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1 Complex Number System 

1.1 The Complex Number System. Fundamental Operations with Complex Numbers 
There is no real number x  that satisfies the polynomial equation 2 1 0x   . To permit so-

lutions of this and similar equations, the set of complex numbers is introduced.  
We can consider a complex number as having the form a ib  where a  and b  are real 

numbers and i , which is called the imaginary unit, has the property that 2 1i  . If z a ib 
, then a  is called the real part of z  and b  is called the imaginary part of z  and are denoted by 
Re{ }z  and Im{ }z , respectively. The symbol z , which can stand for any complex number, is 
called a complex variable. 

Two complex numbers a ib  and c di  are equal if and only if a c  and b d . We 
can consider real numbers as a subset of the set of complex numbers with 0b . Accordingly 
the complex numbers 0 0i  and 3 0i   represent the real numbers 0 and −3, respectively. 
If 0a , the complex number 0 bi  or bi  is called a pure imaginary number. 

The complex conjugate, or briefly conjugate, of a complex number a ib  is a ib . The 

complex conjugate of a complex number z  is often indicated by z  or z . 
In performing operations with complex numbers, we can proceed as in the algebra of real 

numbers, replacing 2i  by −1 when it occurs. 
(1) Addition 

( ) ( ) ( ) ( )a bi c di a bi c di a c b d i           . 
(2) Subtraction 

( ) ( ) ( ) ( )a bi c di a bi c di a c b d i           . 
(3) Multiplication 

2( ) ( ) ( ) ( )a bi c di ac cbi bdi adi ac bd ad bc i           . 
(4) Division 

2 2 2 2 2 2

( )a bi a bi c di ac bd bc ad i ac bd bc ad

c di c di c di c d c d c d

           
     

. 

The absolute value or modulus of a complex number a ib  is defined as 
2 2a bi a b   . 

Example 1 2 24 2 ( 4) 2 20 2 5i       . 

Suppose real scales are chosen on two mutually perpendicular axes X OX  and Y OY  
[called the x  and y  axes, respectively] as in Fig.1. We can locate any point in the plane deter-
mined by these lines by the ordered pair of real numbers ( , )x y  called rectangular coordinates 
of the point. Examples of the location of such points are indicated by , , ,P Q R S , and T  in Fig.1. 

Since a complex number x iy can be considered as an ordered pair of real numbers, we 
can represent such numbers by points in an xy  plane called the complex plane or Argand dia-
gram. The complex number represented by P , for example, could then be read as either (3,4)  
or 3 4i . To each complex number there corresponds one and only one point in the plane, and 
conversely to each point in the plane there corresponds one and only one complex number. 
Because of this we often refer to the complex number z  as the point z . Sometimes, we refer to 
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the x  and y  axes as the real and imaginary axes, respectively, and to the complex plane as 
the z  plane. The distance between two points, 1 1 1z x iy   and 2 2 2z x iy  , in the complex 

plane is given by    2 2
1 2 1 2 1 2z z x x y y     . 

 
Fig.1 

1.2 Graphical Representation of Complex Numbers. Polar Form of Complex Numbers 

Let P  be a point in the complex plane corresponding to the complex number ( , )x y  or x iy

. Then we see from Fig.2 that cos , sinx r y r   , where 2 2r x y x iy     is 

called the modulus or absolute value of z x iy  [denoted by mod z  or z  and  , called the 

amplitude or argument of z x iy   [denoted by arg z ], is the angle that line OP  makes with 
the positive x  axis. 

It follows that 
 cos sinz x iy r i         (1) 

which is called the polar form of the complex number, and r  and   are called polar coordinates. 

 
Fig.2 

For any complex number 0z  there corresponds only one value of   in 0 2   . How-
ever, any other interval of length 2 , for example      , can be used. Any particular 
choice, decided upon in advance, is called the principal range, and the value of   is called its 
principal value. 

Let  1 1 1 1 1 1cos sinz x iy r i      and  2 2 2 2 2 2cos sinz x iy r i     , then 

we can show that 
 1 2 1 2 1 2 1 2cos( ) sin(z z r r i          (2) 
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 1 1
1 2 1 2

2 2

cos( ) sin(
z r

i
z r

          (3) 

A generalization of (2) leads to 
 1 2 1 2 1 2 1 2cos( ... ) sin( ...n n n nz z z r r r i                (4) 

and if 1 ... nz z z    this becomes 

 cos sinn nz r n i n         (5) 

which is often called De Moivre’s theorem. 

1.3 Euler’s Formula. Polynomial Equations. Roots of Complex Numbers 

A number w  is called an n -th root of a complex number z  if nw z , and we write 
1
nw z

. From 
De Moivre’s theorem we can show that if n  is a positive integer, 

1 1
2 2

cos sin , 0,1,2,..., 1n n k k
z r i k n

n n

                           
  (6) 

from which it follows that there are n  different values for 
1

nz , i.e., n  different n -th roots of z , 
provided 0z . 

By assuming that the infinite series expansion 
2 3

1 ...
2! 3!

x x x
e x      of elementary 

calculus holds when x i , we can arrive at the result 

cos sinie i          (7) 
which is called Euler’s formula. It is more convenient, however, simply to take (7) as a definition 
of ie  . In general, we define 

(cos sin )z x iy xe e e y i y        (8) 
Let P  [Fig.3] be the complex plane and consider a sphere S  tangent to P  at 0z . The 

diameter NS  is perpendicular to P  and we call points N  and S  the north and south poles of 
S . Corresponding to any point A  on P  we can construct line NA  intersecting S  at point A . 
Thus to each point of the complex plane P  there corresponds one and only one point of the 
sphere S , and we can represent any complex number by a point on the sphere. For complete-
ness we say that the point N  itself corresponds to the “point at infinity” of the plane. The set of 
all points of the complex plane including the point at infinity is called the entire complex plane, 
the entire z  plane, or the extended complex plane. 

 
Fig.3 
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The above method for mapping the plane on to the sphere is called stereographic projection. 
The sphere is sometimes called the Riemann sphere. When the diameter of the Riemann sphere 
is chosen to be unity, the equator corresponds to the unit circle of the complex plane. 

Example 2 Perform each of the indicated operations. 
Solution 
(a) (3 2 ) (6 7 ) 3 6 2 7 9 5i i i i i         . 
(b) ( 4 3 ) (5 7 ) 4 5 3 7 9 4i i i i i          . 

(c) 2(2 3 ) (5 2 ) 2 5 2 2 5 3 3 2 10 6 4 15 16 11i i i i i i i i                 . 

(d) 
2

2

3 2 3 2 1 6 3 2 18 12 9 20 9 20

1 6 1 6 1 6 37 37 371 36

i i i i i i i
i

i i i i

            
   

. 

Example 3 Suppose, 1 2z i  , 2 3 2z i  . Evaluate each of the following. 
Solution 

(a) 2 2
1 23 4 3(2 ) 4(3 2 ) 6 11 ( 6) 11 157z z i i i            . 

(b) 3 2 3 2
1 1 13 4 8 (2 ) 3(2 ) 4(2 ) 8z z z i i i            

3 2 2 3 2 22 3 2 3 2 3(2 4 ) 8 4 8i i i i i i              
8 12 6 12 12 3 8 4 8 7 3i i i i i            . 

Example 4 Express each of the following complex numbers in polar form. 
Solution (a) 2 2 3i  [See Fig.4] 

 
Fig. 4 

Modulus or absolute value, 2 2 3 4 12 4r i     . 

Amplitude or argument, 
3

arcsin 60
2 3

   (radians). 

Then 

2 2 3 (cos sin ) 4(cos60 sin 60 ) 4 cos sin
3 3

i r i i i
  

          
   

The result can also be written as, using Euler’s formula, 34
i

e


. 
(b) 6 2i   [See Fig.5] 

 
Fig.5 

Ре
по
зи
то
ри
й Б
рГ
ТУ



7 

6 2 6 2 2 2r i       

7
180 30 210

6

       

Then 
7

67 7
6 2 2 2 cos sin 2 2

6 6

i

i i e
         . 

(c) 3i  [See Fig.6] 

 
Fig.6 

3 0 3 0 9 3r i i       , 
3

270 .
2

   

Then 
3

23 3
3 3 cos sin 3

2 2

i

i i e
       

. 

Example 5 Find all values of z  for which 5 32z  , and (b) locate these values in the com-
plex plane. 

Solution  
In polar form,  32 32 cos( 2 ) sin( 2 ) , 0, 1, 2...k i k k           . 

Let (cos sin )z r i   . Then, by De Moivre’s theorem, 

   5 5 cos5 sin 5 32 cos( 2 ) sin( 2 )z r i k i k           . 

and so 5 32,5 2r k     , from which 
( 2 )

2,
5

k
r

    . Hence 

2 2
2 cos sin

5 5

k k
z i

                          
. 

If 10, 2 cos sin
5 5

k z z i
        

. 

If 2
3 3

1, 2 cos sin
5 5

k z z i
        

. 

If 3
5 5

2, 2 cos sin 2
5 5

k z z i
        

. 

If 4
7 7

3, 2 cos sin
5 5

k z z i
        

. 
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If 5
9 9

4, 2 cos sin
5 5

k z z i
        

. 

By considering 5,6,..k  as well as negative values, 1, 2,...   , repetitions of the above 
five values of z  are obtained. Hence, these are the only solutions or roots of the given equation. 

These five roots are called the fifth roots of 32  and are collectively denoted by 
1

532 . In 

general, 
1
na  represents the n -th roots of a  and there are n  such roots. 

(b) The values of z  are indicated in Fig.7. Note that they are equally spaced along the cir-
cumference of a circle with center at the origin and radius 2. Another way of saying this is that 
the roots are represented by the vertices of a regular polygon. 

 
Fig.7 

Example 6 Represent graphically the set of values of z  for which (a) 
3

2
3

z

z

 


, 

(b) 
3

2
3

z

z

 


. 

Solution 
The given equation is equivalent to 3 2 3z z    or,  if 

, 3 2 3z x iy x iy x iy       , i.e., 

   2 22 23 2 3x y x y      

Squaring and simplifying, this becomes 
2 2 10 9 0x y x     

or 

 2 25 16x y    

i.e., 5 4z  , a circle of radius 4 with center at ( 5,0)  as shown in Fig.8. 

(b) The given inequality is equivalent to 3 2 3z z    or 

   2 22 23 2 3x y x y     . Squaring and simplifying, this becomes 
2 2 10 9 0x y x     or  2 25 16x y   , i.e., 5 4z   . 

The required set thus consists of all points external to the circle of Fig.8. 
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Fig.8 

Exercise Set 1 

In Exercises 1 to 9 perform each of the indicated operations: 

In Exercises 10 to 12 suppose 1 2z i  , 2 3 2z i  . Evaluate each of the following: 

10. 2
1 12 3 5.z z i    11. 2

2 12 3 .z z  12. 1 2 1 24 .z z z z  

In Exercises 13 to 18 describe and graph the locus represented by each of the following 
13. 2.z i   14. 2 2 6.z i z i     15. 3 3 4.z z     

16.  2 3.z z    17. 2Im{ } 4.z   18. Im{ }Re{ } 1.z z   

In Exercises 19 to 24 describe graphically the region represented by each of the following: 
19. 1 2.z i    20. 

