МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

КАФЕДРА ГЕОТЕХНИКИ И ТРАНСПОРТНЫХ КОММУНИКАЦИЙ

УЛИЦЫ НАСЕЛЕННЫХ ПУНКТОВ

Методические указания к практическим занятиям по курсу «Городские улицы и дороги» для студентов специальности 1-70 03 01 Автомобильные дороги

дневной и заочной форм обучения

УДК 625.72.002.5

В методических указаниях рассмотрены порядок и примеры проектирования плана и поперечного профиля улиц, автомобильных парковок, а также методика разработки проекта вертикальной планировки и расчётов дорожной одежды.

Составители: Горох Н. А., старший преподаватель кафедры геотехники и транспортных коммуникаций,

Шведовский П. В., профессор кафедры геотехники и транспортных коммуникаций

Содержание

Введение	4
Практическое занятие № 1. Проектирование плана улиц	5
Практическое занятие № 2. Проектирование поперечного профиля улицы	7
Практическое занятие № 3. Определение прочности дорожной одежды	11
Практическое занятие № 4. Разработка вертикальной планировки городской улицы	.19
Практическое занятие № 5. Составление ведомости объёмов работ на устройство тротуаров и дородной одежды по основному ходу участка улицы	
Практическое занятие № 6. Проектирование автомобильных парковок и стоянок	.24
Список рекомендуемой литературы	27

Введение

Методические указания включают цикл практических работ, способствующих усвоению материалов, излагаемых в курсе лекций. Подбор практических работ обусловлен требованиями образовательного стандарта Республики Беларусь специальности 1-70 03 01 Автомобильные дороги.

В ходе выполнения практических работ студент должен освоить методики и получить навыки:

- проектирования планов улиц;
- проектирования поперечного профиля улицы;
- расчётов транспортной нагрузки;
- проектирования вертикальных планировок;
- определения прочности дорожной одежды;
- составления ведомости на устройство тротуара и дорожной одежды проезжей части;
 - проектирования автомобильной парковки;
 - составления плана ОДД.

Практическое занятие № 1. Проектирование плана улиц

Цель работы: получить навыки в проектировании плана улиц.

Приборы, оборудование и материалы: персональный компьютер, графический редактор AutoCAD.

Теоретические сведения

Совокупность улиц, городских дорог, перекрестков и площадей образует дорожную сеть города.

Улицей называют полосу территории города или населенного пункта, расположенную между застройкой или участками иного пользования и назначения.

Границами улицы служат «красные линии», вдоль которых возводятся жилые, административные, торговые здания, размещаются парки, скверы, стадионы, сооружения и устройства иного назначения.

Общая ширина улицы определяется расстоянием между красными линиями. В её пределах размещают проезжую часть, тротуары и пешеходные дорожки, зеленые насаждения, полосы и островки, разделяющие движение по направлениям, полотно для рельсового транспорта, опоры для воздушных проводов различного назначения и для установки светильников, технические средства регулирования движения и другие элементы благоустройства.

Классификация улиц и городских дорог зависит от многих факторов планировки застройки, инженерного и санитарно-технического оборудования, благо-устройства и размеров (численности) городов.

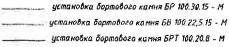
Улицы и дороги населенных мест по назначению и транспортноэксплуатационной характеристике движения разделяют на следующие категории: М; А; Б; В; Г; Е; Ж; 3.

Ход работы:

1. Выберите, согласно заданному Вам, вариант проектируемой улицы по таблице 1.

Таблица 1 – Варианты для проектирования плана улицы


2 410 122224 / 22 1417 -		*** ** * * * * * * * * * * * * * * * * *		KARA-P PAGE		V		
Вариант	1, 10, 9	2, 11, 18	3, 12, 19	4, 13, 20	5,14, 21	6, 15, 22	7, 16, 23	8, 17, 24
Обозначение улиц (категория)	М	A	Б	В	Г	Е	ж	3


- 2. Начертите ось главной дороги длиной 200 м и отложите на ней последовательно необходимые элементы дорожного полотна улицы, согласно требованиям ТКП [1] табл.5.1 и табл.5.7.
- 3. На ПК 1+20 (влево) постройте ось примыкания улицы категории 3, руководствуясь требованиями ТКП [1] к её параметрам.
- 4. Расставьте размеры в плане и создайте условные обозначения, как показано на рис.1.

Отчёт о выполнении работы

Результатом работы является запроектированный план улицы (рис. 1).

Практическое занятие № 2. Проектирование поперечного профиля улицы

Цель работы: получить навыки в проектировании поперечного профиля. *Приборы, оборудование и материалы:* персональный компьютер, графический редактор AutoCAD.

Теоретические сведения

Поперечный профиль улиц населенных пунктов включает основную проезжую часть, обочины (при открытых водоотводящих устройствах), боковые проезды, технические и пешеходные тротуары, велосипедные дорожки, центральные и боковые разделительные полосы, разделительные зоны, трамвайные пути и технические полосы для прокладки инженерных сетей.

Поперечный уклон проезжей части улиц и площадей следует принимать в зависимости от типа дорожного покрытия:

- асфальтобетонные и цементобетонные 15 % 25 %;
- сборные из бетонных и железобетонных плит, брусчатые мостовые 20% 25 %;
 - щебеночные и гравийные 20 ‰ 30 ‰;
 - булыжные мостовые 20 ‰ 35 ‰.

При возведении и реконструкции в стесненных условиях допускается увеличивать поперечные уклоны на 5 ‰.

