Таблица 1 – Результаты исследований по регенерации ГАУ озонированием

с повышеним рН

Характеристика ГАУ	Оптическая плот- ность МС	Конц. разбавл. р-ра МС, мг/л	Концентр. МС, мг/л	Обменная емкость ГАУ по МС, мг/г
Исх р-р МС	1,37	9,21	2764	. 984 (1918
Исходный ГАУ	0,85	5,71	1714	1050
ГАУ после рег.	0,62	4,22	1265	1499

Заключение

1. Выполнены исследования по регенерации адсорбента ГАУ насыщенного адсорбатом МС методом озонирования с повышенным рН.

2. Экспериментально установлена обменная емкость ГАУ по МС, которая

составляет около 1000-1500 мг/г.

3. Показана высокая эффективность регенерации адсорбента ГАУ насыщенного адсорбатом МС методом озонирования с повышенным рН, после регенерации адсорбент имел большую обменную емкость по МС.

Список цитированных источников

1. Технический справочник по обработке воды: в 2 т. Т. 1: пер. с фр. – СПб. : Новый журнал. ISBN 5 – 901336-05-4.

2. Зиятдинова, Л. Р. Энергосберегающая технология подготовки волжской питьевой воды / Л. Р. Зиятдинова, С. Н. Савельев, Р. Н. Зиятдинов, С.В. Фридланд // Современные проблемы специальной технической химии: материалы докладов Международной научно-технической и методической конференции, Казань, 6-8 дек., 2006. – Казань: Казан. гос. технол. ун-т., 2006. – С. 530-537.

3. Белов, С. Г. Разработка метода точного дозирования высоких удельных доз озона при обработке воды/ С.Г. Белов, Г.О. Наумчик// Вестник БрГТУ. – 2011. – №2(68): Водохозяйственное строительство, теплоэнергетика и геоэкология. – С.73 – 81.

reference of the control of the cont

УДК 628.316: 631.84

Грамажора Н. П., Орловский А. С.

Научный руководитель: ст. преподаватель Андреюк С. В., к.т.н., доцент Житенев Б. Н.

ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ТЕХНОЛОГИИ УДАЛЕНИЯ НИТРАТОВ НА ИОНООБМЕННЫХ СМОЛАХ В СИСТЕМАХ НЕЦЕНТРАЛИЗОВАННОГО ВОДОСНАБЖЕНИЯ

Целью настоящей работы является расчет экономической эффективности технологии удаления нитратов на ионообменных смолах в системах нецентрализованного водоснабжения, усиление внимания к проблеме загрязнения подземных вод нитратами.

Введение

Внедрение в производство новой техники и технологии оправдано только тогда, когда оно обеспечивает экономический эффект, т. е. ведет к снижению затрат на производство единицы продукции, повышению качества изделий (экономия у потребителей), росту производительности труда.

Целью Государственной программы «Строительство жилья» в Республике Беларусь на 2016—2020 годы является повышение уровня обеспеченности населения Республики Беларусь доступным и качественным жильем. Достиже-

ние цели будет осуществляться в том числе за счет:

снижения затрат на строительство жилых домов, строящихся с государственной поддержкой;

увеличения доли индивидуального жилищного строительства в общем объ-

еме жилищного строительства.

В связи с чем актуальным вопросом, требующим решения, является обеспечение инфраструктуры в местах индивидуальной застройки. Развитие централизованных систем водоснабжения не является единственным ответом при решении поставленного вопроса. Перспективным направлением считается развитие и внедрение технологических схем подготовки воды из подземных источников для хозяйственных и питьевых целей в системе индивидуального водоснабжения.

Были рассмотрены и исследованы различные технологии водоподготовки для получения воды питьевого качества. Требуется выполнить их сравнение и определить наиболее экономически выгодный вариант для потребителя, для чего будет определяться сравнительная экономическая эффективность.

Мониторинг нитратного загрязнения подземных вод Брестского региона

В настоящее время водоснабжение многих сельских населенных пунктов Республики Беларусь (до 56% сельского населения), усадеб городской и пригородной зон (до 7 % городского населения) [1,2] основывается на использовании грунтовых вод, которые эксплуатируются шахтными колодцами, либо неглубокими индивидуальными скважинами.