2Re{ } 1.z   21. 3 4.z i   

22. 2 2 10.z z     23. 
5

0 arg .
6

z
   24. arg( ) .

4 2
z i

      

In Exercises 25 to 30 express each of the following complex numbers in polar form: 
25. 2 2 .i  26. 1 3 .i   27. 2 .i  

28. 2 3 2 .i   29. 
3 1

.
2 2

i  30. 5.  

In Exercises 31 to 35 solve the following equations, obtaining all roots: 
31. 2 4 0.z    32. 4 81 0.z    33. 3 27 0.z    

34. 2 6 25 0.z z    35. 4 25 4 0.z z    36. 2 2 5 0.z z    
 

1. (2 3 ) (5 8 ).i i    2.  ( 2) (4 ) 3(7 6 ) .i i i      3. (3 )(2 )(4 3 ).i i i    

4. 
3

.
5

i

i




 5. 5 4 34 3 2 7 1.i i i i     6.  22 (3 ).i i   

7. 
(4 6 )( 2)

.
1

i i

i

 


 8.   4 35 3 2 1 .i i i i    9. 
4 9 16

5 10
.

2

i i i

i i

 
 
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2 Functions, Limits, and Continuity 

2.1 Functions of Complex Variable 
A symbol, such as z , which can stand for any one of a set of complex numbers is called a 

complex variable. 
Suppose, to each value that a complex variable z  can assume, there corresponds one or 

more values of a complex variable w . We then say that w  is a function of z  and write ( )w f z  
or ( )w G z , etc. The variable z  is sometimes called an independent variable, while w  is 
called a dependent variable. The value of a function at z a  is often written ( )f a . Thus, if 

2( )f z z , then 2(2 ) (2 ) 4f i i  . 
If only one value of w  corresponds to each value of z , we say that w  is a single-valued 

function of z  or that ( )f z  is single-valued. If more than one value of w  corresponds to each 
value of z , we say that w  is a multiple-valued or many-valued function of z . 

A multiple-valued function can be considered as a collection of single-valued functions, each 
member of which is called a branch of the function. It is customary to consider one particular 
member as a principal branch of the multiple-valued function and the value of the function cor-
responding to this branch as the principal value. 

Example 7 
(a) If 2w z , then to each value of z  there is only one value of w . Hence, 2( )w f z z   

is a single-valued function of z . 
(b) If 2w z , then to each value of z  there are two values of w . Hence, 2w z  defines a 

multiple-valued (in this case two-valued) function of z . 

Whenever we speak of function, we shall, unless otherwise stated, assume a single-valued 
function. If ( )w f z , then we can also consider z  as a function, possibly multiple-valued, of 

w , written 1( ) ( )z g w f w  . The function 1f   is often called the inverse function corre-

sponding to f . Thus, ( )w f z  and 1( )w f z  are inverse functions of each other. 
If w u iv   (where u  and v  are real) is a single-valued function of z x iy   (where x  

and y  are real), we can write ( )u iv f x iy   . By equating real and imaginary parts, this 
is seen to be equivalent to 

( , )u u x y , ( , )v v x y       (1) 
Thus given a point ( , )x y  in the z  plane, such as P  in Fig.9, there corresponds a point (u, 

v) in the w  plane, say P   in Fig.10. The set of equations (1) [or the equivalent, ( )w f z ] is 
called a transformation. We say that point P  is mapped or transformed into point P   by means 
of the transformation and call P   the image of P . 

               
Fig.9                                                             Fig.10 
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In general, under a transformation, a set of points such as those on curve PQ  of Fig.9 is 

mapped into a corresponding set of points, called the image, such as those on curve P Q   in 
Fig.10. The particular characteristics of the image depend of course on the type of function ( )f z
, which is sometimes called a mapping function. If ( )f z  is multiple-valued, a point (or curve) in 
the z  plane is mapped in general into more than one point (or curve) in the w  plane. 

Example 8 
If 2w z , then 2 2 2( ) 2w u iv x iy x y xyi        and the transformation is 

2 2u x y  , 2v xy . The image of a point (1,2)  in the z  plane is the point ( 3,4)  in the 
w  plane. 

2.2 The Elementary Functions 
1. Polynomial Functions are defined by 

1
0 1 ... ( )n n

nw a z a z a P z         (1) 
where 0 10, ,..., na a a  are complex constants and n  is a positive integer called the degree of 
the polynomial ( )P z . The transformation w az b   is called a linear transformation. 

2. Rational Algebraic Functions are defined by 
( )

( )

P z
w

Q z
        (2) 

where ( )P z  and ( )Q z  are polynomials. We sometimes call (2) a rational transformation. The 

special case 
az b

w
cz d




 where 0ad bc   is often called a bilinear or fractional linear trans-

formation. 
3. Exponential Functions are defined by 

e e e (cos sin )z x iy xw y i y         (3) 
where e  is the natural base of logarithms. If a  is real and positive, we define 

lnez z aa           (4) 
where lna  a is the natural logarithm of a . This reduces to (3) if a e . 

Complex exponential functions have properties similar to those of real exponential functions. 
For example, 1 2 1 2e e ez z z z  . 

4. Trigonometric Functions. We define the trigonometric or circular functions sin ,cosz z , 
etc., in terms of exponential functions as follows: 

e e
sin

2

iz iz

z
i

 , 
e e

cos
2

iz iz

z
 , 

sin
tg

cos

z
z

z
 , 

cos
ctg

sin

z
z

z
       (5) 

Many of the properties familiar in the case of real trigonometric functions also hold for the 
complex trigonometric functions. For example, we have: 

2 2 2
2

1
sin cos 1;1 tg ;sin( ) sin ;cos( ) cos

cos
z z z z z z z

z
        . 

5. Hyperbolic Functions are defined as follows: 
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e e
sh

2

z z

z
 ,  

e e
ch

2

z z

z
 ,  

e e
th

e e

z z

z z
z







,  
e e

cth
e e

z z

z z
z







   (6) 

The following relations exist between the trigonometric or circular functions and the hyperbolic 
functions: 

sh sin ( ), ch cos( )z i i z z i z  , 
sin sin ch cos shz x y i x y    , 
cos cos ch sin shz x y i x y    . 

6. Logarithmic Functions. If ewz , then we write lnw z , called the natural logarithm 
of z . Thus the natural logarithmic function is the inverse of the exponential function and can be 
defined by 

Ln ln arg 2 ,w z z i z i k k Z          (7) 

where ( 2 )e ei i k nz r r    . Note that ln z  is a multiple-valued (in this case, infinitely many-
valued) function. The principal-value or principal branch of ln z  is sometimes defined as 
ln r i , where 0 2   . However, any other interval of length 2  can be used, e.g.,
     , etc. 

The logarithmic function can be defined for real bases other than e . Thus, if wz a , then 

logaw z , where 0a  and 0,1a . In this case, lnew az  and so,
 

ln

ln

z
w

a
 . 

7. Inverse Trigonometric Functions. If sinz w , then 1sinw z  is called the inverse 
sine of z  or arcsin  of z . Similarly, we define other inverse trigonometric or circular functions 

1cos z , 1tg z , etc. These functions, which are multiple-valued, can be expressed in terms of 
natural logarithms as follows. In all cases, we omit an additive constant 2 ,k i k Z   in the log-
arithm: 

 2Arcsin Ln 1w z i i z z    ,      2Arccos Ln 1w z i z z    , 

1 1
Arctg Ln

2 1

i z
w z

i i z

 


,                   
1 1

Arcctg Ln
2 1

i z
w z

i i z

 


                   (8) 

8. The Function z , where   may be complex, is defined as lne z . Similarly, if ( )f z  and 

( )g z  are two given functions of z , we can define ( ) ( ) ln ( )( ) eg z g z f zf z  . In general, such 
functions are multiple-valued. 

9. Algebraic and Transcendental Functions. If w  is a solution of the polynomial equation  
1

0 1 1( ) ( ) ... ( ) ( ) 0n n
n nP z w P z w P z w P z
         (9) 

where 0 10, ( ),..., ( )nP P z P z  are polynomials in z  and n  is a positive integer, then ( )w f z  
is called an algebraic function of z . 

Any function that cannot be expressed as a solution of (9) is called a transcendental function. 
The logarithmic, trigonometric, and hyperbolic functions and their corresponding inverses are 
examples of transcendental functions. 
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The functions considered in 1–8 above, together with functions derived from them by a finite 
number of operations involving addition, subtraction, multiplication, division and roots are called 
elementary functions. 

Example 9 Determine the values of (a) 1 ii  , (b) Arcsin 3 , (c)  Ln 12 5i . 

Solution 

(a) 
(1 ) 2 ( 1) 2

(1 )(ln arg 2 )1 (1 ) Ln 2 2e e e e
i i k i i k

i i i i k ii i ii
  

                         

2 2 2
2 2 2e e e cos 2 sin 2

2 2

k i k k
k i k

       
                                                   

 

2
2e

k
i

       ,k  . 

(b)   Arcsin 3 Ln (3 8) Ln 3 2 2i i i i i      

   ln 3 2 2 2 2 ln 3 2 2
2 2

i i k i k i
  

          
, k  . 

(c) Ln(12 5 ) ln 12 5 arg(12 5 ) 2i i i i i k        

12 5 144 25 13,
5

ln13 arctg 25 1212 0, 5 0, arg(12 5 ) arctg
12

i
i k

i


              
,k  . 

Example 10 Show that the line joining the points ( 2,1)P   and (1, 3)Q   in the z  plane is 

mapped by 2w z  into curve joining points P Q   [Fig.11] and determine the equation of this 
curve. 

Solution 
Points P  and Q  have coordinates ( 2,1)  and (1, 3) . Then, the parametric equations of 

the line joining these points are given by 

( 2) 1

1 ( 2) 3 1

x y
t

   
   

 or 
3 2,

1 4 .

x t

y t

    
 

 
Fig.11 

The equation of the line PQ  can be represented by 3 2 (1 4 )z t i t    . The curve in the 
w plane into which this line is mapped has the equation 

 22 2 23 2 (1 4 ) (3 2) (1 4 ) 2(3 2)(1 4 )w z t i t t t t t i              
2 23 4 7 ( 4 22 24 )t t t t i       . 
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Then, since w u iv  , the parametric equations of the image curve are given by 
23 4 7u t t    and 24 22 24v t t   . 

By assigning various values to the parameter t , this curve may be graphed. 
 

2.3 Limits. Continuity 
Let ( )f z  be defined and single-valued in a neighborhood of 0z z  with the possible excep-

tion of 0z z  itself (i.e., in a deleted   neighborhood of 0z ). We say that the number L  is the 
limit of ( )f z  as z  approaches 0z  and write 

0

lim ( )
z z

f z L


  if for any positive number   (how-

ever small), we can find some positive number   (usually depending on  ) such that 
( )f z L    whenever 00 z z    . 

