdot s}$.

The mass of bodies are accepted on formulas:

$$
\begin{gathered}
m_{1}=K_{m i} \cdot m=3 m[\mathrm{~kg}], \quad m_{2}=K_{m 2} \cdot m=m[\mathrm{~kg}] \\
m_{3}=K_{m 3} \cdot m=m[\mathrm{~kg}], m_{4}=K_{m 4} \cdot m=2 m[\mathrm{~kg}] .
\end{gathered}
$$

Radiuses of wheels $R_{2}=0,3 \mathrm{~m},\left(R_{3}=R_{2}=0,3 \mathrm{~m}\right)$.
Ineria gyration $i_{2}=0,2 \mathrm{~m}$
Rolling friction coefficient $\delta=0,5 \cdot 10^{-2} \mathrm{~m}$.
Angle $\alpha=K_{\alpha} \cdot \frac{\pi}{12}=4 \frac{\pi}{12}=\frac{\pi}{3}$.
To accept rigidity of spring (constant) on a formala:
$c=K_{c} \cdot m_{1} \cdot \frac{g}{L}=3 \cdot m \cdot \frac{g}{1}=3 m g$.

Figure 2-The original schene

Decision:

We will represent the scheme of the mechanism added with a spring, and we will show all external forth factors existing in system.

We will consider the movement of the unchangeable mechanical system consisting of the bodies $1,2,3$ connected by threads. The mechanical system has one degree of freedom. The constraint reaction imposed on this system - ideal. For definition of the law of the displacement of a load 1 it is applicable the general equation of dynamics:

$$
\begin{equation*}
\sum \delta A_{k}^{a}+\sum \delta A_{k}^{\infty}=0 \tag{1}
\end{equation*}
$$

where $\sum \delta A_{k}{ }^{a}$ - the sum of possible (virtual) works of active forces on virtual displacement of system, $\sum \delta A_{k}{ }^{\phi}$ - the sum of virtual works of forces of inertia.

Figure $3-$ Rated scheme of the mechanism
Where $F_{\text {rol }}$ - rolling friction; M_{f}-. the moment from rolling friction; $F_{e l}$ - elastic force; \boldsymbol{S}_{0} - position of a body 1 at not defonned spring, i.e. a body 1 is kept by some external force.

Having set by the direction of acceleration \vec{a}_{1}, we represent on the drawing of force of inertia $\bar{\Phi}_{1}, \bar{\Phi}_{3}$, and pairs of forces of inertia with the moments $M_{2}{ }^{\infty}, M_{3}{ }^{\oplus} n$ M_{4}^{\oplus}, and which sizes are equal:

$$
\begin{align*}
& \Phi_{1}=m_{1} a_{1}, \quad \Phi_{3}=m_{3} a_{C 3} \\
& M_{2}^{\oplus}=I_{2} \varepsilon_{2}=m_{2} i_{2}^{2} \varepsilon_{2}, \quad M_{3}^{\oplus}=I_{C 3} \varepsilon_{3}=\frac{m_{3} R_{3}^{2}}{2} \varepsilon_{3}, \quad M_{4}^{\oplus}=I_{4} \varepsilon_{4}=\frac{m_{4} \dot{m}_{4}{ }^{2}}{2} \varepsilon_{4} . \tag{2}
\end{align*}
$$

We will report to system virtual displacement and we will find virtual work of active forces as the sum of possible works:
$\sum \delta A_{t}^{a}=\delta A\left(\bar{P}_{t}\right)+\delta A\left(\bar{P}_{3}\right)+\delta A\left(\vec{F}_{e l}\right)+\delta A\left(\bar{F}^{a}\right)+\delta A\left(M_{j^{\prime}}\right)$,
where: $\delta A\left(\bar{P}_{1}\right)=P_{1} \cdot \delta_{S_{1}}$,
$\delta A\left(\bar{F}_{e t}\right)=-F_{e l} \cdot \delta s_{1}$,
$\delta A\left(\overline{F_{a}}\right)=F_{a} \cdot \delta s_{1}$,
$\delta A\left(M_{f}\right)=-M_{f} \cdot \delta \varphi_{3}, \quad M_{f}=N_{3} \cdot \delta=P_{3} \cos \alpha \cdot \delta=m g \cos \alpha \cdot \delta$.
We will express all movements through δs_{1}, and accelerations through a_{1} :