 Имея, как правило, хорошие вкусовые качества, эти воды подвергались глубокой геохимической трансформации под влиянием антропогенной деятельно-

сти человека.

Обзор литературных данных указывает на высокую степень загрязненности этих вод азотистыми соединениями: максимальные концентрации нитратов превышают допустимые по гигиеническим требованиям к источникам нецентрализованного питьевого водоснабжения (45 мг/дм³) [3,4] в 5 и более раз и отмечены в 41% всех проб источников нецентрализованного водоснабжения в

Брестской области, при среднереспубликанском уровне 24,5% [5].

Наиболее интенсивное загрязнение охватывает толщу до 10-15 м, что весьма актуально для сельской местности и приусадебных участков, но нередко и на глубинах 40-50 м фиксируются концентрации нитратов, превышающие уровень предельно допустимой (более 45 мг/л). В рамках собственных исследований был выполнен мониторинг нитратного загрязнения подземных вод Брестского региона Республики Беларусь. Были проанализированы пробы воды 22 источников нецентрализованного водоснабжения (шахтных колодцах и скважин глубиной от 5 до 80 м), содержание нитратов определяли потенциометрическим методом. Анализируя полученные данные, следует отметить более благоприятную картину с содержанием нитратов в пробах воды в текущем 2018 г. по сравнению с исследованиями прошлого года, вероятно по той причине, что охвачена меньшая площадь территории Брестского региона и исследованиями концентрации нитратов в воде колодцев Лунинецкого и Барановичского районов.

Превышения предельно допустимой массовой концентраций нитратов были выявлены в воде шахтного колодца деревни Забужки Кобринского района

Брестской области: содержание нитратов составило 63 мг/л.

Решение проблемы нитратного загрязнения подземных вод

Высокие уровни нитратного загрязнения шахтных колодцев и скважин заслуживают самого серьезного внимания, так как токсический эффект нитратного загрязнения воды проявляется в меттемоглобинемии (в особенности у детей грудного и младшего возраста) [6]. Длительное употребление воды с повышенным содержанием азотистых соединений вызывает болезни обмена веществ, опорно-двигательного аппарата и нервной системы, наблюдаются генетические нарушения. В кишечном тракте нитраты восстанавливаются в токсичные нитрозамины, обладающие канцерогенными свойствами. Таким образом, современные масштабы нитратного загрязнения источников нецентрализованного питьевого водоснабжения требуют конкретных предложений в практике проектирования, строительства и эксплуатации колодцев на приусадебных участках с целью возможности обеспечения населения высоко-качественной питьевой водой.

Для решения существующей проблемы на кафедре водоснабжения, водоотведения и охраны водных ресурсов УО «Брестский государственный технический университет» проводятся комплексные теоретические и экспериментальные исследования процессов удаления нитратов из подземных вод с це-

лью разработки высокоэффективных технологий и устройств.

Установлено, что для воды, содержащей нитрат-ионы в концентрациях — до трех предельно допустимых, могут эффективно использоваться ионообменные смолы [8], как загрузка магистральных фильтров в системах индивидуального питьевого водоснабжения. Кроме того, наличие железа (Fe²⁺) в грунтовых водах, наряду с нитратами, в концентрациях, превышающих предельно допустимые, является дополнительным фактором, определяющим состав технологической схемы водоподготовки для нецентрализованных локальных и индивидуальных систем питьевого водоснабжения [9]. Таким образом, были рассмотрены и исследованы различные технологии водоподготовки.

Расчет экономической эффективности

В технико-экономических расчетах рассмотрены варианты технологических схем подготовки грунтовой воды, содержащей примеси соединений азота (нитраты) и соединений железа II в концентрациях выше ПДК, для хозяйственных и питьевых целей в системе индивидуального водоснабжения (таблица).