In such a case, we also say that ( )f z  approaches L  as z  approaches 0z  and write 
( )f z L  as 0z z . The limit must be independent of the manner in which z  approaches 0z

. 
Geometrically, if 0z  is a point in the complex plane, then 

0

lim ( )
z z

f z L


  if the difference in 

absolute value between ( )f z  and L  can be made as small as we wish by choosing points z  
sufficiently close to 0z  (excluding 0z z  itself). 

By means of the transformation 
1

w
z

 , the point 0z  (i.e., the origin) is mapped into 

w , called the point at infinity in the w  plane. Similarly, we denote by z , the point at 

infinity in the z  plane. To consider the behavior of ( )f z  at z , it suffices to let 
1

z
w

  and 

examine the behavior of 
1

f
w

    
 at 0w . 

We say that 
0

lim ( )
z z

f z L


  or ( )f z  approaches L  as z  approaches infinity, if for any 

0 , we can find 0M   such that ( )f z L    whenever z M . 

We say that 
0

lim ( )
z z

f z


  or ( )f z  approaches infinity as z  approaches 0z , if for any 

0N  , we can find 0  such that ( )f z N  whenever 00 z z    . 

Let ( )f z  be defined and single-valued in a neighborhood of 0z z  as well as at 0z z  
(i.e., in a   neighborhood of 0z ). The function ( )f z  is said to be continuous at 0z z  if 

0
0lim ( ) ( )

z z
f z f z


 . Note that this implies three conditions that must be met in order that ( )f z  

be continuous at 0z z : 
1. 

0

lim ( )
z z

f z L


  must exist; 

2. 0( )f z  must exist, i.e., ( )f z  is defined at 0z ; 
3. 0( )L f z . 
Equivalently, if ( )f z is continuous at 0z , we can write this in the suggestive form 
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0 0

lim ( ) lim
z z z z

f z f z
 

    
. 

Points in the z  plane where ( )f z  fails to be continuous are called discontinuities of ( )f z , 
and ( )f z  is said to be discontinuous at these points. If 

0

lim ( )
z z

f z


 exists but is not equal to 

0( )f z , we call 0z  a removable discontinuity since by redefining 0( )f z  to be the same as 

0

lim ( )
z z

f z


, the function becomes continuous. 

Alternative to the above definition of continuity, we can define ( )f z  as continuous at 0z z  

if for any 0 , we can find 0  such that 0( ) ( )f z f z    whenever 0z z   . Note 

that this is simply the definition of limit with 0( )L f z  and removal of the restriction that 0z z
.  

To examine the continuity of ( )f z  at z , we let 
1

z
w

  and examine the continuity of 

1
f

w

    
 at 0w . 

A function ( )f z  is said to be continuous in a region if it is continuous at all points of the 
region. 

Exercise Set 2 
1. Let ( ) (2 )w f z z z   . Find the values of w  corresponding to (a) 1z i  , (b) 

2 2z i   and graph corresponding values in the w  and z  planes. 

2. Let 
1

( )
1

z
w f z

z

 


. Find: (a) ( )f i , (b) (1 )f i  and represent graphically. 

In Exercises 3 to 8 separate each of the following into real and imaginary parts, i.e., find 
( , )u x y  and ( , )v x y  such that ( )f z u iv  : 

9. Find all values of z  for which (a) 3e 1z  , (b) 4e z i . 

In Exercises 9 to 21 find the value of 

3. 2(2 3 ) .w i z i z i     4. Re .w z z   5. .
z i

w
z i




 

6. 25 1.w i z i z    7. Im .w z z   8. 23 2 8.w z i z    

10.  Ln 3 i . 11.  Ln 1 3 i . 12. Ln( 1 )i  . 

13.
 

3
sin

4
i

     
. 14. cos

6
i

     
. 15. tg

2
i


. 

16. sh 1
2
i

     
. 17. ch 2

4
i

      
. 18.

 
 63

i
i . 
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In Exercises 22 to 28 determine the types of the curves given by the equation 
 

 
3 Complex Differentiation and the Cauchy–Riemann Equations 

3.1 Derivatives. Analytic Functions. Cauchy–Riemann Equations.  
Geometric Interpretation of the Derivative 

If ( )f z  is single-valued in some region   of the z  plane, the derivative of ( )f z  is defined 
as 

0

( ) ( )
( ) lim

z

f z z f z
f z

z 

  


     (1) 

provided that the limit exists independent of the manner in which 0z  . In such a case, we 
say that ( )f z  is differentiable at z . In the definition (1), we sometimes use h  instead of z . 
Although differentiability implies continuity, the reverse is not true. 

If the derivative ( )f z  exists at all points z  of a region  , then ( )f z  is said to be analytic 
in   and is referred to as an analytic function in   or a function analytic in  . The terms 
regular and holomorphic are sometimes used as synonyms for analytic. 

A function ( )f z  is said to be analytic at a point 0z  if there exists a neighborhood 0z z    

at all points of which ( )f z  exists. 
A necessary condition that ( ) ( , ) ( , )w f z u x y iv x y    be analytic in a region   is that, 

in  , ( , )u x y  and ( , )v x y satisfy the Cauchy–Riemann equations 
u v

x y

 
 

,  
u v

y x

 
 

     (2) 

If the partial derivatives in (2) are continuous in  , then the Cauchy–Riemann equations are 
sufficient conditions that ( )f z  be analytic in  . 

The functions ( , )u x y  and ( , )v x y  are sometimes called conjugate functions. Given ( , )u x y  
having continuous first partials on a simply connected region  , we can find ( , )v x y  (within an 
arbitrary additive constant) so that ( )u iv w f z    is analytic. 

If the second partial derivatives of ( , )u x y  and ( , )v x y  with respect to x  and y  exist and 
are continuous in a region  ,then we find from (2) that 

2 2

2 2
0

u u

x y

  
 

,  
2 2

2 2
0

v v

x y

  
 

    (3) 

Functions such as ( , )u x y  and ( , )v x y  which satisfy Laplace’s equation in a region   are 

19.  Arcsin 2 2i  . 20.  Arccos 2 3i . 21. 
12 5

Arctg
13

i
. 

22. 
1

3e
2e

i t
i t

z  . 23. 2 24 20 ( 4 4)z t t i t t      . 24. 2 1 2z z   . 25.  2Im 2 Imz z z   . 

26. 
2 1

2 1

t t
z i

t t

  
 

. 27. 
1 2

1 2

t t
z i

t t

  
 

. 
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called harmonic functions and are said to be harmonic in  . 
Let 0z  [Fig.12] be a point P  in the z  plane and let 0w  [Fig.13] be its image P  in the w  

plane under the transformation ( )w f z . Since we suppose that ( )f z  is single-valued, the 
point 0z  maps into only one point 0w . 

 
                                            Fig.12                                                                   Fig.13 

If we give 0z  an increment z , we obtain the point Q  of Fig.12. This point has image Q  
in the w  plane. 

Thus, from Fig.13, we see that P Q   represents the complex number 

0 0( ) ( )w f z z f z    . It follows that the derivative at 0z  (if it exists) is given by 

0 0

0

( ) ( )
lim lim
z Q P

f z z f z P Q

z PQ  

   


    (4) 

that is, the limit of the ratio P Q   to PQ  as point Q  approaches point P . The above interpre-
tation clearly holds when 0z  is replaced by any point z . 

Example 11 Find out which of the following functions are analytic at least at one point  
(a) 2(2 5 ) 3w i z i z i    ;                    (b) 2w z z  . 

Solution 
(a) If z x iy  , then 

2 2

2 2 2 2

(2 5 ) 3 (2 5 )( ) ( ) 3 2 5

(5 2 ) 2 ( ) 3 ( 5 2 ) ( 5 2 3)

w i z i z i i x iy i x iy i x y

i x y xy i x y i x y xy i x y x y

            
              

 

5 2u x y xy   ,  2 2 5 2 3v y x x y      

( 5 2 ) 1 2x xu x y xy y      ,   ( 5 2 ) 5 2y yu x y xy x      . 
2 2( 5 2 3) 2 5x xv y x x y x        ,   2 2( 5 2 3) 2 2y yv y x x y y        . 

From the Cauchy–Riemann equations 

x y

y x

u v

u v

    
,  

1 2 2 2

5 2 2 5

y y

x x

      
, 

1 2

0 0

  
. 

The system has no solution, then the function is not analytic at any points of the complex 
plane. 

(b) If z x iy  , then 
2 2 2 2 3 2 2 3( ) ( ) ( 2 )( ) ( ) ( )w z z x iy x iy x y xyi x iy x xy i x y y             . 
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3 2u x xy  ,  2 3v x y y  . 
3 2 2 2( ) 3x xu x xy x y     ,   3 2( ) 2y yu x xy xy    , 
2 3( ) 2x xv x y y xy    ,    2 3 2 2( ) 3y yv x y y x y     . 

From the Cauchy–Riemann equations 

x y

y x

u v

u v

    
,     

2 2 2 23 3

2 2

x y x y

xy xy

    
,     

2 2

4 0

x y

xy

  
,     

0

0

x

y

  
. 

Given function is analytic at origin. 
Example 12 
(a) Prove that 2 2 2 1v x y x     is harmonic; 
(b) Find ( , )u x y  such that ( )f z u iv   is analytic. 
Solution 
(a) 2 2xv x   ,  2yv y  . 

         2xxv  ,          2yyv  . 

Adding xxv  and yyv  yields 
2 2

2 2
0

v v

x y

  
 

 and v  is harmonic. 

(b) From the Cauchy–Riemann equations 
2 ,

2 2.

x y

y x

u v y

u v x

       
 

Integrate yu  with respect to y , keeping x  constant. Then 

( 2 2) 2 2 ( )u x dy xy y F x      , 

where ( )F x  is an arbitrary real function of x . 

Substitute 2 2 ( )xy y F x    into 2xu y   and obtain 2 ( ) 2y F x y    or 

( ) 0F x   and ( )F x c , a constant. Then, ( , ) 2 2u x y xy y c   . 
Example 13 Find a coefficient of expansion and the rotation angle at this point when mapping 

( , ) ( , )w u x y iv x y  : 
2 3 2 3

0( , ) 3 , ( , ) 3 , 1u x y x y y v x y xy x z i      . 
Solution 
From the Cauchy–Riemann equations 

2 2

6 ,

3 3 ,

x y

y x

u v xy

u v x y

       
 

for all points of the complex plane. Then 
( ) ( , ) ( , )x x y yf z u i v v x y iu x y        , 

2 2( ) 6 (3 3 )x xf z u i v xy i y x        
and find the value of the set point 0 1z i    
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 2 2
1

1

(1 ) 6 (3 3 ) 6x
y

f i xy i y x 


      . 

A coefficient of expansion equals modulus of a complex number (1 ) 6 0f i i    , 

6 0 36 0 6i     . 

The rotation angle equals the argument of (1 ) 6 0f i i     
0

arg
6

z arctg   


. 

Exercise Set 3 
In Exercises 1 to 6 find out which of the following functions are analytic at least at one point 

1. cosw i z . 2. Rew z z  . 3. Imw z z  . 

4. 
z i

w
z i




. 5. 2(2 5 ) 3w i z i z i    . 6. 2(3 4 ) 7 6w i z i z    . 