$$
\begin{array}{cc}
\delta \varphi_{4}=\frac{\delta s_{1}}{r_{4}}, & \varepsilon_{4}=\frac{a_{1}}{r_{4}}, \\
\delta \varphi_{2}=\frac{\delta s_{1}}{r_{2}}, & \varepsilon_{2}=\frac{a_{1}}{r_{2}}, \\
\delta s_{C 3}=\delta \varphi_{2} \cdot R_{2}=\frac{\delta s_{1}}{r_{2}} \cdot R_{2}, & a_{C 3}=\varepsilon_{2} \cdot R_{2}=\frac{a_{1}}{r_{2}} \cdot R_{2} \\
\delta \varphi_{3}=\frac{\delta s_{C 3}}{R_{3}}=\frac{R_{2}}{R_{3}} \frac{\delta s_{1}}{r_{2}} . & \varepsilon_{3}=\frac{a_{C 2}}{R_{3}}=\frac{R_{2}}{R_{3}} \frac{a_{1}}{r_{2}} . \\
\sum \delta A_{k}^{a}=m_{1} g \cdot \delta s_{3}-F_{e l} \cdot \delta s_{1}+F^{a} \cdot \delta s_{1}-m_{3} g \cdot \delta s_{C 3} \cdot \sin \alpha-M_{f} \cdot \delta \varphi_{3}= \\
=m_{1} g \cdot \delta s_{1}-F_{s l} \cdot \delta s_{1}+F^{\alpha} \cdot \delta s_{1}-m_{3} g \cdot \frac{\delta s_{1}}{r_{2}} \cdot R_{2} \cdot \sin \alpha-M, \cdot \frac{R_{2}}{R_{3}} \frac{\delta s_{1}}{r_{2}}= \tag{5}\\
=\left(m_{1} g \cdots-F_{e i}+F^{a}-m_{3} g \cdot \frac{R_{2}}{r_{2}} \cdot \sin \alpha-M_{f} \cdot \frac{R_{2}}{r_{2} \cdot R_{3}}\right) \cdot \delta s_{1} .
\end{array}
$$

Elastic force of a spring is proportional to its deformation:

$$
\begin{equation*}
F_{e l}=c \cdot\left(f_{s l}+s_{c 3}\right)=c \cdot\left(0,42+s_{1}\right) \tag{6}
\end{equation*}
$$

where $f_{s t}=0,42 m$-it is defined in the previous calculated and graphic work [2].
Then expression (5) taking into account basic data will take a form:

$$
\begin{aligned}
& \sum \delta A_{h}^{a}=\left(3 m g-3 m g \cdot\left(0,42+s_{1}\right)+3 m g \cdot e^{2 s_{1}}-m g \cdot \frac{R_{2}}{r_{2}} \cdot \sin \alpha-\right. \\
& \left.-m g \cos \alpha \cdot \delta \cdot \frac{R_{2}}{r_{2} \cdot R_{3}}\right) \cdot \delta s_{1}=m g \cdot\left(3-3 \cdot\left(0,42+s_{1}\right)+3 \cdot e^{2 s_{1}}-\frac{R_{2}}{r_{2}} \cdot \sin \alpha-\right. \\
& \left.-\cos \alpha \cdot \delta \cdot \frac{R_{2}}{r_{2} \cdot R_{3}}\right) \cdot \delta s_{1} \cdot
\end{aligned}
$$

We will find the sum of virtual works of forces of inertia:

$$
\begin{align*}
& \sum \delta A_{k}^{\Phi}=-\Phi_{1} \cdot \delta s_{1}-M_{2}^{\Phi} \cdot \delta \varphi_{2}-M_{4}^{\phi} \cdot \delta \varphi_{4}-M_{3}^{\Phi} \cdot \delta \varphi_{3}-\Phi_{3} \cdot \delta s_{C 3}= \\
& =-m_{1} a_{1} \cdot \delta s_{1}-m_{2} i_{2}^{2} \varepsilon_{2} \cdot \delta \varphi_{2}-\frac{m_{3} R_{3}^{2}}{2} \varepsilon_{3} \cdot \delta \varphi_{3}-\frac{m_{4} r_{4}^{2}}{2} \varepsilon_{4} \cdot \delta \varphi_{4}-m_{3} a_{C \xi} \cdot \delta s_{C 3}= \\
& =-m_{1} a_{1} \cdot \delta s_{1}-m_{2} i_{2}^{2} \varepsilon_{2} \cdot \frac{\delta s_{1}}{r_{2}}-\frac{m_{3} R_{3}^{2}}{2} \varepsilon_{3} \cdot \frac{R_{2}}{R_{3}} \frac{\delta s_{1}}{r_{2}}-\frac{m_{4} r_{4}^{2}}{2} \varepsilon_{4} \cdot \frac{\delta s_{1}}{r_{4}} \\
& -m_{3} a_{C 3} \cdot \frac{\delta s_{1}}{r_{2}} \cdot R_{2}=-m_{1} a_{1} \cdot \delta s_{1}-m_{2} i_{2}^{2} \cdot \frac{a_{1}}{r_{2}} \cdot \frac{\delta s_{1}}{r_{2}}-\frac{m_{3} R_{3}^{2}}{2} \frac{R_{2}}{R_{3}} \frac{a_{1}}{r_{2}} \cdot \frac{R_{2}}{R_{3}} \frac{\delta s_{1}}{r_{2}}- \\
& - \\
& -\frac{m_{4} r_{4}^{2}}{2} \cdot \frac{a_{1}}{r_{4}} \cdot \frac{\delta s_{1}}{r_{4}}-m_{3} \cdot \frac{a_{1}}{r_{2}} \cdot R_{2} \cdot \frac{\delta s_{1}}{r_{2}} \cdot R_{2}= \\
& =\left(-m_{1}-m_{2} \frac{i_{2}^{2}}{r_{2}^{2}}-\frac{m_{3} R_{2}^{2}}{2}-\frac{m_{4}}{2}-m_{3}^{2} \frac{R_{2}^{2}}{r_{2}^{2}}\right) a_{1} \cdot \delta s_{1}= \tag{8}\\
& =\left(-3-\frac{i_{2}^{2}}{r_{2}^{2}}-\frac{3 R_{2}^{2}}{2}-1\right) m{r_{2}^{2}}_{2}^{r_{2}^{2}}-\delta s_{1} \cdot
\end{align*}
$$