Поперечные и продольные уклоны машино-места на площадках автостоянок и парковок принимают в пределах от 5 % до 40 %.

Поперечный уклон машино-места на парковках, прилегающих непосредственно к проезжей части улиц, допускается увеличивать до 60 %.

На многополосных улицах допускается предусматривать две проезжие части (разделенные центральной разделительной полосой или зоной), каждая из которых предназначена для движения только в одном направлении.

При устройстве проезжей части без бортовых ограждений следует предусматривать двухскатный поперечный профиль (кроме участков виражей). В случаях устройства на улицах местного значения и проездах открытых водопропускных систем в полосах озеленения обочины допускается не устраивать.

Боковые разделительные полосы служат для разделения между собой отдельных элементов поперечного профиля улиц и площалей. На боковых разделительных полосах размещают опоры наружного освещения, контактной сети, инженерные сети, остановочные площадки маршрутных транспортных средств, насаждения, а также допускается размещать автостоянки и парковки в одном уровне.

Ширину боковых разделительных полос принимают по расчету в зависимости от количества элементов инженерного обустройства и озеленения, размещаемых в пределах этих полос. Минимальная ширина боковых разделительных полос приведена в таблице 2.

Боковые разделительные полосы, отделяющие проезжую часть магистральных улиц от других элементов поперечного профиля, должны быть приподняты на 0,15 м над уровнем проезжей части, на второстепенных улицах категорий 3 и П в районах коттеджной, блокированной двух-, трехэтажной и

усадебной застройки — на 0,05 м — путем установки бортовых камней, на магистральных улицах категорий М, А, Б — шириной не менее 0,18 м.

Таблица 2 — Минимальная ширина боковых разделительных полос

Местоположение боковой разделительной полосы	Минимальная ширина боковой разделительной полосы, м, для категорий улиц									
	M	-A	Б, В	Г,Е,Ж	3					
Между проезжей частью улицы и боковым проездом	8,0 3,0	6.0 2,0		_						
Между проезжей частью улицы и тротуаром	5,0 3,0	5.0 2,0	5,0 2,0	3 <u>.0</u> 0,0	2,0 0,0					
Между проезжей частью улицы и велосипедной дорожкой∗	_	3,0 0,0	2 <u>.0</u> 0,0	2.0 0,0	_					
Между тротуаром и велосипедной дорожкой*		2,0 0.0	2 <u>,0</u>	2,0 0.0	_					

^{*}В числителе указана ширина полосы в случае проеткирования велосипедной дорожки на боковой разделительной полосе как самостоятельного элемента, в знаменителе — в случае проектировния велосипедной дорожки, примыкающей к тротуару или являющейся элементом проезжей части улицы

Примечания

При проведении капитального ремонта, реконструкции проезжей части улиц и проездов с целью сохранения существующего благоустройства на прилегающей территории допускается принимать возвышения борта проезжей части на $0,1-0,2\,\mathrm{M}$.

Центральные разделительные полосы следует устраивать в соответствии с требованиями таблицы 5.1 [7], приподнятыми над проезжей частью. Как исключение, при ширине 1,5 м допускается осуществлять их устройство в уровне проезжей части в виде разделительной зоны с обозначением горизонтальной дорожной разметкой.

Центральные разделительные полосы шириной 1,5 м и более, островки безопасности, приподнятые над проезжей частью, выделяют бортовым камнем высотой 0,15 м или наклонными плитами шириной от 0,5 до 1,0 м, укладываемыми с поперечным уклоном 100 ‰. Поперечный размер плит, лотков и бортовых камней входит в общую ширину указанных элементов.

Ход работы:

- 1. Отметьте вид сечения 1–1 и 2–2 на городской улице, созданной в практической работе № 1, на главной и второстепенной (примыкаемо) улице на прямых участках соответственно.
 - 2. Запроектируйте сечение 1-1 и 2-2 в горизонтальном масштабе 1:100.
- 3. Расставьте размеры, выноски узлов бортовых камней и подпишите дорожную одежду, руководствуясь примерами на рисунках 2-4.

Отчёт о выполнении работы

Результатами работы являются:

- 1. Проектный поперечник улицы (рис. 2);
- 2. Типы дорожной одежды (рис. 3);
- 3. Узлы бортовых камней (рис. 4).

^{1.} В числителе приведена ширина полосы в условиях нового строительства на свободных территориях, в знаменателе — при реконструкции на застроенных территориях.

2. В условиях реконструкции допускается сохранять тротуары, прилегающие к проезжей части.

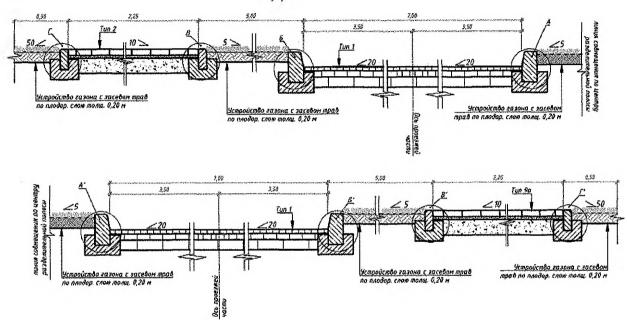


Рисунок 2 – Пример проектного поперечника улицы

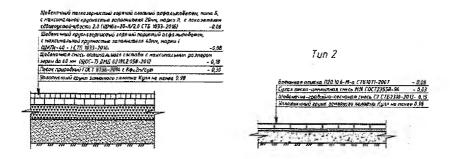


Рисунок 3 - Пример представления типа дорожной одежды

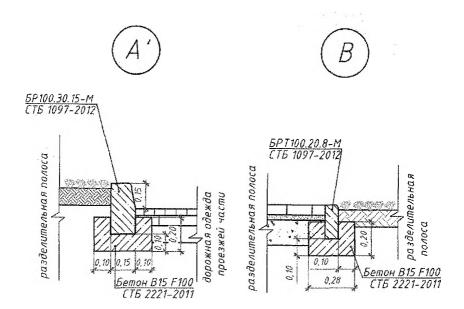


Рисунок 4 - Пример представления узлов бортовых камней

Практическое занятие № 3. Определение прочности дорожной одежды

Цель работы: рассчитать прочность дорожной одежды.

