тій Заключение завежары ытайысый ишилын

Материалы на основе древесины имеют непрерывно возобновляющуюся сырьевую базу. Это выдвигает их в ряд перспективных конструкционных материалов. Углеродные волокна благодаря своим специфическим свойствам имеют широкую область применения, в т. ч. позволяют усиливать традиционные материалы. Древесные композиты благодаря оптимальному сочетанию высоких свойств древесины и свойств армирующих волокон позволяют получать качественно новые прочностные и деформационные характеристики конструкции, которые находят все большее применение в современном строительстве.

Список цитированных источников

1. Плиты древесностружечные и древесноволокнистые. Методы контроля размеров и формы – ГОСТ 27680-88. Введ. 01.01.1989. - Москва : Издательство стандартов, 1989. - 5 с

22. Плиты древесные с ориентированной стружкой. Технические условия — ГОСТ 32567-2013. Введ. 01.07.2014. — Москва : Стандартинформ, 2014. — 17 с

3. Панели декоративные для стен на основе древесноволокнистых плит сухого способа производства. Технические условия – ГОСТ 32297-2013. – Москва: Стандартинформ, 2014. – 5 с

4. Фанера общего назначения с наружными слоями из шпона лиственных пород. Технические условия — ГОСТ3916.1-96 — Взамен ГОСТ 3916.1-89, ГОСТ 10.55-71; введ. 01.01.1998. — Москва: Издательство стандартов, 1997, Стандартинформ, 2008. — 11 с

УДК 691.115:539.412

Ласкевич А. В.

Научный руководитель: д. т. н., доцент Найчук А. Я.

ХАРАКТЕРИСТИЧЕСКОЕ ЗНАЧЕНИЕ ПРОЧНОСТИ ПЛИТЫ С ОРИЕНТИРОВАННОЙ СТРУЖКОЙ ПРИ ОСЕВОМ РАСТЯЖЕНИИ В ЕЁ ПЛОСКОСТИ

Целью данных исследований являлось определение характеристических значений $f_{a,t,k}$ прочности ОСП толщиной 12 мм при растяжении в плоскости

плиты под углом α к направлению ее главной оси.

Плита древесная с ориентированной стружкой (ОСП) – многослойная плита, изготовленная из склеенной между собой древесной стружки специальной формы, которая в наружных слоях плиты расположена в основном в направлении вдоль ее длины или ширины, а во внутреннем слое ориентирована, как правило, под прямым углом к ее направлению в наружных слоях или имеет случайное расположение. Выпускаемые в нашей стране и странах ЕС ОСП должны удовлетворять требованиям, установленным в [1,2], а в России – [3]. Толщина этих плит может быть от 6 мм до 25 мм. В зависимости от условий эксплуатации и физико-механических характеристик, согласно [1], ОСП подразделяются на следующие типы: ОСП/1 – плиты, не несущие нагрузку, предназначенные для применения внутри помещения в сухих условиях (класс эксплуатации 1 по [4]); ОСП/2 – плиты, несущие нагрузку, предназначенные для использования в сухих условиях (класс эксплуатации 2 по [4]); ОСП/3 – плиты, несущие нагрузку, предназначенные для использования во влажных условиях (класс эксплуатации 3 по [4]); ОСП/4 – плиты, несущие повышенную нагрузку, предназначен-⊣ные для использования во влажных условиях (класс эксплуатации 3 по [4]).

Для строительных конструкций в основном используются плиты ОСП/3 и ОСП/4, реже ОСП/2. В последнее время ОСП получили широкое применение

при строительстве деревянных домов, где используются в качестве обшивок стеновых панелей, стенок двутавровых балок с поясами из цельной или клееной древесины, настилов полов и перекрытий. Вместе с тем, несмотря на широкое применение ОСП в качестве конструкционного материала, в нормативных документах [4] отсутствуют какие-либо данные о характеристических и расчетных значениях прочностных и упругих характеристик данного материала. Поэтому определение характеристических значений прочностных и упру-

гих характеристик ОСП является актуальной задачей.