In Exercises 7 to 12 prove that given function is harmonic. Find ( , )u x y  or ( , )v x y such that 
( )f z u iv   is analytic. 

7. 
2 2

, (1) 2
x

u x f
x y

  


. 8. 1 e sin , (0) 1xu y f i    . 

10. 2 33 , (0) 1v x y y f   . 9. e cos , (0) 1yu x x f   . 

11. 2 33 , (1 ) 0u x y y f i    . 12.
  

1e sin , 0
4

yv x f i
      

. 

In Exercises 13 to 16 find a coefficient of expansion and the rotation angle at this point when 
mapping 
13. 2 2( , ) 2u x y x x y   , ( , ) 2 2v x y xy y  , 0z i . 

14. 3 2 2 2( , ) 3u x y x xy x y    , 2 3( , ) 3 2v x y x y y xy   , 0
2

3

i
z  . 

15. 3 2 2 3
0( , ) 3 3 , ( , ) 3 3 1, 1u x y x xy x v x y x y y y z i         . 

16. 1 1
0( , ) e cos , ( , ) e sin ,

4
y yu x y x v x y x z i

     . 

3.2 Differentials. Rules for Differentiation. Derivatives of Elementary Functions 

Let z dz   be an increment given to z . Then 
( ) ( )w f z z f z          (1) 

is called the increment in ( )w f z . If ( )f z  is continuous and has a continuous first derivative 
in a region, then 

( )w f z z z          (2) 
where 0  as 0z  . The expression 

( )dw f z dz       (3) 
is called the differential of w  or ( )f z , or the principal part of w . Note that w dw   in 
general. We call dz  the differential of z . 
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Suppose ( )f z , ( )g z  are analytic functions of z . Then the following differentiation rules 
(identical with those of elementary calculus) are valid. 

1.  f g f g     . 

2.  cf cf   where c  is any constant. 

3.  fg f g g f    . 

4. 2

f f g g f

g g

       
 if ( ) 0g z  . 

5.   ( ) g zf g z f g    . 

6.If ( )z f t  and ( )w g t  where t  is parameter, then 
( )

( )z
g t

w
f t

   . 

In the following, we assume that the functions are defined as in Chapter 2.2.2. In the cases 
where functions have branches, i.e., are multi-valued, the branch of the function on the right is 
chosen so as to correspond to the branch of the function on the left. Note that the results are 
identical with those of elementary calculus. 

1. ( ) 0c   . 2. 1( )n nz nz   . 

3. (e ) ez z  . 4. ( ) lnz za a a  . 

5. 
1

(ln )z
z

  . 6. 
1

(log )
lna z z a

  . 

7. (sin ) cosz z  . 8. (cos ) sinz z  . 

9. 2

1
(tg )

cos
z

z
  . 10. 2

1
(ctg )

sin
z

z
  . 

11. 
2

1
(arcsin )

1
z

z
 


. 12. 

2

1
(arccos )

1
z

z
 


. 

13.
 

2

1
(arctg )

1
z

z
 


. 14.

 
2

1
(arcctg )

1
z

z
 


. 

15. (sh ) chz z  . 16. (ch ) shz z  . 

17.
 

2

1
(th )

ch
z

z
  . 18.

 
2

1
(cth )

sh
z

z
   . 

3.3 Higher Order Derivatives. L’Hospital’s Rule. Singular Points 

If ( )w f z  is analytic in a region, its derivative is given by ( )f z , w  or 
dw

dz
. If ( )f z  is 

also analytic in the region, its derivative is denoted by ( )f z , w , or 
2

2

d w

dz
. Similarly, the  
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n  - th derivative of ( )f z , if it exists, is denoted by ( ) ( )nf z , ( )nw , or 
n

n

d w

dz
 where n  is called 

the order of the derivative. Thus derivatives of first, second, third, ... orders are given by ( )f z
, ( )f z , ... . Computations of these higher order derivatives follow repeated application of the 
above differentiation rules. 

One of the most remarkable theorems valid for functions of a complex variable and not nec-
essarily valid for functions of a real variable is the following: 

THEOREM 1 Suppose ( )f z  is analytic in a region  . Then so also are ( )f z , ( )f z , ... 
analytic in  , i.e., all higher derivatives exist in  . 

Let ( )f z  and ( )g z  be analytic in a region containing the point 0z  and suppose that 

0 0( ) ( ) 0f z g z   but 0( ) 0g z  . Then, L’Hospital’s rule states that 

0

0

0

( )( )
lim

( ) ( )z z

f zf z

g z g z


         (1) 

In the case of 0 0( ) ( ) 0f z g z   , the rule may be extended. 

We sometimes say that the left side of (1) has the “indeterminate form” 
0

0

    
, although such 

terminology is somewhat misleading since there is usually nothing indeterminate involved. Limits 

represented by so-called indeterminate forms 
    

,  0  ,    and  1  can often 

be evaluated by appropriate modifications of L’Hospital’s rule. 
A point at which ( )f z  fails to be analytic is called a singular point or singularity of ( )f z . 

Various types of singularities exist. 
1. Isolated Singularities. The point 0z z  is called an isolated singularity or isolated sin-

gular point of ( )f z  if we can find 0  such that the circle 0z z    encloses no singular 

point other than 0z  (i.e., there exists a deleted   neighborhood of 0z  containing no singularity). 
If no such   can be found, we call 0z  a non-isolated singularity. 

If 0z  is not a singular point and we can find 0  such that 0z z    encloses no singular 

point, then we call 0z  an ordinary point of ( )f z . 
2. Poles. If 0z  is an isolated singularity and we can find a positive integer n  such that 

0
0lim ( ) ( ) 0n

z z
z z f z A


   , then 0z z  is called a pole of order n . If 1n , 0z  is called a 

simple pole. 
3. Branch Points of multiple-valued functions, already considered in Chapter 2.2.2, are non-

isolated singular points since a multiple-valued function is not continuous and, therefore, not 
analytic in a deleted neighborhood of a branch point. 

4. Removable Singularities. An isolated singular point 0z  is called a removable singularity 
of ( )f z  if 

0

lim ( )
z z

f z


 exists. By defining 
0

0( ) lim ( )
z z

f z f z


 , it can then be shown that ( )f z  

is not only continuous at 0z  but is also analytic at 0z . 
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5. Essential Singularities. An isolated singularity that is not a pole or removable singularity 
is called an essential singularity. If a function has an isolated singularity, then the singularity is 
either removable, a pole, or an essential singularity. For this reason, a pole is sometimes called 
a non-essential singularity. Equivalently, 0z z  is an essential singularity if we cannot find any 

positive integer n  such that 
0

0lim ( ) ( ) 0n

z z
z z f z A


   . 

6. Singularities at Infinity. The type of singularity of ( )f z  at z  [the point at infinity] is 

the same as that of 
1

f
w

    
 at 0w . 

For methods of classifying singularities using infinite series, see next chapter. 

Example 14 Using rules of differentiation, find the derivatives of each of the following: 

(a) 2cos (2 3 )z i , (b) tg(ln )z z ,  (c)  4 2
3

z
z i

  

Solution Using the chain rule, we have 

(a)  2cos (2 3 ) 2cos(2 3 )sin(2 3 )2 4sin(4 6 )z i z i z i z i      . 

(b)     2

1
tg(ln ) tg(ln ) tg(ln ) tg(ln )

cos ln

z
z z z z z z

zz
        . 

(c)       4 2 ln( 3 ) 4 2 ln( 3 )4 2 4 2
( 3 ) e e 4ln( 3 )

3
z z i z z iz z

z i z i
z i

               
. 

Example 15 Suppose 3 23 4ln 0w z w z   . Find 
dw

dz
 

Solution 
Differentiating with respect to z , considering w  as an implicit function of z , we have 

2 2 4
3 3 6 0w w z w zw

z
     . 

Then, solving for 
dw

dz
, we obtain 

2 2

4
4

3 3

zwdw z
dz w z





. 

Example 16 Evaluate  

(a) 
10

6

1
lim

1z i

z

z




,  (b) 20

1 cos
lim
z

z

z


. 

Solution 
(a) Let 10( ) 1f z z   and 6( ) 1g z z  . Then ( ) ( ) 0f i g i  . Also, ( ), ( )f z g z  are 

analytic at z i . 
Hence, by L’Hospital’s rule 

10 9
4

6 5

1 0 10 5 5
lim lim lim

0 3 31 6z i z i z i

z z
z

z z  

       
. 

(b) Let ( ) 1 cosf z z   and 2( )g z z . Then (0) (0) 0f g  . Also, ( ), ( )f z g z  are 
analytic at 0z . 

Hence, by L’Hospital’s rule 
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20 0 0

1 cos 0 sin 1 sin 1
lim lim lim

0 2 2 2z z z

z z z

z zz  

       
. 

Example 17 (a) 
4

1
( )

( 3)
f z

z



 has a pole of order 4 at 3z . 

(b) 
2

3 2
( )

( 1) ( 1)( 4)

z
f z

z z z


  

 has a pole of order 2 at 1z , and simple poles at 

1z  and 4z . 

(c) 
1
2( ) ( 3)f z z   has a branch point at 3z . 

(d) 2( ) ln( 2)f z z z    has branch points where 2 2 0z z   , i.e., at 1z  and 
2z . 

(e) The singular point 0z  is a removable singularity of 
sin

( )
z

f z
z

  since 
0

sin
lim 1
z

z

z


. 

(f) 
1

2( ) e zf z   has an essential singularity at 2z . 

(g) The function 3( )f z z  has a pole of order 3 at z , since 
3

1 1
f
w w

    
 has a pole 

of order 3 at 0w . 
Exercise Set 4 

In Exercises 1 to 9 using rules of differentiation, find the derivatives of each of the following: 
1. 3sin (5 7 )z i . 2.  ln tg5z . 3. ez iz  . 

4. 2( 3 )cos 4z z z . 5.   2
4

i z
z i

 . 6.
 
 cos2 2

z
z z . 

7. 
2 3

sh 2

z

z


. 8. 

5ctg 7

ln( 3)

z

z
. 9. 

2

3 7
arcsin

z i

z i

     
. 

10.Suppose 4 2 25 4sin 0w z w z   . Find 
dw

dz
. 

In Exercises 11 to 19 evaluate 

11. 
10

61

1
lim

1z

z

z




. 12. 
2

22

4
lim

6z

z

z z


 

. 13. 
2

3

9
lim

3z i

z

z i




. 

14. 20

cos4 cos
lim

3z

z z

z


. 15. 

0

1 cos
lim

tgz

z

z z


. 16.

 2

e
lim

z

z z
. 

17. 
2

2

5 4
lim

6z

z z

z z

 
 

. 18.  lim 2
z i

z
z i




 . 19.  tg

2

lim ctg
z

z

z


. 