Приборы, оборудование и материалы: конструкция дорожной одежды определяется по типовому альбому «Конструкции дорожных одежд улиц населённых пунктов» согласно варианту проектирования (табл. 3).

Теоретические сведения

Дорожной одеждой называют один или несколько конструктивных слоев из материалов различной прочности, воспринимающих воздействие нагрузок от движения транспорта и от климатических факторов. Ее устраивают на подготовительном земляном полотне, в проезжей части улиц и площадей, и предназначается она для безопасного и бесперебойного движения всех видов безрельсового транспорта в любое время года, поэтому поверхность такой одежды должна быть ровной и шероховатой, обеспечивающей достаточное сцепление с колесом автомобиля.

На городских улицах и дорогах применяют следующие дорожные одежды:

- цементобетонные одежды в виде однослойных или монолитных двухслойных плит, или сборных железобетонных плит заводского производства. Для их строительства применяют высокомарочные цементы и щебень, чтобы получить бетон марки М400, М500;
- асфальтобетонные покрытия, как правило, двухслойные. Основанием для них служат цементобетонная плита, щебеночный или гравийный слой, укрепленный вяжущими материалами, битумно-минеральная смесь на уплотненном слое щебня. Подстилающий слой из крупнозернистого песка.

Рекомендуемые типы дорожной одежды в зависимости от назначения приведены в табл. 3.

Таблица 3 – Типы дорожной одежды

таолица 3 — типы дорожной одсж	ды
Назначение	Тип дорожной одежды
Улицы и дороги	Усовершенствованные
местного движения	облегчённые и переходные
Жилые	Усовершенствованные
жилые	облегчённые и переходные
Промышленных	Усовершенствованные облегчённые,
и складских районов	и переходные и капитальные
Плошали	Усовершенствованные
Площади	капитальные и облегчённые
Автомобильные стоянки	Усовершенствованные облегчённые

Исходя из указанных требований, наиболее приемлемыми типами дорожных одежд на улицах и городских дорогах следует признать одежды с усовершенствованными типами покрытий.

Исходные данные для расчета дорожной одежды:

Таблица 4 – Варианты для проектирования

Вариант	1	9	10	2	11	18	3	12	19	4	13	20
Обозначение улиц (категория)		M			A			Б	:		В	
Интенсивность дви- жения транспортных средств на одну полосу в начале срока службы, приведенная к расчетной нагрузке 115кH, ед/сут	1000	450	680	750	430	400	600	410	350	400	250	50
Интенсивность движения маршрутного пассажирского транспорта, приведеная к расчетной нагрузке 115кH, в одном направлении, в наиболее загруженный час суток	20	13	10	8	. 14	7	15	18	7	15	8	5

Вариант	5	14	21	6	15	22	7	16	23	8, 17	24
Обозначение улиц (категория)		Γ			E			Ж		3	
Интенсивность движения транспортных средств на одну полосу в начале срока службы, приведенная к расчетной нагрузке 115кH, сд/сут	150	200	45	450	250	50	320	120	40	80	40
Интенсивность движения марпирутно- го пассажирского транспорта, приве- денная к расчетной нагрузке 115кH, в одном направлении, в наиболее загружен- ный час суток	10	12	6	14	9	4	13	10	2	5	2

Пример расчёта

Требуется запроектировать дорожную одежду при следующих исходных данных:

- дорога располагается во ІІ дорожно-климатической зоне, в г. Минске;
- категория дороги A;
- расчетный срок службы дорожной одежды T_{cn} , установленный заказчиком, 12 лет;
- приведенная к нормативной статической нагрузке $Q_n=115 \mathrm{kH}$ интенсивность движения транспортных средств на начало срока службы
 - $N_p = 1000$ ед/сут, показатель изменения интенсивности движения q = 1,02;
 - грунт земляного полотна песок пылеватый.
- В соответствии с рисунком 5 сроку службы покрытия $T_{cn}=12$ лет соответствует уровень надежности P=0,96.

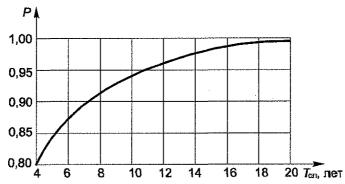


Рисунок 5 — График зависимости расчётного срока службы материала покрытия T_{cn} от уровня надёжности материала дорожной конструкции P

Расчёт дорожной одежды на прочность и деформационную устойчивость материалов слоев

Расчётные характеристики материалов конструктивных слоёв принимаем по табл. 5 и сводим в табл. 6.