Таблица – Показатели системы водоснабжения

Расчетный расход, м ³ /ч	0,4÷0,6	
Показатели качества воды:		
концентрация нитратов, мг/дм ³	100	
концентрация железа (II), мг/дм ³	1,5	199

Первый вариант: технологическая схема водоподготовки грунтовых вод, содержащих примеси соединений азота (нитраты) и железа (II) в концентрациях выше ПДК, с использованием метода ионного обмена в индивидуальной системе питьевого водоснабжения. Исходная вода забирается насосной станцией с пневмобаком и подается на водоподготовку. Исходная вода проходит первую ступень водоподготовки – обезжелезивание фильтрацией предварительно насыщенной кислородом воды, после чего проходит магистральный фильтр с картриджем механической очистки дополнительного осветления для исключения попадания мелких частиц в аппараты последующей водоподготовки и разделяется на два потока: 1) подается на бытовые (гигиенические и хозяйственные) нужды потребителю; 2) направляется на последующую водоподготовку. Вода второго потока проходит подготовку на сильноосновных ионообменных смолах, сорбционную очистку на активных углях, обеззараживание ультрафиолетовой лампой, – и поступает потребителю на питьевые нужды. Технологическая схема предусматривает блок реагентного хозяйства для выносной регенерации ионообменного материала (смолы) раствором натриевой соли угольной кислоты.

Второй вариант: технологическая схема водоподготовки грунтовых вод, содержащих примеси соединений азота (нитраты) и железа (II) в концентрациях выше ПДК, с использованием метода обратного осмоса в индивидуальной системе питьевого водоснабжения. Вода второго потока проходит систему обратного осмоса с помпой с использованием картриджей механической очистки, обратноосмотической мембраны, угольного фильтра и накопительного бака — и далее при помощи помпы поступает потребителю на питьевые нужды. Технологическая схема предусматривает блок реагентного хозяйства для выносной регенерации обратноосмо-

тической мембраны раствором трёхосновной карбоновой кислоты.

Третий вариант: технологическая схема водоподготовки грунтовых вод, содержащих примеси соединений азота (нитраты) и железа (II) в концентрациях выше ПДК, в индивидуальной системе водоснабжения: обезжелезивание с

закупкой на питьевые нужды бутилированной воды.

Расчет показателей сравнительной экономической эффективности выполнен в следующем объеме: определение капитальных, текущих и годовых эксплуатационных затрат с расчетом себестоимости водоподготовки 1 м³ грунтовых вод, определением срока окупаемости и экономического эффекта применения ионообменной технологии. Расчеты выполнены в ценах и тарифах 01.12.2017г.

Согласно данным расчета наименьшую себестоимость водоподготовки, руб/м³, имеет система индивидуального водоснабжения по первому варианту (с использованием метода ионного обмена). Второй вариант (с использованием метода обратного осмоса) имеет себестоимость водоподготовки больше первого на 9,5+14,7 % (в зависимости от применения или отсутствия регенерации материалов, участвующих в процессе удаления нитратов). Третий вариант системы индивидуального водоснабжения (с покупкой и доставкой питьевой бутилированной воды) имеет себестоимость больше первого на 53%.

Затраты, связанные с внедрением технологии водоподготовки грунтовой воды, содержащей примеси азотистых соединений и соединений железа в концентрациях выше ПДК, с применением метода ионного обмена, полностью окупятся на четвертом году использования в индивидуальной системе питьевого водоснабжения. При этом ожидаемый экономический эффект от внедрения указанной технологии водоподготовки составляет около 3,5 тыс. рублей: по со-

стоянию цен на 1.12.2017 г Br 3,5 тыс. (\$ 1750).

Заключение

В работе проанализировано современное состояние проблемы нитратного загрязнения источников нецентрализованного питьевого водоснабжения Беларуси. Выполнена оценка экономической эффективности технологии удаления нитратов на ионообменных смолах в системах нецентрализованного водоснабжения. Внедрение данной технологии водоподготовки в индивидуальных системах питьевого водоснабжения позволит уменьшить отрицательную нагрузку на эдоровье населения, снизить затраты потребителя (при использовании метода водоподготовки как альтернативы покупке питьевой бутилированной воды).