 
4 Complex Integration and Cauchy’s Theorem. Cauchy’s Integral Formulas 

4.1 Complex Line Integrals 

Let ( )f z  be continuous at all points of a curve C  [Fig.14], which we shall assume has a 
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finite length, i.e., C  is a rectifiable curve. 
Subdivide C  into n parts by means of points 0 1 2 1, , ,..., ,n nz z z z z , chosen arbitrarily, and 

call 0 , nz a b z  . On each arc joining 1kz   to kz  [where k  goes from 1 to n ], choose a point 

k . Form the sum 

1 1 1( )( ) ... ( )( )n n nS f z a f b z            (1) 

 
Fig.14 

On writing 1k k kz z z  , this becomes 

1
1 1

( )( ) ( )
n n

n k k k k k
k k

S f z z f z 
 

          (2) 

Let the number of subdivisions n  increase in such a way that the largest of the chord lengths 

kz  approaches zero. Then, since ( )f z  is continuous, the sum nS  approaches a limit that 
does not depend on the mode of subdivision and we denote this limit by 

( )
b

a

f z dz     or    ( )
C

f z dz        (3) 

called the complex line integral or simply line integral of ( )f z  along curve C , or the definite 
integral of ( )f z  from a  to b  along curve C . In such a case, ( )f z  is said to be integrable 
along C . If ( )f z  is analytic at all points of a region   and if C  is a curve lying in  , then 

( )f z  is continuous and therefore integrable along C . 
Suppose ( ) ( , ) ( , )f z u x y iv x y  . Then the complex line integral (3) can be expressed in 

terms of real line integrals as follows 

 ( ) ( , ) ( , ) ( )f z dz u x y iv x y dx i dy
 

      

   ( , ) ( , ) ( , ) ( , )u x y dx v x y dy i v x y dx u x y dy
 

         (4) 

For this reason, (4) is sometimes taken as a definition of a complex line integral. 
Suppose ( )f z  and ( )g z  are integrable along C . Then the following hold: 
Properties of the Integral 

1. ( ) ( )
C C

f z dz f z dz  . 
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2. ( ) ( ) ( ) ,
b c b

a a c

f z dz f z dz f z dz c C     . 

3. ( ( ) ( )) ( ) ( )
C C C

f z g z dz f z dz g z dz     . 

4. ( ) ( ) ,
C C

Af z dz A f z dz A const   . 

Let 
( ),

( ),
( ),

x x t
z z t t

y y t
 

    
 be a continuous function of a complex variable 

t u iv  . Suppose that curve C  in the z  plane corresponds to curve C  in the z  plane and 
that the derivative ( )z t  is continuous on C . Then 

( ) ( ( )) ( ) ( ( )) ( )
C C

f z dz f z t z t dt f z t z t dt


 

         (5) 

These conditions are certainly satisfied if z  is analytic in a region containing curve C . 

Example 18 Evaluate 
C

zdz  from 0z   to 4 2z i   along the curve C  given by: 

(a) 2z t i t  , (b) the line from 0z   to 2z i . 
Solution 
(a) The points 0z  and 4 2z i   on C  correspond to 0t  and 2t , respectively. 

Then, the line integral equals 

        
2 2 2

2 2 2 3 2

0 0 0

8
2 2 10

3

i
t it d t it t it t i dt t it t dt            . 

(b) The given line integral equals 

( )( )
C C C

x iy dx idy xdx ydy i xdy ydx        . 

The line from 0z  to 2z i  is the same as the line from (0, 0) to (0, 2) for which 0x , 
0dx  and the line integral equals 

2 2 2

0 0 0

0 2ydy i dy ydy     . 

A region   is called simply-connected if any simple closed curve, which lies in  , can be 
shrunk to a point without leaving  . A region  , which is not simply-connected, is called mul-
tiply-connected. 

For example, suppose   is the region defined by 2z   shown shaded in Fig.15. If   is 

any simple closed curve lying in   [i.e., whose points are in  ], we see that it can be shrunk 
to a point that lies in  , and thus does not leave  , so that   is simply-connected. On the 
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other hand, if   is the region defined by 1 2z  , shown shaded in Fig.16, then there is a 

simple closed curve   lying in   that cannot possibly be shrunk to a point without leaving  , 
so that   is multiply-connected. 

Intuitively, a simply-connected region is one that does not have any “holes” in it, while a mul-
tiply-connected region is one that does. The multiply-connected regions of Figs.15 and 16 have, 
respectively, one and three holes in them. 

        
                            Fig.15                                       Fig.16                                         Fig.17 

Any continuous, closed curve that does not intersect itself and may or may not have a finite 
length, is called a Jordan curve. An important theorem that, although very difficult to prove, 
seems intuitively obvious is the following. 

Jordan Curve Theorem. A Jordan curve divides the plane into two regions having the curve 
as a common boundary. That region, which is bounded [i.e., is such that all points of it satisfy 
z M  where M  is some positive constant], is called the interior or inside of the curve, while 

the other region is called the exterior or outside of the curve.  
Using the Jordan curve theorem, it can be shown that the region inside a simple closed curve 

is a simply-connected region whose boundary is the simple closed curve. 
The boundary C  of a region is said to be traversed in the positive sense or direction if an 

observer travelling in this direction [and perpendicular to the plane] has the region to the left. 
This convention leads to the directions indicated by the arrows in Figs.15, 16, and 17. We use 
the special symbol 

( )
C

f z dz  

to denote integration of ( )f z  around the boundary C  in the positive sense. In the case of a 
circle [Fig.15], the positive direction is the counterclockwise direction. The integral around C  is 
often called a contour integral. 

Let ( )f z  be analytic in a region   and on its boundary C . Then 

( ) 0
C

f z dz        (6) 

This fundamental theorem, often called Cauchy’s integral theorem or simply Cauchy’s theo-
rem, is valid for both simply- and multiply-connected regions. It was first proved by use of Green’s 
theorem with the added restriction that ( )f z  be continuous in  . 

Let ( )f z  be continuous in a simply-connected region   and suppose that 
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( ) 0
C

f z dz   

around every simple closed curve C  in  . Then ( )f z  is analytic in  . 
This theorem, due to Morera, is often called the converse of Cauchy’s theorem. It can be 

extended to multiply-connected regions. For a proof, which assumes that ( )f z  is continuous 
in  . 

Example 19 Evaluate 
C

dz

z a  where C  is any simple closed curve C  and z a  is (a) out-

side C , (b) inside C . 
Solution 

(a) If a  is outside C , then 
1

( )f z
z a




 is analytic everywhere inside and on C . Hence, 

by Cauchy’s theorem 0
C

dz

z a


 . 

(b) Suppose a  is inside C  and let   be a circle of radius e with center at z a  so that   
is inside C  (this can be done since z a  is an interior point).  

C

dz dz

z a z a



            (7) 

Now on  , z a    or iz a e   , i.e., ,0 2iz a e       . Thus, since 
idz i e d  , the right side of (7) becomes 

2 2

0 0

2
i

i

i e d
i d i

e

 


   


    

which is the required value. 
Suppose ( )f z  and ( )F z  are analytic in a region   and such that ( ) ( )F z f z  . Then 
( )F z  is called an indefinite integral or anti-derivative of ( )f z  denoted by 

( ) ( )F z f z dz C        (8) 

Just as in real variables, any two indefinite integrals differ by a constant. For this reason, an 
arbitrary constant C  is often added to the right of (8). 

Table of Indefinite Integrals 
1

, 1
1

n
n z
z dz n

n


 

 . ln
dz

z
z
 . 

ln

z
z a

a dz
a

 . e ez zdz . 

cos sinz dz z . sin cosz dz z . 

2
tg

cos

dz
z

z
 . 2

ctg
sin

dz
z

z
 . 
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2 2

1
ln

2

dz z a

a z az a


 . 2 2

2 2
ln

dz
z z a

z a
  


 . 

2 2

1
arctg

dz z

a az a


 . 
2 2

arcsin
dz z

aa z



 . 

sh chz dz z . ch shz dz z . 

Example 20 Determine 

(a) sin sin3 sin 2z z z dz ,   (b) 2 34z z dz  

Solution 

(a) 
1

sin sin3 sin 2 (cos2 cos4 )sin 2
2

z z z dz z z z dz     

1 1 1 1
cos2 sin 2 cos4 sin 2 sin 4 (sin6 sin 2 )

2 2 4 4
z zdz z zdz zdz z z dz          

cos4 cos6 cos2

16 24 8

z z z
C    . 

(b)      
1 1

2 3 3 3 3 32 21 1
4 4 4 4 (4 )

3 3
z z dz z z dz z d z           

 
3

3 3 322 2
4 (4 )

9 9
z C z C      . 

THEOREM Suppose a  and b  are any two points in   and ( ) ( )F z f z  . Then 

( ) ( ) ( )
b

a

f z dz F b F a  .      (9) 

This can also be written in the form, familiar from elementary calculus 

 ( ) ( ) ( ) ( )
b

b

a
a

F z dz F z F b F a    .    (10) 

Example 21 Calculate 

2e

e

lnI z zdz  . 

Solution Using the formula for integration by parts we get 

2 22e ee2 2 4 2 2

2
ee e

ln ,
e e

ln 2
2 2 2 2 4

,
2

dz
u z du

z z dz zz
I z

zz
dv z dz v

                        
  

 
2 4 2

4 4 2e e e 1
e 3e e 39,10.

2 4 4 4
        

THEOREM Let ( )f z  be analytic in a region bounded by two simple closed curves C  and 
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1C  [where 1C  lies inside C as in Fig.18(a)] and on these curves. Then 

1

( ) ( )
C C

f z dz f z dz    

where C  and 1C  are both traversed in the positive sense relative to their interiors [counterclock-
wise in Fig.18(a)]. 

The result shows that if we wish to integrate ( )f z  along curve C , we can equivalently re-
place C  by any curve 1C  so long as ( )f z  is analytic in the region between C  and 1C  as in 
Fig.18(a). 

THEOREM Let ( )f z  be analytic in a region bounded by the non-overlapping simple closed 
curves 1 2,, , ,..., nC C C C  where 1,..., nC C  are inside C  [as in Fig.18(b)] and on these curves. 

Then 

1 2 3

( ) ( ) ( ) ( ) ... ( )

nC C C C C

f z dz f z dz f z dz f z dz f z dz             . 

 
Fig.18 

Exercise Set 5 
In Exercises 1 to 9 evaluate 

1.  
22

3 2

1

e
i z

i

z z dz


 . 

2. 
0

sin
i

z z dz . 

3. 2(3 2 sin ) ,z z dz


    : 2, Im 0 .z z    

4. 3( cos ) ,z z dz


  : 1, Re 0 .z z    

5. 
0

cos
i

z z dz . 

6. 2(3 2 )z z dz


 ,  the line from 1z i   to 2z i . 
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7.  (sin ) , : 1, Re 0i z z dz z z


   . 

8.  , : 1, Im 0z z dz z z


   . 

9. 2 ,z dz


  the line from 0z  to 2z i . 

In Exercises 10 to 18 determine 

10. sin cosz z dz . 11. 
 2sin 1 3

dz

z . 12. 
22 6 4

dz

z z  . 

13. 
3

45

z dz

z
 . 14. 

2cos (3 2)

dz

z . 15. 
23 e zz dz . 

16.  2 25 1 e zz dz . 17. 
1 3

dz

z  . 18. 7 5sin cosz z dz . 