Таблица 5 — Значения расчётных характеристик материалов конструктивных

слоёв дорожных одежд и грунтов земляного полотна

	ление С, МПа	него трения, φ	изгиб	ная проч-
Материалы конструктиви Асфальт литой (ЛБС-МЖ) по СТБ 1257 с массовой долей фракций минеральной части по таблице 6.1 Асфальтобетон шебёночномастичный по СТБ 1033 4600 2200 350 Асфальтобетон		трения, <i>ф</i>	<i>R</i> _и , МПа	ная проче ность R_c , МПа
Асфальт литой (ЛБС-МЖ) по СТБ 1257 с массовой долей фракций минеральной части по таблице 6.1 Асфальтобетон щебёночномастичный по СТБ 1033 Асфальтобетон	5	6	7	8
но СТБ 1257 с массовой долей фракций минеральной части по таблице 6.1 5000 2800 300 Асфальтобетон щебёночномастичный по СТБ 1033 4600 2200 350	ных сло	ёв		
мастичный по СТБ 1033 4000 2200 330 Асфальтобетон	0,38	40°	6,5	8,0
Асфальтобетон	0,28	43°	6,0	10,0
марки I по СТБ 1033 с остаточной нористостью 2-3 % н водонасыщением 1-2 %	0,29	39°	5,7	9,0
Асфальтобетон мелкозернистый типа А 4000 1700 320 марки I по СТБ 1033	0,27	39°	5,2	8,0
Асфальтобетон мелкозернистый типа Б 4600 2400 300 марки I по СТБ 1033	0,31	38°	6,0	9,0
Асфальтобетон мелкозернистый типа Б 4500 2000 280 марки II по СТБ 1033	0,27	37,5°	5,7	9,0
Асфальтобетон мелкозернистый типа В 5000 2000 200 марки II по СТБ 1033	0,33	36°	5,5	9,0

Продолжение таблицы 5

Продолжение таблицы 5			·	····			
1	2	3	4	5	6	7	8
Асфальтобетон песчаный	5500	2200	180	0,37	34°	6.0	10.0
типа Г марки II по СТБ 1033	3300	2200	100	0,57	34	0,0	10,0
Асфальтобетон		1	1				
крупнозернистый	2500	1500	200	0.27	200	4.2	6.5
и мелкозернистый пористый	2300	1300	200	0,27	38°	4,3	6,6
марки I по СТБ 1033							
Асфальтобетон	1				İ		
крупнозернистый типа А							
марки I по СТБ 1033	4000	2000					
с остаточной пористостью не	4200	3000	300	0,29	38°	5,5	7,5
более 5 % и водонасыщением		1					
не более 3 %	1	1					
Асфальтобетон	ļ	 			l		
мелкозернистый пористый	1	-					
марки I по СТБ 1033 с массовой	4000	1800	350	0,28	40°	5,0	7.5
	7000	1000	220	0,40	40	3,0	7,5
долей фракций минеральной							
части по таблице 6.2							
Асфальтобетон мелкозерни-		1					
стый пористый марки I по СТБ							
1033 с остаточной пористо-	1500	0000	220		400		
стью не более 5 % и водона-	4500	2000	320	0,30	40°	6,0	9,0
сыщением не более 3 % с мас-							
совой долей фракций мине-							
ральной части по таблине 6.2							
Асфальтобетон	1						
крупнозернистый пористый							
по СТБ 1033 с массовой долей	3000	1700	370	0,25	41°	4,7	6,8
фракций минеральной части							
по таблице 6.3							
Асфальтобетон			Ì				
крупнозернистый пористый							
по СТБ 1033 с остаточной							
пористостью не более 5 %	4700	2300	350	0.27	41°	6.2	0 E
и водонасыщением не более 3 %,	4700	£300	330	. 0,4/	41.	6,2	8,5
с массовой долей фракций							
минеральной части							
по таблице 6.3							
Бетон на органо-							
гидравлическом вяжущем	5000	3000	600	0,70	35°	6,5	10,0
1 группы марки I по СТБ 1415				-,		-,-	,-
Бетон на органо-							· · · · · · · · · · · · · · · · · · ·
гидравлическом вяжущем	4000	2500	500	0,20	35,5°	3,0	5,0
2 группы марки I по СТБ 1415	1000	2200	550	∨يدو∨	55,5	٥,٠	2,0
Бетон на органо-							
гидравлическом вяжущем	4500	2000	500	0,30	42°	3,6	6.0
З группы марки I по СТБ 1415	-4500	2000	200	0,50	+ +∠	3,0	6,0
Бетон на органо-	2000	1200	450	0.25	150	ا م	4.0
гидравлическом вяжущем	2000	1200	450	0,25	35°	2,0	4,0
2 группы марки II по СТБ 1415							
Бетон на органо-	2000	1700	450		250	2.0	
гидравлическом вяжущем	3000	1700	450	0,30	35°	2,2	4,5
3 группы марки II по СТБ 1415							
Бетон на органо-							
гидравлическом вяжущем	1700	1000	400	0,15	35°	1,3	3,0
2 группы марки III по СТБ 1415							
14							