Общеизвестно, что определение тех или иных характеристик материалов должно осуществляться в соответствии с действующими методами или методиками, установленными в соответствующих стандартах. Анализируя требования [1], касающиеся прочностных и упругих характеристик, можно отметить, что здесь приведены только значения прочности и модулей упругости при изгибе из плоскости плиты в двух основных направлениях, а также значения прочности при растяжении перпендикулярно плоскости плиты. Что же касается прочностных характеристик ОСП для других видов напряженного состояния, то в [1] не приводится как их значений, так и методов по их определению. Поэтому для определения прочностных характеристик ОСП при других видах напряженного состояния, в нашем случае - растяжении в плоскости плиты, должна быть разработана методика по их определению. При разработке методики учитывались особенности строения исследуемого материала и их влияние на изучаемые свойства. Так, ориентация стружки в одном направлении в наружных слоях плиты способствует увеличению прочности при растяжении в плоскости и изгибе из плоскости плиты в данном направлении, но уменьшает прочность в перпендикулярном направлении, т. е. из-за искусственно созданного строения материала возникает анизотропия его механических свойств.

Общеизвестно, что под анизотропией механических свойств любого материала подразумевается изменчивость прочностных, упругих и других характеристик в зависимости от направления воздействия по отношению к направлениям экстремальных величин прочности. Таким образом, применительно к ОСП главными осями анизотропии являются направления вдоль (главная ось), поперек плиты и перпендикулярно плоскости плиты (второстепенные оси), а плоскости, перпендикулярные главным осям анизотропии, являются плоскостями симметрии механических свойств. Поэтому прочность ОСП при растяжении в ее плоскости должна характеризоваться не только значениями, полученными для главных осей упругой симметрии $f_{0,t}$ и $f_{90,t}$, но и значениями прочности $f_{a,t}$ под углом α к главной оси. Учитывая данную особенность ОСП, а также отсутствие стандартизированных методов, нами была разработана методика по определению значений прочности $f_{\sigma,t}$ при растяжении в плоскости плиты под разными углами α, по отношению к лавной оси. Для разработки данной методики были проведены предварительные испытания образцов по обоснованию их формы и размеров, а также режимов нагружения. Предварительные испытания проводились в два этапа. На первом этапе было изготовлено и испытано две серии образцов. В первую серию входили образцы, изготовленные в форме прямоугольных призм $bxhxI = 240 \times 50 \times 12$ мм, а во вторую – в форме «лопаток» общей длиной образца / = 240 мм и шириной в зоне захвата b = 50 мм, длиной рабочей зоны $l_{\rm ef} = 100$ мм, шириной $b_{\rm ef} = 25$ мм и толщиной h=12 мм (рис. 1).

Образцы первой и второй серий выпиливались из ОСП в направлении главной оси плиты. На втором этапе испытаний определялся интервал (продолжительность) времени нагружения образцов, не оказывающий влияния на значение прочности. В результате проведенных исследований было установлено, что для определения прочности ОСП толщиной 12 мм при растяжении в

плоскости плиты должны быть использованы образцы в форме «лопаток», в которых I = 240 мм, b = 50 мм, $l_{ef} = 100$ мм, b_{ef}

= 25 мм, с продолжительностью нагружения не более 120 с.

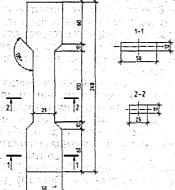


Рисунок 1 – Геометрические параметры образцов ОСП при растяжении в плоскости

В соответствии с разработанной методикой испытаний было изготовлено четыре серии образцов по 20 в каждой. Разделение образцов на серии осуществлялось в зависимости от угла α между главной осью плиты и направлением воздействия. В первую серию были включены образцы, где $\alpha = 0^{\circ}$, во вторую – $\alpha = 30^{\circ}$, в третью – $\alpha = 60^{\circ}$ и в чет-

вертую – $\alpha = 90^{\circ}$. Испытание образцов проводилось в испытательной машине Р-05 при непрерывном режиме нагружения.

В результате проведенных исследований было установлено, что разрушение всех образцов происходило в рабочей зоне. Характер разрушения был вязким с образованием защепистости по линии разрыва.

 \sim Для каждого образца определялось значения прочности f_{at} ОСП, используя выражение (1):

$$f_{t,0} = \frac{F_{\text{max}}}{h \cdot h}, \text{ (H/MM}^2),$$
 (1)

Результаты испытаний и вычислений для каждой серии образцов приведены в таблице 1.