 
4.2 Cauchy’s Integral Formulas 

Let ( )f z  be analytic inside and on a simple closed curve C  and let a  be any point inside 
C  [Fig.19]. Then 

1 ( )
( )

2
C

f z
dz f a

i z a


       (1) 

where C  is traversed in the positive (counterclockwise) sense. 
Also, the n -th derivative of ( )f z  at z a  is given by 

 
( )

1

! ( )
( ) , 1

2
n

n
C

n f z
f a dz n

i z a  
    (2) 

The result (1) can be considered a special case of (2) with 0n  if we define 0! 1 . 

 
Fig.19 

The results (1) and (2) are called Cauchy’s integral formulas and are quite remarkable be-
cause they show that if a function ( )f z  is known on the simple closed curve C , then the values 
of the function and all its derivatives can be found at all points inside C . Thus, if a function of a 
complex variable has a first derivative, i.e., is analytic, in a simply-connected region  , all its 
higher derivatives exist in  . This is not necessarily true for functions of real variables. 

The following is a list of some important theorems that are consequences of Cauchy’s integral 
formulas. 

1. Morera’s theorem (converse of Cauchy’s theorem) 
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If ( )f z  is continuous in a simply-connected region   and if ( ) 0
C

f z dz   around every 

simple closed curve C  in  , then ( )f z  is analytic in  . 
2. Liouville’s theorem 
Suppose that for all z  in the entire complex plane, (i) ( )f z  is analytic and (ii) ( )f z  is 

bounded, i.e., ( )f z M  for some constant M . Then ( )f z  must be a constant. 

3. Fundamental theorem of algebra 
Every polynomial equation 2

0 1 2( ) ... 0n
nP z a a z a z a z       with degree 1n  

and 0na   has at least one root. 
From this it follows that ( ) 0P z   has exactly n  roots, due attention being paid to multiplic-

ities of roots. 
4. Gauss’ mean value theorem 
Suppose ( )f z  is analytic inside and on a circle C  with center at a  and radius r . Then 
( )f a  is the mean of the values of ( )f z  on C , i.e., 

2

0

1
( ) ( )

2
if a f a re d


 


        (3) 

5. Maximum modulus theorem 
Suppose ( )f z  is analytic inside and on a simple closed curve C  and is not identically equal 

to a constant. Then the maximum value of ( )f z  occurs on C . 

6. Minimum modulus theorem 
Suppose ( )f z  is analytic inside and on a simple closed curve C  and ( ) 0f z   inside C . 

Then ( )f z  assumes its minimum value on C . 

7. The argument theorem 
Let ( )f z  be analytic inside and on a simple closed curve C  except for a finite number of 

poles inside C . Then 
1 ( )

2 ( )
C

f z
dz N P

i f z


         (4) 

where N  and P  are, respectively, the number of zeros and poles of ( )f z  inside C . 
Example 22 Evaluate 

(a) 
2 2sin cos

( 1)( 2)
C

z z
dz

z z

 
  ,   (b) 

2

4

e

( 1)

z

C

dz
z  where C  is the circle 3z  . 

Solution (a) Since 
1 1 1

( 1)( 2) 2 1z z z z
 

   
, we have 

2 2 2 2 2 2sin cos sin cos sin cos

( 1)( 2) ( 2) ( 1)
C C C

z z z z z z
dz dz dz

z z z z

        
        . 

By Cauchy’s integral formula with 2a  and 1a , respectively, we have 
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2 2sin cos

( 1)( 2)
C

z z
dz

z z

 
  . 

 
2 2

2 2sin cos
2 sin 2 cos 2 2

( 2)
C

z z dz
i i

z

        
 , 

 
2 2

2 2sin cos
2 sin 1 cos 1 2

( 1)
C

z z dz
i i

z

        
 , 

since 1z  and 2z   are inside C  and 2 2sin cosz z   is analytic inside C . Then, the 
required integral has the value 2 ( 2 ) 4i i i     . 

(b) Let 2( ) zf z e  and 1a  in the Cauchy integral formula 

 
( )

1

! ( )
( )

2
n

n
C

n f z
f a dz

i z a 
 .     (1) 

If 3n  then 2 2 2( ) 2e , ( ) 4e , ( ) 8ez z zf z f z f z      and 2( 1) 8ef    . Hence 
(1) becomes 

 

2
2

4

3 ! e
8e

2 1

z

C

dz
i z

 
  

from which we see that the required integral has the value 
28 e

3

i 
. 

Exercise Set 6 
In Exercises 1 to 12 evaluate 

1. 
 

2

2
1 3

1 3 2 4

2 4 sin
2

z

z z
dz

zi z
 

 

 
 . 2. 

4 3

4
1

3 2 5

z

z z
dz

z

  . 

3. 
2

2 3

1 cos 1

2 ( )
z

z
dz

i z z 
 


 . 4. 

2
4

( 9)( 9)
z

dz

z z   . 

5. 
3

3 6
( 2) ( 4)

z

z dz

z z    . 6. 2

2 5
, : 1

4( 1)

dz
z i

z z


        . 

7. 
2

3 1

sin3 2

( )
z

z
dz

z z  


 . 8. 

2 2
1 1

cos
4

( 1)
z

z
dz

z



   . 

9. 
2

1 3
2 3

z

z
dz

z z    . 10. 
2 2

1

( )

sin
z

z
dz

i z




 

 . 

11. 3
1

e 1i z

z

dz
z

 . 12. 
1

2 sin

( 2 )
z

z
dz

z z i



 . 
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5 Infinite Series Taylor’s and Laurent’s Series. The Residue Theorem 
Evaluation of Integrals 

5.1 Series of Functions. Power Series. Taylor’s Theorem 

From the sequence of functions  ( )nu z , let us form a new sequence  ( )nS z  defined by 

1 1( ) ( )S z u z , 

2 1 2( ) ( ) ( )S z u z u z  , 

3 1 2 3( ) ( ) ( ) ( )S z u z u z u z   , 

1 2 3
1

( ) ( ) ( ) ( ) ... ( ) ( )
n

n n n
i

S z u z u z u z u z u z


      , 

where ( )nS z , called the n -th partial sum, is the sum of the first n  terms of the sequence 

 ( )nu z . 

The sequence  ( )nS z  is symbolized by 

1 2 3
1

( ) ( ) ( ) ... ( ) ... ( )n n
n

u z u z u z u z u z



          (1) 

called an infinite series. If lim ( ) ( )n
n

S z S z


 , the series is called convergent and ( )S z  is its 

sum; otherwise, the series is called divergent. We sometimes write 
1

( )n
n

u z



  as ( )nu z  or 

nu  for brevity. 

As we have already seen, a necessary condition that the series (1) converges is lim 0n
n

a




, but this is not sufficient. 
If a series converges for all values of z  (points) in a region  , we call   the region of 

convergence of the series. 

A series 
1

( )n
n

u z



  is called absolutely convergent if the series of absolute values, i.e., 

1

( )n
n

u z



 , converges. 

If 
1

( )n
n

u z



  converges but 

1

( )n
n

u z



  does not converge, we call 

1

( )n
n

u z



  conditionally 

convergent. 
A series having the form 

2
0 1 2

0

( ) ( ) ( ) ... ( ) ...n n
n n

n

a z a a a z a a z a a z a



           (2) 

is called a power series in z a . We shall sometimes shorten (2) to ( )
n

na z a . 

Clearly the power series (2) converges for z a , and this may indeed be the only point for 
which it converges . In general, however, the series converges for other points as well. In such 
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cases, we can show that there exists a positive number R  such that (2) converges for 
z a R   and diverges for z a R  , while for z a R  , it may or may not converge. 

Geometrically, if   is a circle of radius R  with center at z a , then the series (2) converges 
at all points inside   and diverges at all points outside  , while it may or may not converge on 
the circle  . We can consider the special cases 0R  and R , respectively, to be the 
cases where (2) converges only at z a  or converges for all (finite) values of z . Because of 
this geometrical interpretation, R  is often called the radius of convergence of (2) and the corre-
sponding circle is called the circle of convergence. 

For reference purposes, we list here some important theorems involving sequences and se-
ries. Many of these will be familiar from their analogs for real variables. 

THEOREM 1 Let n n nu a ib  , where na  and nb  are real. Then, a necessary and sufficient 
condition that  nu  converges is that  na  and  nb  converge. 

THEOREM 2 A necessary condition that nu  converges is that lim 0n
n

u


 . However, 

the condition is not sufficient. 
THEOREM 3 Multiplication of each term of a series by a constant different from zero does 

not affect the convergence or divergence. Removal (or addition) of a finite number of terms from 
(or to) a series does not affect the convergence or divergence. 

THEOREM 4 A necessary and sufficient condition that  n na ib  converges, where na  

and nb  are real, is that na  and nb  converge. 

THEOREM 5 If nu  converges, then nu  converges. In words, an absolutely conver-

gent series is convergent. 
THEOREM 6 The terms of an absolutely convergent series can be rearranged in any order 

and all such rearranged series converge to the same sum. Also, the sum, difference, and product 
of absolutely convergent series is absolutely convergent. 

THEOREM 7 (Comparison tests) 
(a) If nv  converges and n nu v , then nu  converges absolutely. 

(b) If nv  diverges and n nu v , then nu  diverges but nu  may or may not 

converge. 

THEOREM 8 (Ratio test) Let 1lim n

n n

u
L

u



 . Then nu  converges (absolutely) if 1L  

and diverges if 1L . If 1L , the test fails. 
THEOREM 9 (n -th Root test) Let lim n

n
n

u L


 . Then nu  converges (absolutely) if 

1L  and diverges if 1L . If 1L , the test fails. 
THEOREM 10 (Integral test) If ( ) 0f x   for x a , then ( )f n  converges or diverges 

according as lim ( )
M

M
a

f x dx
  converges or diverges. 

THEOREM 11 A power series converges uniformly and absolutely in any region that lies en-
tirely inside its circle of convergence. 
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THEOREM 12 (a) A power series can be differentiated term by term in any region that lies 
entirely inside its circle of convergence. 

(b) A power series can be integrated term by term along any curve C  that lies entirely inside 
its circle of convergence. 

(c) The sum of a power series is continuous in any region that lies entirely inside its circle of 
convergence. 

Example 23 Find the region of convergence of the series 
  1

3
1

2

4 ( 1)

n

n
n

z

n






  . 

Solution 

If 
  1

3

2

4 ( 1)

n

n n

z
u

n




 
, then 

 
1 1 3

2

4 ( 2)

n

n n

z
u

n
 




 
. Hence, excluding 2z  for which the 

given series converges, we have 
3

1
3

2( 2) ( 1)
lim lim

4 4( 2)
n

n nn

zu z n

u n


 

   


. 

Then the series converges (absolutely) for 
2

1
4

z
 , i.e., 2 4z  . The point 2z  

is included in 2 4z  . 

If 
2

1
4

z
 , i.e., 2 4z  , the ratio test fails. However, it is seen that in this case 

  1

3 3 3

2 1 1

4 ( 1) 4( 1)

n

n

z

n n n


 

  
 

and since 3

1

n
  converges [  series with 3 ], the given series converges (absolutely). 