Оконнание табличи 5

Окончание таблицы 5							
1	2	3	4	5	6	7	8
Бетон на органо-							
гидравлическом вяжущем	2000	1200	400	0,15	35°	1,7	3,5
3 группы марки III по СТБ 1415						,	1
Бетон на органо-	1						
гидравлическом вяжущем							
1 группы марки I по СТБ 1415	5500	3500	650	0.70	. 2.50		100
с остаточной пористостью не	5500	3500	650	0,70	35°	6,5	10,0
более 5 % и водонасыщением		1			1		
не более 3 %							1
Шебень оптимального состава							
с максимальным размером							
зёрен 40/70мм с массовой		500/6		0,08/	48°/		
долей фракций минеральной		00		0,06	52°		
части по таблице 6.4 или 6.5							ļ
Щебень фракций					 		
20-40/40-70мм по способу		350/4		0,06/	45°/		
заклинки щебнем 5 – 10 мм		00	_	0,05	48°	_	_
Цебень фракций							
		400/4		0,10/	43°/		
20-40/40-70 мм по способу	_	50		0,08	45°		
заклинки асфальтогранулятом		ļi					
Щебень фракций	-	350/4		0,16/	45%		
20-40/40-70 мм, пропитанный	_	00	-	0,16	48°	_	_
цементно-песчаной смесью				.,			
Щебень фракций		450/5		0,13/	43°/		
20-40/40-70 мм, пропитанный	-	00	-	0,13	45°	-	-
битумной эмульсией	ļ <u>.</u>						
Песчано-гравийная смесь		200	_	0,04	40°	_	_
С-5 –С-8 по ГОСТ 25607		200		0,04	40		_
Песчано-гравийная смесь	-			0.04			
С-5 -С-8 но ГОСТ 25607 с	-	240	-	0,04	43° – 48°	_	_
содержанием щебня 30 – 35 %				0,00			
Песок природный		130		0,004	32°		
по ГОСТ 8736		150	_	0,004	32	_	_
Природная ПГС		100		0.025	2.40		
ло ГОСТ 23735	_	180		0,035	34°	_	_
Асфальтогранулят		200		0.10	3.60		
по ТУ РБ 100135464.372	_	220	-	0,10	36°	_	_
	Грунт	ы земл	аного	полотна	1		
Супесь лёгкая непылеватая		48	-	0.007	14°		-
Песок пылеватый		66		0,005	250		
Суглинок непылеватый, глина		32		0.015	110	_	
Супесь и суглинок пылеватые		30		0,013	110		
Супесь лёгкая крупная		70		0,006	179		
Песок очень мелкий		···· -		· · · · · · · · · · · · · · · · · · ·	1/		
одномерный	_	75	-	0,004	279	-	_
Песок мелкий		100		0,004	28°		
Песок средней крупности		120		0,004	32°		
Песок крупный гравелистый		130		0,004	34°		***
Примечание							

^{1.} При определении расчётных характеристик асфальтобетонов глубина проникания иглы при температуре применяемого битума 25°C составляет 100 мм⁻¹, а дитого асфальта — 40 мм⁻¹.

2. При глубине проникания иглы при температуре 25°C до 75 мм⁻¹ расчётные характеристики асфальтобетонов увеличиваются: деформационные — на 25 %;

прочностные (кроме угла внутреннего трения) – на 35 %.

Таблица 6 – Расчётные характеристики проектируемой дорожной одежды

1 аолица о – Расч	i i i i i i i i i i i i i i i i i i i				ock mpj	ион дор	i i	
			ль упру			Угол	_	Предель-
	Толии-		Е, МПа		Внутрен-	внутрен-	Проч-	RSH
Материал слоя	на слоя	при те	мперат	уре, °С	нее сцеп-	него	ность на	структур-
Marchan cross	h_B^i , CM				ление	трения,	изгиб	ная проч-
	n_B , c_{M}	0	10	50	C , $M\Pi a$	-	R_u , M Π a	ность
						φ		R_c , MIIa
1	2	3	4	- 5	6	7	8	9
Асфальтобетон							ļ	•
щебёночно-								
мастичный по				İ				
СТБ 1033 (глубина	4	5750	2750	438	0,38	43°	8,1	13,5
проникания иглы	4	3130	2/30	430	0,38	43	0,1	15,5
при температуре								
применяемого битума	1				•			
25°C - 70 mm ⁻¹)				,]
Асфальтобетон								
мелкозернистый								}
пористый марки I по	•							
СТБ 1033 с массовой								
долей фракций					,			
минеральной части	7	5000	2250	438	0,38	40°	6,8	10,1
по таблине 6.2	c ,	3000	2230	130	0,50	70	0,0	10,1
(глубина проникания	1							
иглы при температуре					-			
применяемого битума					}			
								ļ
25°C - 70 mm ⁻¹)								<u> </u>
Асфальтобетон								
крупнозернистый								
пористый по СТБ 1033	10	3000	1700	370	0,25	41°	4,7	6,8
с массовой долей					l		_	′
фракций минеральной								
части по таблице 6.3			ļ				ļ	ļ
Щебень оптимального								
состава с максималь-								
ным размером зёрен	1							
40 мм (с массовой	18	500	500	500	0,08	48°	- `	-
долей фракций		F						
минеральной части								1,
по таблице 6.4)								_
Продолжение табл.6								
Песок природный	40	130	130	130	0,004	32°		
по ГОСТ 8736	40	130	130	150	0,004			
Песок пылеватый	-	66	66	66	0,005	25°	-	
·								

Упругий прогиб дорожной одежды, являясь показателем жёсткости, характеризует также прочность одежды, которую можно оценить, сопоставляя фактический модуль упругости с требуемым модулем.

Определяем величину минимально требуемого модуля упругости:

$$E_{ob}^{TP} = 98,65 \left[\lg \left(\Sigma N_p \right) - c \right],$$
 (1)

где $\sum N_p$ — суммарное число приложений расчётной нагрузки за срок службы дорожной одежды, ед.;

c — эмпирический параметр, принимаемый равным 4,0 для расчётной нагрузки на ось 115 кH.