Таблица 1 – Прочность образцов под углом относительно главной оси писта

	№ серии об- разцов	Средняя разрушающая нагрузка, F _{max} (H)	Геометрические характеристики поперечного сечения образца, bxh (мм)	Прочность при растяжении, f _t (МПа)
F	3589 S. 1 3 33 3.8	2	2.2 1 1 to 3 - Marke sec.	4
Τ	ana sana 1 999, kaliba	2745.5	25x12	8.82
Ī	Add at 2 of 1874	2182.0	75 (11 25x12 25x12 14)	7.27
ſ	1-01/1912 3 (1.4-44-4-4	1474.5	25x12	4.84
Γ	4	1515.5	25x12	5.05

Анализируя значения прочности, приведенные в таблице 1, можно отметить, что набольшее значение прочности характерно для образцов первой серии, т. е. когда направление прикладываемой нагрузки совпадает с направлением главной оси плиты. При увеличении угла с значение прочность ОСП уменьшается и достигает минимального при $\alpha = 60^{\circ}$.

На основании полученных результатов можно сделать вывод, что для ОСП характерно такое свойство, как анизотропия прочности, которую необходимо учитывать при выборе расчетных моделей конструкций, где в качестве конструкционного материала используются ОСП.

Характеристические значения $f_{a,t,k}$ прочности ОСП определялись по фор-

муле (2) в соответствии с [2]:

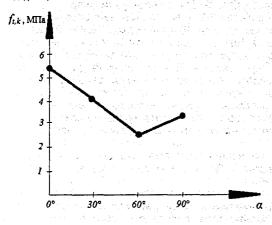
$$f_{t,k} = \exp(\overline{y} - k_s \cdot s_y) \tag{2}$$

Где компоненты, входящие в данное выражение, в свою очередь определяются по формулам (3) и (4) в соответствии с [2]:

$$\frac{\overline{y}}{y} = \frac{1}{n} \sum_{i=1}^{n} \ln f_{t,i}$$
 (3)

$$\frac{\overline{y}}{y} = \frac{1}{n} \sum_{i=1}^{n} \ln f_{t,i}$$

$$s_{y} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\ln f_{t,i} - \overline{y})^{2}}$$
(3)


В результате выполненных исследований была разработана методика испытаний по определению прочности ОСП при растяжении в плоскости листа, включающая в себя обоснование формы и размеров образцов, а также режимов нагружения.

Экспериментальным путем установлено, что продолжительность испыта-ব্যাহারের বিভিন্নত এই মুখ্যে ব্যক্তর্থকের মান্ত দল্ভ

ний образцов не должна превышать 120 с.

Для ОСП характерно такое свойство, как ползучесть, которое должно учитываться при определении расчетных значений прочности и расчетных значений упругих характеристик.

Впервые для ОСП, выпускаемого в соответствии с требованиями [1], определено характеристическое значение прочности $f_{t,k}$ при растяжении в плоскости листа, которое составляет $f_{0,t,k}$ =5,36 МПа, $f_{30,t,k}$ =4,05МПа, $f_{60,t,k}$ = 2,59 МПа, f_{90°,t,k}=3,333 M∏a.

Рисунок 2 – Анизотропия прочности ОСП

Полученное характеристическое значение прочности бук может быть использовано в дополнении к национальному приложению ТКП EN 1995-1-1 как нормируемая величина.

Для определения расчетного значения прочности ОСП необходимо проведение испытаний образцов по определению длительной проч-

Список цитированных источников

1. Плиты из длинных узких ориентированных древесных стружек (OSB). Определения, классификация и технические требования: CTБ EN 300-2009/EN 300:2006. - Минск: БелГИСС, 2010. - 29 с.

2 Timbler structures. Calculation and verification of characteristic values SS EN 14358:2016. - Swedish Standards Institute, Stockholm, Sweden, 2016. 17 p.

3. Плиты древесные с ориентированной стружкой. Технические условия: ГОСТ 32567-2013. - Введ. 01.02.2016. - Минск : Госстандарт, Минск : Стройтехнорм, Минск: СтройМедиаПроект, 2015. - IV, 18 с.

4. Проектирование деревянных конструкций. Часть 1-1: Общие правила и правила для зданий ТКП EN 1995-1-1-2009. — Минск: Министерство архитектуры и строительства Республики Беларусь, 2010. – 98 стр.