It follows that the given series converges (absolutely) for 2 4z  . Geometrically, this is 

the set of all points inside and on the circle of radius 4 with center at 2z , called the circle 
of convergence [shown shaded in Fig.20]. The radius of convergence is equal to 4. 

 
Fig.21 

Let ( )f z  be analytic inside and on a simple closed curve C . 
( )

2( ) ( )
( ) ( ) ( ) ( ) ( ) ... ( ) ...

2! !

n
nf a f a

f z f a f a z a z a z a
n

              (3) 

This is called Taylor’s theorem and the series (3) is called a Taylor series or expansion 
for ( )f z . 
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The region of convergence of the series (3) is given by z a R  , where the radius of 

convergence R  is the distance from a  to the nearest singularity of the function ( )f z . On 
z a R  , the series may or may not converge. For z a R  , the series diverges. 

If the nearest singularity of ( )f z  is at infinity, the radius of convergence is infinite, i.e., the 
series converges for all z . If 0a  in (3), the resulting series is often called a Maclaurin series. 

The following list shows some special series together with their regions of convergence. In 
the case of multiple-valued functions, the principal branch is used. 

2 3

e 1 ... ...
2! 3! !

n
z z z z

z
n

       , z  . 

3 5 2 1
1sin ... ( 1) ...

3! 5! (2 1)!

n
nz z z

z z
n


      


, z  . 

2 4 2 2
1cos 1 ... ( 1) ...

2! 4! (2 2)!

n
nz z z

z
n


      


, z  . 

2 11
1 ... ...

1
nz z z

z
     


, 1z  . 

2 3
1ln (1 ) ... ( 1) ...

2 3

n
nz z z

z z
n

        , 1z  . 

2( 1) ( 1)...( 1)
(1 ) 1 ... ...

2! !
nn

z z z z
n

                , 1z  . 

5.2 Laurent’s Theorem. Classification of Singularities 
Let 1C  and 2C  be concentric circles of radii 1R  and 2R , respectively, and center at a  

[Fig.22]. Suppose that ( )f z  is single-valued and analytic on 1C  and 2C  and, in the ring-shaped 
region   [also called the annulus or annular region] between 1C  and 2C , is shown shaded in 
Fig.22. Let a h  be any point in  . Then we have 

1 2
0 1 2

( ) ... ...
a a

f a h a a h
h h
            (1) 

where 

 
1

1

1 ( )
, 0

2n n
C

f z
a dz n

i z a  
 , 

 
1

11
( ) , 1

2
n

n

C

a z a f z dz n
i


           (2) 

1C  and 2C  being traversed in the positive direction with respect to their interiors. Ре
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Fig.22 

In the above integrations, we can replace 1C  and 2C  by any concentric circle C  between 

1C  and 2C . Then, the coefficients (2) can be written in a single formula, 

  1

1 ( )
,

2n n
C

f z
a dz n Z

i z a  
        (3) 

With an appropriate change of notation, we can write the above as 
2 1 2

0 1 2 2
( ) ( ) ( ) ... ...

( )

a a
f z a a z a a z a

z a z a
         
 

    (4) 

where 

1

1 ( )
,

2 ( )
n n

C

f t
a dt n Z

i t a  
       (5) 

This is called Laurent’s theorem and (1) or (4) with coefficients (2), (3), or (5) is called a 
Laurent series or expansion. 

The part 2
0 1 2( ) ( ) ...a a z a a z a      is called the analytic part of the Laurent series, 

while the remainder of the series, which consists of inverse powers of z a , is called the prin-
cipal part. If the principal part is zero, the Laurent series reduces to a Taylor series. 

It is possible to classify the singularities of a function ( )f z  by examination of its Laurent 
series. For this purpose, we assume that in Fig.21, 2 0R  , so that ( )f z  is analytic inside and 
on 1C  except at z a , which is an isolated singularity. In the following, all singularities are 
assumed isolated unless otherwise indicated. 

1. Poles. If ( )f z  has the form (4) in which the principal part has only a finite number of terms 
given by 

1 2
2

...
( ) ( )

n
n

aa a

z a z a z a
   

  
 

where 0na  , then z a  is called a pole of order n . If 1n , it is called a simple pole. 

If ( )f z  has a pole at z a , then lim ( )
z a

f z


 . 

2. Removable singularities. If a single-valued function ( )f z  is not defined at z a  but 
lim ( )
z a

f z


exists, then z a  is called a removable singularity. In a such case, we define ( )f z  

at z a  as equal to lim ( )
z a

f z


, and ( )f z  will then be analytic at a . 
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Example 24 If 
sin

( )
z

f z
z

 , then 0z   is a removable singularity since (0)f  is not de-

fined but 
0

sin
lim 1
z

z

z
 . We define 

0

sin
(0) lim 1

z

z
f

z
  . Note that in this case 

3 5 2 1 2 4
1sin 1

... ( 1) ... 1 .
3! 5! (2 1)! 3! 5!

n
nz z z z z z

z
z z n


                

 

3. Essential singularities. If ( )f z  is single-valued, then any singularity that is not a pole or 
removable singularity is called an essential singularity. If z a  is an essential singularity of 

( )f z , the principal part of the Laurent expansion has infinitely many terms. 

Example 25 Since 
1

2 3

1 1 1
e 1 ...

2! 3!
z

z z z
     , 0z   is an essential singularity. 

4. Branch points. A point 0z z  is called a branch point of a multiple-valued function ( )f z  
if the branches of ( )f z  are interchanged when z  describes a closed path about 0z . A branch 
point is a non-isolated singularity. Since each of the branches of a multiple-valued function is 
analytic, all of the theorems for analytic functions, in particular Taylor’s theorem, apply. 

Example 26 The branch of 
1
2( )f z z , which has the value 1 for 1z , has a Taylor series 

of the form 2
0 1 2( 1) ( 1) ...a a z a z      radius of convergence 1R   [the distance from 

1z   to the nearest singularity, namely the branch point 0z  ]. 

5. Singularities at infinity. By letting 
1

z
w

  in ( )f z , we obtain the function 1
( )f F w

w

    
. Then the nature of the singularity for ( )f z  at z   [the point at infinity] is defined to be the 
same as that of ( )F w  at 0w . 

Example 27 3( )f z z  has a pole of order 3 at z , since 
3

1 1
( )f F w

w w

     
 has 

a pole of order 3 at 0w . Similarly, ( ) zf z e  has an essential singularity at z , since 
1

1
( ) wf F w e

w

     
 has an essential singularity at 0w . 

Example 28 Find Laurent series about the indicated singularity for each of the following func-
tions: 

(a)
2

3

e
, 1;

( 1)

z

z
z




    (b) 3

sin
, 0;

z z
z

z

     (c) 
2 2

1
, 3

( 3)
z

z z



. 

Name the singularity in each case and give the region of convergence of each series. 
Solution 
(a) Let 1z u  .Then 1z u   and 

2 2 2 2 2 2 3 4
2

3 3 3 3

e e e e (2 ) (2 ) (2 )
e 1 2 ...

2! 3! 4!( 1)

z u
u u u u

u
z u u u

               
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2 2 2 2 2

3 2

e 2e 2e 4e 2e
( 1) ...

( 1) 3 3( 1) ( 1)
z

zz z
      

 
. 

1z  is a pole of order 3, or triple pole. 
(b)  

3 5 7

3 5 7 2 5

3 3 3

...
3! 5! 7!sin 1 1

... ...
3! 5! 7! 3! 5! 7!

z z z
z z

z z z z z z z

z z z

                        
. 

0z  is a removable singularity. The series converges for all values of z . 
(c) Let 3z u  . Then, by the binomial theorem, 

2 2 2 2 2
2

1 1 1

( 3) ( 3)
9 1

3

z z u u u
u

  
       

 

2 3

2

1 ( 2)( 3) ( 2)( 3)( 4)
1 ( 2) ...

3 2! 3 3! 39

u u u

u

                                         
 

2 2

1 2 1 4 1 2 1 4
... ( 3) ..

27 27 243 27( 3) 27 2439 9( 3)
u z

u zu z
          


.. 

3z  is a pole of order 2 or double pole. 

Example 29 Expand 
1

( )
( 1)( 3)

f z
z z


 

 in a Laurent series valid for: 

(a) 1 3z  ,     (b) 3z  ,     (c) 0 1 2z   ,     (d) 1z  . 

Solution 
(a) Resolving into partial fractions, 

1 1 1 1 1

( 1)( 3) 2 1 2 3z z z z
   

   
. 

If 1z  , 

2 3 4 2 3

1 1 1 1 1 1 1 1 1 1
1 ... ...

12( 1) 2 2 2 22 1z z z zz z z z zz
z

                    

. 

If 3z  , 
2 3 2 31 1 1 1

1 ... ...
2( 3) 6 3 9 27 6 18 54 1626 1

3

z z z z z z
zz

                     

. 

Then, the required Laurent expansion valid for both 1z   and 3z  , i.e., 1 3z  , is 
2 3

4 3 2

1 1 1 1 1
... ...

2 6 18 54 1622 2 2

z z z

zz z z
          

(b) If 1z  ,we have as in part (a), 

Ре
по
зи
то
ри
й Б
рГ
ТУ



40 

2 3

1 1 1 1
...

2( 1) 2 2 2z z z z
   


. 

If 3z  , 

2 3 4 2 3

1 1 1 3 9 27 81 1 3 9
1 ... ...

32( 3) 2 2 2 22 1z z z zz z z z zz
z

                    

. 

Then, the required Laurent expansion valid for both 1z   and 3z  , i.e., 3z  , is 

2 3 4 5

1 4 13 40
...

z z z z
    . 

(c) Let 1z u  .Then  
2 31 1 1 1

1 ...
( 1)( 3) ( 2) 2 2 4 82 1

2

u u u
uz z u u uu

                    

 

21 1 1 1
( 1) ( 1) ...

2( 1) 4 8 16
z z

z
      


, valid for 0 1 2z   . 

(d) If 1z  , 

 2 3 4 2 31 1 1 1 1 1 1
1 ... ...

2( 1) 2(1 ) 2 2 2 2 2
z z z z z z z

z z
           

 
. 

If 3z  ,we have by part (a), 
2 31 1

...
2( 3) 6 18 54 162

z z z

z
    


. 

Then the required Laurent expansion, valid for both 1z   and 3z  , i.e., 1z  , is by 

subtraction 
2 31 4 13 40

...
3 9 27 81

z z z    . 

This is a Taylor series. 

Exercise Set 7 

In Exercises 1 to 3 investigate the convergence of: 

1. 
1

( 1)

3

n

n
n

n
i

n





      
 . 2. 3 4

1

cos3 sin4

n

n n
i

n n





       . 3. 2
1

1 2 1

3 1n

n
i

nn





       . 

In Exercises 4 to 7 find the region of convergence of: 

4.  
1

1
2

2

n
n

n

n
z i





   . 5. 
1

( 1)! (4 3 )

(2 1)!

n
n

n

n i
z

n





 
  

6. 

 
 

 
0

3 2
2

1 3

n
n

n

n
z i

i





  


 . 7. 