Прочность дорожной одежды по критерию упругого прогиба обеспечена при условии:

$$K_{\rm np}^{\rm TP} = E_{\rm off M} / E_{\rm TD}, \tag{2}$$

 E_{ob}^{rp} – требуемый общий модуль упругости дорожной конструкции, определяемый при расчетной нагрузке, МПа;

 $E_{
m oбщ}$ — расчетный общий модуль упругости дорожной конструкции, определяемый при расчётной нагрузке, МПа.

Требуемый минимальный коэффициент запаса прочности Ki по рис. 6 равен 1,23 для уровня надежности P=0.96 и срока службы $T_{cn}=12$ лет.

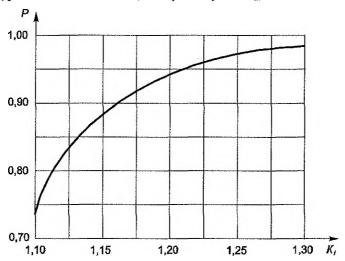


Рисунок 6 – График зависимости уровня надёжности дорожной конструкции Р от коэффициента запаса прочности K₁

Располагая значением требуемого модуля упругости, послойно рассчитываем двухслойные системы. Расчёт ведем снизу вверх, начиная с подстилающего одежду грунта по номограмме на рис. 7. При невыполнении условия изменяем толщины слоёв дорожной одежды и опять производим расчёт. Расчёт ведём до тех пор, пока условие (2) не будет соблюдаться.

Расчётную нагрузку определяют для группы нагрузок A2. Расчётный диаметр и давление колеса на покрытие: $D=0.39~\mathrm{M}$; $p=0.6~\mathrm{M}$ па.

Значения модулей упругости материалов, содержащих органическое вяжущее, необходимо принимать во всех климатических зонах при температуре 10 °C.

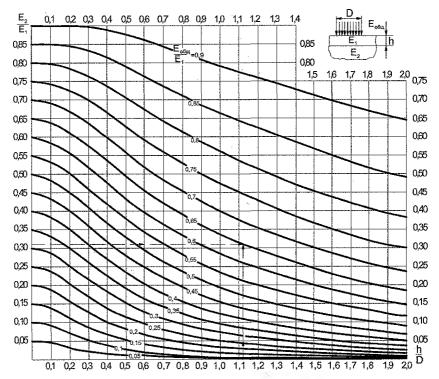


Рисунок 7— Номограмма для определения общего модуля упругости $E_{\rm ofm}$ двухслойной системы: цифры на кривых соответствуют отношению $E_{\rm ofm}/E_1$; E_1 — модуль упругости верхнего слоя; E_2 — общий модуль упругости на поверхности подстилающего верхний слой полупространства; h — толщина верхнего слоя; D — диаметр следа колеса расчётного автомобиля

$$E_{\text{tp}}/E_{\text{s}} = 66/130 = 0,51;$$
 $h_{\text{B}}^{5}/D = 40/38 = 1,05;$
 $E_{\text{506}} = 101 \text{ MHa}$
 $E_{\text{506}}/E_{\text{4}} = 101/500 = 0,20;$
 $h_{\text{B}}^{4}/D = 18/38 = 0,47$
 $E_{\text{406}}/E_{\text{3}} = 173 \text{ MHa}$
 $E_{\text{406}}/E_{\text{3}} = 173/1700 = 0,10;$
 $h_{\text{B}}^{3}/D = 10/38 = 0,26;$
 $E_{\text{506}} = 258 \text{ MHa}$
 $E_{\text{305}}/E_{\text{2}} = 258/2250 = 0,11;$
 $h_{\text{B}}^{2}/D = 7/38 = 0,18;$
 $E_{\text{206}} = 326 \text{ MHa}$

$$E_{205} / E_1 = 326/2750 = 0,12;$$

 $k_B^1 / D = 4/38 = 0,11;$
 $E_{105} = 360 \text{ M}\Pi a$

Коэффициент запаса прочности составляет $K_{\rm np} = E_{\rm teb} / E_{\rm sb}^{\rm op} = 360/236 = 1,52$.

Отчёт о выполнении работы

Результатами работы являются:

1. Расчётная схема конструкции дорожной одежды (рис. 8) и выводы о соответствии её нормативным требованиям.

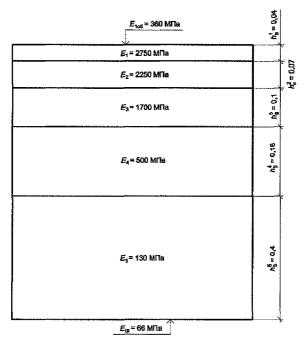


Рисунок 8 - Расчётная схема конструкции дорожной одежды

Так как K_{np} =1,52>1,1, следовательно выбранная конструкция удовлетворяет условию прочности по допускаемому прогибу.

Практическое занятие № 4. Разработка вертикальной планировки участка городской улицы

Цель работы: создание плана вертикальной планировки М 1:500 участка городской улицы.

Приборы, оборудование и материалы: персональный компьютер, графический редактор AutoCAD.

Теоретические сведения

Вертикальная планировка в красных горизонталях осуществляется сечением горизонталей через 0.1м, 0.2м и 0.5м (h_o).