Список цитированных источников

1. Дроздова, Е. В. Нитратное загрязнение питьевых вод в Республике Беларусь: анализ состояния проблемы и обоснование направления дальнейших исследований / Е. В. Дроздова, В. В. Бурая, В. А. Рудик // (CD-ROM) Здоровье и окружающая среда: сб. науч. тр. / Респ. науч.-практ. центр гигиены; гл. ред. В.П. Филонов. — Минск: 30.09.2010. Вып. 15 — 16. ISSN 2076 — 3778. — С. 56—61.

2. Житенев, Б.Н. Современное состояние проблемы загрязнения подземных вод Беларуси соединениями азота и пути ее решения / Б.Н. Житенев, С.В. Андреюк // Водоочистка, Водоподготовка, Водоснабжение. — 2016. — №4 (100). — С. 52–57.

3. Санитарная охрана и гигиенические требования к качеству воды источников нецентрализованного питьевого водоснабжения населения: санитарные правила и нормы 2.1.4.12¬23¬2006, утвержденные Главным государственным санитарным врачом Республики Беларусь 22.11.2006 № 141 // Сборник официальных документов по коммунальной гигиене, часть 10. — Минск, 2007. — С. 2—21.

4. Гигиенические требования к источникам нецентрализованного питьевого водоснабжения населения: санитарные нормы, правила и гигиенические нормативы, утвержденные постановлением Министерства здравоохранения Рес-

публики Беларусь от 02.08.2010 г. Минск, 2010. — 11 с.

5. Гигиеническая оценка водных объектов, водоснабжение и здоровье населения, раздел 5 // Государственный доклад Министерства здравоохранения Республики Беларусь «О санитарно-эпидемической обстановке в республике Беларусь в 2015 году». – Минск, 2016. – С. 64–66.

6. Позин, С. Г. О некоторых направления обеспечения безопасности воды для здоровья населения Республики Беларусь / С. Г. Позин, Т. В. Амвросьева, В. И. Ключенович // Военная медицина. – 2006. – № 1. – С. 90–93.

7. Водоснабжение питьевое. Общие положения и требования. Водазабеспячэнне пітнае. Агульныя палажэнні. І патрабаванні. СНБ 4.01.01-03. Издание

официальное. - Минск. 2004.

8. Андреюк, С. В. Исследование методов физико-химической очистки природных вод от нитратов / С. В. Андреюк // Сборник научных статей Международной научно-практической конференции, Брест, 6—8 апреля 2016 г.: в 2-х ч. / УО «Брестский гос. технический ун-т.»; под ред. А.А. Волчек [и др.]. — Брест, 2016. — Ч.П. — С. 159—163.

9. Житенев, Б. Н. Технологические решения подготовки воды, с примесями соединений азота и железа, для питьевого водоснабжения / Б. Н. Житенев,

С. В. Андреюк // Вестник БрГТУ, - 2017. - № 2. - С. 95 - 97.

10. Инструкция по оценке эффективности использования результатов исследований и разработок в промышленности / Утв. Постановлением ГКНТ и НАН Беларуси 22 декабря 2004 г. № 8/3.

УДК 378.147,88 Кисинский П. А.

Научный руководитель: ст.преподаватель Винник Н. С.

ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ СИСТЕМЫ AutoCAD В ВИЗУАЛИЗАЦИИ ЗАДАЧ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

Ранее нами рассматривалась возможность использования пакетных файлов системы AutoCAD в разработке новых подходов при визуализации задач[1]. В данной работе продолжим изучать функциональные возможности графического редактора AutoCAD применительно к задачам начертательной геометрии и рассмотрим совместное использование возможности создания анимационных роликов и слайдовых систем.

В поставленной задаче даны две пересекающиеся поверхности вращения:

усеченный конус и сфера (рис.1).

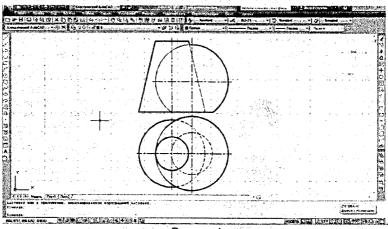


Рисунок 1