  
 

0

(2 1)
3

4

n
n

n

n
z i

i





  


 . 
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In Exercises 8 to 13 expand ( )f z  in a Laurent series valid for given K : 

8.
 

1
( ) , : 2 3;

( 2)( 3)
f z K z

z z
  

 
 

9. 
2

2 3
( ) , : 0 2 1;

3 2

z
f z K z

z z

   
 

 

10. 
2

( ) , : 3 1 ;
( 1)( 3)

f z K z
z z

   
 

 

11. 
2

2
( ) , : 2 2 4;

2 8

z
f z K z

z z

   
 

 

12. 
2

2 3
( ) , : 1 2;

3 2

z
f z K z

z z

  
 

 

13. 
2

2 3
( ) , : 1 2.

3 2

z
f z K z

z z

  
 

 

 
In Exercises 14 to 19 expand each of the following functions in a Laurent series at given point 

0z : 

14.
 

0
3

( ) ln , ;
z

f z z
z

   15. 0( ) sin , 1;
1

z
f z z

z
 


 

16. 02
( ) cos , 0;

1

i z
f z z

zz
  


 17. 3

0( ) e , 3;
z

zf z z   

18. 2
0

1 2
( ) sin , 0;f z z

z z
   19. 0

1
( ) ln , ;

2

z
f z z

z

 


 

In Exercises 20 to 27 determine and classify all the singularities of the functions 

20.
 

0
1 cos

( ) , .
z

f z z
z




 


 21. 0
e

( ) , .
z i

f z z i
z i


 


 

22. 0
sin 4 4

( ) , 0.
e 1z

z z
f z z

z

 
 

 23. 

 

03

sin
( ) , 2 .

(1 cos )

z
f z z

z z
 


 

24. 0
1

( ) cos , .f z z
z




 


 25. 
2

06 5 4

1
( ) , 1.

2

z
f z z

z z z

 
 

 

26. 
2

06 5 4

1
( ) , 0.

2

z
f z z

z z z

 
 

 27. 0
e 1

( ) , 0.
sin

z

f z z
z

   

 
5.3 Residues. Calculation of Residues. The Residue Theorem.  

Evaluation of Definite Integrals 
Let ( )f z  be single-valued and analytic inside and on a circle C  except at the point z a  

chosen as the center of C . Then, as we have seen in Chapter 2.5.2, ( )f z  has a Laurent series 
about z a  given by 

Ре
по
зи
то
ри
й Б
рГ
ТУ



42 

2 1 2
0 1 2 2

( ) ( ) ( ) ( ) ... ...
( )

n
n

n

a a
f z a z a a a z a a z a

z a z a


 


          

    (1) 

where 

  1

1 ( )
,

2n n
C

f z
a dz n Z

i z a  
                           (2) 

In the special case 1n , we have from (2) 

1( ) 2
C

f z dz ia        (3) 

Formally, we can obtain (3) from (1) by integrating term by term and using the results  
2 , 1

0, 1( )n
C

i ndz

nz a

   
         (4) 

Because of the fact that (3) involves only the coefficient 1a  in (1), we call 1a  the residue 
of ( )f z  at z a . 

1Res ( )
z a

f z a


          (5) 

To obtain the residue of a function ( )f z  at z a , it may appear from (1) that the Laurent 
expansion of ( )f z  about z a  must be obtained. However, in the case where z a  is a 
pole of order k , there is a simple formula for 1a  given by 

 ( 1)1
Res ( ) lim ( ) ( ) , 1

( 1)!

kk

z a z a
f z z a f z k

k



 
  


      (6) 

If 1k   (simple pole), then the result is especially simple and is given by 

1Res ( ) lim( ) ( )
z az a

f z a z a f z 
            (7) 

which is a special case of (6) with 1k   if we define 0! 1 . 

Example 30 If 
2

( )
( 1)( 1)

z
f z

z z


 
, then 1z  and 1z  are poles of orders one 

and two, respectively. 
Solution  
We have, using (7) and (7) with 2k  , 

2 21 1 11

1
Res ( ) lim( 1) ( ) lim( 1) lim

4( 1)( 1) ( 1)z z zz

z z
f z z f z z

z z z  
     

  
, 

2
2

1 1 1

1
Res ( ) lim ( 1) lim

(2 1)! ( 1)( 1)( 1)z z z

z z
f z z

zz z  

                 
 

2
1

1 1
lim

4( 1)z

z z

z

  


. 

If z a  is an essential singularity, the residue can sometimes be found by using known 
series expansions. 
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Example 31 Let 
1

( ) e zf z


 . Then, 0z  is an essential singularity and from the known 

expansion for eu  with 
1

u
z

 , we find 

1

2 3

1 1 1
e 1 ...

2! 3!
z

z z z


      

from which we see that the residue at 0z  is the coefficient of 
1

z
 and equals 1 . 

Let ( )f z  be single-valued and analytic inside and on a simple closed curve C  except at the 
singularities , , ,...a b c  inside C , which have residues given by 1 1 1, , ,...a b c    [see Fig.22]. 
Then, the residue theorem states that 

 1 1 1( ) 2 ...
C

f z dz i a b c            (8) 

i.e., the integral of ( )f z  around C  is 2 i  times the sum of the residues of ( )f z  at the singu-
larities enclosed by C . Note that (8) is a generalization of (3). Cauchy’s theorem and integral 
formulas are special cases of this theorem. 

 
Fig.22 

Example 32 Evaluate 2 2

1

2 ( 2 2)

zt

C

e
dz

i z z z    around the circle C  with equation 3z 

. 
Solution 

The integrand 
2 2( 2 2)

zte

z z z 
 has a double pole at 0z  and two simple poles at 

1z i   [roots of 2 2 2 0z z   ]. All these poles are inside C . 
Residue at 0z  is 

2
2 2

0 0

1
Res ( ) lim

(2 1)! ( 2 2)

zt

z z

e
f z z

z z z 

        
 

2

2 2
0

( 2 2) (2 2) 1
lim

2( 2 2)

zt zt

z

z z te e z t

z z

     
 

. 

Residue at 1z i   is 
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2 2
1 0

Res ( ) lim ( ( 1 ))
( 2 2)

zt

z i z

e
f z z i

z z z  

           
 

( 1 )

2 2
1 1

1
lim lim

42 2

zt i t

z i z i

e z i e

z z z

 

   

  
 

. 

Residue at 1z i   is 

2 2
1 0

Res ( ) lim ( ( 1 ))
( 2 2)

zt

z i z

e
f z z i

z z z  

           
 

( 1 )

2 2
1 1

1
lim lim

42 2

zt i t

z i z i

e z i e

z z z

 

   

  
 

. 

Then, by the residue theorem 
( 1 ) ( 1 )

2 2

1 1 1 1 1
2 cos

2 2 2 4 4 2 2( 2 2)

zt i t i t
t

C

e t e e t
dz i e t

i iz z z


 

   
             . 

The evaluation of definite integrals is often achieved by using the residue theorem together 
with a suitable function ( )f z  and a suitable closed path or contour C , the choice of which may 
require great ingenuity. The following types are most common in practice. 

1. ( )F x dx



 , where ( )F x  is a rational function. 

Consider ( )
C

F z dz  along a contour C  consisting of the line along the x  axis from R  to 

R  and the semicircle   above the x  axis having this line as diameter [Fig.23]. Then, let 

R . If ( )F x  is an even function, this can be used to evaluate 
0

( )F x dx


 . 

 
Fig.23                                                       Fig.24 

2. 
2

0

(sin ,cos )G d


   , where (sin ,cos )G    is a rational function of sin  and cos . 

Let eiz  . Then 
1

sin
2

z z

i


 , 
1

cos
2

z z
  and eidz i d   or 

dz
d

i z
 . 

The given integral is equivalent to ( )
C

F z dz  where C  is the unit circle with center at the origin 

[Fig.28]. 
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3. 
cos

( )
sin

mx
F x dx

mx





       
 , where ( )F x  is a rational function. 

Here, we consider ( )ei m z

C

F z dz , where C  is the same contour as that in Type 1. 

Example 33 Evaluate 6
0

1

dx

x



 . 

Solution  

Consider 
61

C

dz

z , where C  is the closed contour of Fig.25 consisting of the line from R  

to R  and the semicircle  , traversed in the positive (counterclockwise) sense. 

 
Fig.25 

Since 6 1 0z    when 
3 5 7 9 11

6 6 6 6 6 6
1 2 3 4 5 6e , e , e , e , e , e

i i i i i i

z z z z z z
     

      , 

these are simple poles of 6

1

1z 
.Only the poles 

3 5
6 6 6

1 2 3e , e , e
i i i

z z z
  

    lie within C . 

Then, using L’Hospital’s rule, 

6 6 66

5
6 6 6

6 5

e e ee

1 1 1
Res ( ) lim e ( ) lim e lim e

61 6i i ii

i i i

z z zz

f z z f z z
z z  

  

  

                      
, 

3 3 33
6 6 66

3 3 5
6 6 2

6 5

e e ee

1 1 1
Res ( ) lim e ( ) lim e lim e

61 6i i ii

i i i

z z zz

f z z f z z
z z  

  

  

                      
, 

5 5 55
6 6 66

5 5 25
6 6 6

6 5

e e ee

1 1 1
Res ( ) lim e ( ) lim e lim e

61 6i i ii

i i i

z z zz

f z z f z z
z z  

  

  

                      
. 

Thus, 
5 255
6 62

6

1 1 1 2
2

6 6 6 31

i ii

C

dz
i e e e

z

  
         

  

that is, 

6 6

2

31 1

R

R

dx dz

x z






 
   . 

Taking the limit of both sides as R  
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6 6

2
lim

31 1

R

R
R

dx dx

x x




 

 
   . 

Since  

6 6
0

2
1 1

dx dx

x x

 




   . 

the required integral has the value 
3


. 

Exercise Set 8 
In Exercises 1 to 18 evaluate 

1. 2
2

e

( 1)

z

z

dz
z z  . 2. 4 2

1

e

2 1

z

z i

dz
z z    . 

3. 2 2
3

sin

( 4)
z

z dz

z z  . 4. 2 2
2

e

( 9)

z

z

dz

z z  . 

5. 

2

3 2
3

e 1z

z i

dz
z i z 


 . 6. 2

1 2

cos
2
4

z

z

dz
z   . 

7. 
2

0
13 5cos

d t

t



 . 8. 
2

3
0

(3 sin )

d t

t



 . 

9. 
2

2
0

(5 4cos )

d t

t



 . 10. 
2

4 2

2

12

x
dx

x x






  . 

11. 
2 2

1

( 4)

x
dx

x






 . 12. 

2 3( 1)

dx

x



  . 

13. 
2

e

8 20

i xx
dx

x x



   . 14. 
2 2

4 2

e

10 9

i xx
dx

x x



   . 

15. 
2 2 2( 4) ( 16)

dx

x x



   . 16. 
2 2 2( 1) ( 4)

dx

x x



   . 

17.

 

2

2

e

10 26

i xx
dx

x x



   . 18.

  

2 2

4 2

e

13 36

i xx
dx

x x



   . 
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