We work out the equation (1):
$m g \cdot\left(3-3 \cdot\left(0,42+s_{1}\right)+3 \cdot e^{2 s_{1}}-\frac{R_{2}}{r_{2}} \cdot \sin \alpha-\cos \alpha \cdot \delta \cdot \frac{R_{2}}{r_{2} \cdot R_{3}}\right) \cdot \delta s_{1}+$ $+\left(-4-\frac{i_{2}^{2}}{r_{2}^{2}}-\frac{3 R_{2}^{2}}{2} \frac{r_{2}^{2}}{2}\right) m a_{1} \cdot \delta s_{1}=0$

Haying separated on $\delta s \neq 0$, we will receive:
$g \cdot\left(3-3 \cdot\left(0,42+s_{1}\right)+3 \cdot e^{2 s_{1}}-\frac{R_{2}}{r_{2}} \cdot \sin \alpha-\cos \alpha \cdot \delta \cdot \frac{R_{2}}{r_{2} \cdot R_{3}}\right)+$ $+\left(-4-\frac{i_{2}^{2}}{r_{2}^{2}}-\frac{3}{2} \frac{R_{2}^{2}}{r_{2}^{2}}\right) a_{1}=0$
from where:
$a_{1}=\frac{g \cdot\left(3-3 \cdot\left(0,42+s_{1}\right)+3 \cdot e^{2 s_{1}}-\frac{R_{2}}{r_{2}} \cdot \sin \alpha-\cos \alpha \cdot \delta \cdot \frac{R_{2}}{r_{2} \cdot R_{3}}\right)}{4+\frac{i_{2}^{2}}{r_{2}^{2}}+\frac{3}{2} \frac{R_{2}^{2}}{r_{2}^{2}}}$.

We substitute numerical values:

$$
\begin{aligned}
& a_{1}=\frac{g \cdot\left(3-3 \cdot\left(0,42+s_{1}\right)+3 \cdot e^{2 s_{1}}-\frac{0,3}{0,15} \cdot \sin 60^{0}-\cos 60^{0} \cdot 0,005 \cdot \frac{0,3}{0,15 \cdot 0,3}\right)}{4+\frac{0,2^{2}}{0,15^{2}}+\frac{3}{2} \frac{0,3^{2}}{0,15^{2}}}= \\
& =\frac{g \cdot\left(1,74-3 \cdot s_{1}+3 \cdot e^{2 s_{1}}-1,732-0,0165\right)}{4+1,78+6}= \\
& =\frac{g \cdot\left(0,0085-3 \cdot s_{1}+3 \cdot e^{2 s_{1}}\right)}{11,78}=-0,007-2,49 \cdot s_{1}+2,49 \cdot e^{2 s_{1}} .
\end{aligned}
$$

We build the schedule of dependence of $a_{7}(s)$.

Figure 4 - The schedale of dependence of acceleration of a load 1 from coordinate

LITERATURE

1. Targ, S. M. Short course of theoretical mechanics / S. M. Targ. - M, 1974.
2. Zheltkovich, A. E. Application of the theorem of change of kinetic energy to studying of the movement of mechanical system: Methodical instructions for performing calculated graphic works on a course «Theoretical mechanic»/A. Zheltkovich, A. Veremeichik //Brest State Technical University. - Brest, 2017.-18 p.

EDUCATIONAL EDITION

Authors:
A. Veremeichik, associate professor
A. Zheltkovich, associate professor B. Holodar, associate professor

RESEARCH THE MOVEMENT OF THE MECHANICAL SYSTEM BY MEANS OF THE PRINCTPLE OF D'ALEMBERT LAGRANGE

Tasks and methodical instructions

for performing calculated graphic works on a course «Theoretical mechamic»

for students of a specialty 1 - 700201 Industrial and civil engineering

Responsible for release: A. Zheltkovich
Editor: E. Borovikova
mposition: A. Sokoluik

It is passed for the press 28.12.2017. Paper writing No. 1.
Font of Times New Roman, Condish. print. page 0,93. Ed, edit 1 .
Order No. 1264. Edition 30 copies.
It is printed on risograph educational institutions Brest state technical university.
224017, Brest, Moskovskaya St., 267.