Вертикальная планировка улицы по методу красных горизонталей выполняется следующим образом:

- 1. На план участка проектируемой улицы наносятся элементы улицы (проезжая часть, зеленая зона, тротуар и т. д.).
- По оси улицы выписываются проектные отметки в точках переломов проектной линии или отметки пикетов (при прохождении проектной линии на проектируемом участке без переломов).
 - 3. Принимается сечение горизонталей.
- 4. Определяется расстояние ближайшей горизонтали до начальной точки путём деления превышения между этими точками на продольный уклон проектной линии. Полученная точка в масштабе наносится на план.
- 5. Определяется величина заложения красных горизонталей путём деления сечения горизонталей (l, m) на продольный уклон $(i, \mathsf{b}$ долях):

$$I = \frac{h_0}{i} \ . \tag{3}$$

Полученная величина заложения откладывается в масштабе по оси улицы.

6. Смещение первой горизонтали по оси лотка за счёт поперечного уклона проезжей части определяется по формуле:

$$l_1 = \frac{\frac{B}{2} \cdot i_{non}}{i_{mod}} , \qquad (4)$$

где В – ширина проезжей части, м;

 i_{non} – поперечный уклон проезжей части, в долях;

 i_{npoo} — продольный уклон на участке улицы, в долях.

Полученная величина откладывается по лотку в направлении, обратном продольному уклону.

7. Смещение горизонтали за счёт установки бортового камня определятся по формуле:

$$l_2 = \frac{h_6}{i_{nood}},\tag{5}$$

где h_{δ} – возвышение бортового камня над проезжей частью, м;

 i_{npod} — продольный уклон на участке улицы, в долях.

Полученное расстояние откладывается от пересечения горизонтали с осью лотка вниз по уклону.

8. Смещение горизонтали за счёт поперечного уклона тротуара (зелёной зоны) определяется по формуле:

$$l_3 = \frac{b \cdot l_{non}}{l_{mood}}, \tag{6}$$

где b - ширина тротуара, м;

 i_{non} – поперечный уклон тротуара, в долях;

 i_{npod} — продольный уклон тротуара, в долях.

Полученное расстояние в масштабе откладывается от проекции точки горизонтали на бортовом камне тротуара на красную линию улицы или линию застройки по продольному уклону.

Расчётная схема вертикальной планировки приведена на рис.9.

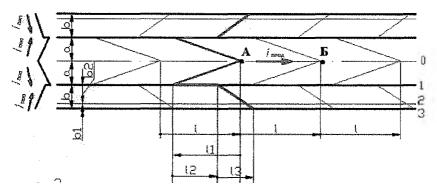
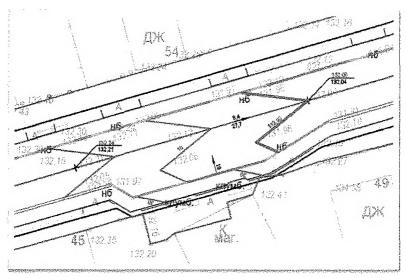



Рисунок 9 - Расчетная схема вертикальной планировки

Пример финальной вертикальной планировки на участке улицы показан на рис. 10.

Рисупок 10 - Вертикальная планировка участка городской улицы

Ход работы:

Запроектируйте вертикальную планировку участка городской улицы категории Ж согласно проектным отметкам по оси по выбранному варианту (выдается в электронном виде преподавателем).

Чертёж выполняется в масштабе М 1:500.

Поперечный уклон существующей парковки на участке улицы принять 15%, поперечный уклон тротуара -10%. Сечение горизонталей -0.1м.

Отчёт о выполнении работы

Результатами работы является проект вертикальной планировки для участка городской улицы (рис.10), выполненной по заданным преподавателем исходным данным.

Практическое занятие № 5. Составление ведомости объемов работ на устройство тротуара и дорожной одежды по основному ходу участка улицы

Цель работы: получить навыки по расчету и составлению ведомости на устройство тротуара и дорожной одежды участка городской улицы.

Приборы, оборудование и материалы: в качестве исходных данных для составления ведомости принимается участок городской улицы, запроектированный в ходе 1-го практического занятия.

Теоретические сведения

Для составления ведомости по устройству тротуара необходимо определить объёмы следующих видов работ:

- Установка бортового камня БРТ 100.20.8 М
- Устройство дорожной одежды тротуара
- Устройство дорожной одежды технического тротуара (если необходимо)
- Устройство зелёной зоны

Для составления ведомости по устройству дорожной одежды проезжей части необходимо определить объёмы следующих видов работ:

- Установка бортового камня БР 100.30.15 М
- Укладка основания дорожной одежды
- Укладка нижнего слоя покрытия
- Подгрунтовка битумной эмульсией нижнего слоя покрытия
- Укладка верхнего слоя покрытия

Резка бортового камня принимается из расчёта: число подрезок камней (в местах радиусов закругления и в начале и конце прямолинейных участков) умножить на высоту бортового камня в м. п.

В дорожном строительстве при подгрунтовке конструкционных слоёв, согласно строительным нормам и правилам, приняты следующие расходы битумной эмульсии:

- по способу пропитки он составит около 1 литра эмульсии на 1см толщины (в случае устройства основания) и 1,5-2,0 литра при устройстве покрытия;
- при подгрунтовке нижних слоев асфальтобетонного покрытия расход составит 0.3-0.4 литра/ m^2 ;
- при подгрунтовке отфрезерованного под дальнейшую укладку покрытия расход составит 0,3 0,5 литра/ M^2 ,

- для основания из цементобетона расход составит 0.5 0.8 литра на m^2 ,
- при устройстве оснований из щебня расход составит $0.5-0.9~\text{n/m}^2$.

Ход работы:

Составьте ведомость объёмов работ на устройство тротуара и проезжей части, используя в качестве исходных данных проект плана участка городской улицы, выполненного в практическом задании № 1.

Отчёт о выполнении работы

В составе отчёта должны быть:

- ведомость на устройтсво дорожной одежды (табл.7).

Таблица 7 – Ведомость на устройство дорожной одежды

Наименование	Ед. изм.	Количество					
Устройство основания из смеси С5 СТБ 2318-2013 толщиной 0,20 м	M ²	92					
Щебеночный крупнозернистый горячий пористый асфальтобетон с максимальной крупностью заполнителя 40 мм, марки II (ЩКПг 40-II) СТБ 1033-2016 толщиной 0,06 м (с применением асфальтоукладчика)		92					
Щебеночный мелкозернистый горячий плотный асфальтобетон, с максимальной круппостью заполнителя 20 мм, тип Б марки III (ЩМБг 20 - III/2,0) СТБ1033-2016 толщиной 0,04м (с применением асфальтоукладчика)	M ²	92					
Подгрунтовка битумной эмульсией ЭБКД-Б-60 СТБ 1245-2007	т	0,028					
Установка бетонного бортового камия В30 F250 по СТБ 1097-2012 на бетонном основании В15 F100 по СТБ 2221-2011 с заполнителем из щебня гранитного фракции до 20 мм							
БР 100.30.15-М	4.II.	1125					
Резка бортового камия БРТ	ı,n,	18					

- ведомость на устройство тротуара (табл.8).

Таблица 8 - Ведомость на устройство тротуара

Наименование	Ед, изм.	Количество
Установка бетонного бортового камня В30 F250 по СТБ 1097-2012 на		IOM
основании B15 F100 по СТБ 2221-2011 с заполнителем из шебня грани фракции до 20 мм (бетонное основание по типу «полный замок»/ «полуз:		
БРТ100.20.8-M	M.II.	1146/404
Резка бортового камня БРТ	M.II.	25
Дорожная одежда тротуара		
Устройство покрытия из бетонной мелкоштучной плитки (серая) B22,5 F250 Btb 2,8 СТБ 1071 толщиной 0,06 м по слою из пескоцементной смеси (10:1) толщиной 0,03м на сновании из песка ГОСТ 8736-2014 толщиной 0,20 м	m ²	1747
То же на основании из асфальтогранулята ArTCAфCTБ 1705-2015 толициной 0,15м	м ²	168
Устройство покрытия из бетонной медкоштучной плитки (от разборки) по слою из пескоцементной смеси (10:1) толщиной 0,03м на основании из песка ГОСТ 8736-2014 толщиной 0,20 м	m ²	57
Устройство зелёной зоны		
Устройство зелёной зоны вручную с внесением растительного грунта толициюй 0,10 м (с транспортировкой на 3 км) и посевом трав (вручную)	m ²	726
Устройство укрепительных берм с подсыпкой растительного грунта толщиной 0,10 м (с транспортировкой на 3 км) с засевом трав (вручную)	м2	181,7

Практическое занятие № 6. Проектирование автомобильных парковок и стоянок

Цель работы: получить навыки в проектировании парковок и стоянок для автомобилей.

Приборы, оборудование и материалы: персональный компьютер, графический редактор AutoCAD.

Теоретические сведения

Автомобильная парковка (парковка): место стоянки транспортных средств, представляющее собой участок проезжей части автомобильной дороги, улицы населенного пункта или прилегающей к ним территории, организованное в соответствии с действующими ТНПА, предназначенное для стоянки транспортных средств без предоставления услуг по их хранению.

Автомобильная стоянка (автостоянка): место стоянки транспортных средств, представляющее собой специально оборудованное одно- или многоуровневое инженерное сооружение (паркинг), предназначенное для хранения транспортных средств и организованное в соответствии с действующими ТНПА.

Проектирование стоянок и парковок для автомобилей ведется согласно требованиям норм [1] и [8].

Расстояния между автомобилями на местах хранения, а также между автомобилями и конструкциями гаража-стоянки (за исключением механизированных и автоматизированных) принимаются в зависимости от категории автомобилей, способа их хранения (расстановки) и должны быть не менее указанных в табл. 9.

Таблица 9 – Значения габаритов приближения

Наименование габаритов приближения	Расстояния для автомобилей категории, в метрах, не менее			
	I	II, III	ΙV	
1. Расстояние между продольными сторонами				
автомобилей, а также между стеной и автомобилем,				
стоящим параллельно стене	0,5	0,6	0,8	
2. Расстояние между продольной стороной				
автомобиля и колонной или пилястрой	0,3	0,4	0,5	
3. Расстояние между передней стороной автомобиля				
и стеной или воротами при расстановке автомобилей:		1		
а) прямоугольной	0,5	0,5	0,5 0,7	
б) косоугольной	0,5	0,7	0,7	
4. Расстояние между задней стороной автомобиля и				
стеной или воротами при расстановке автомобилей:				
а) прямоугольной	0,5	0,7	0,7	
б) косоугольной	0,5	0,7	0,7	
5. Расстояние между автомобилями,				
стоящими один за другим	0,4	0,5	0,6	

Проезды в помещениях хранения автомобилей должны предусматриваться с учётом следующих габаритов приближения маневрируемых (устанавливаемых на место или выезжающих с него) автомобилей к конструкциям зданий и к автомобилям на местах хранения, а также с учётом длины автомобиля и радиуса поворота наружного габарита:

а) до соседних автомобилей или до конструкций здания в ряду хранения маневрируемого автомобиля, м, не менее:

- 0,2 при автомобилях 1 категории;
- 0,3 при автомобилях II категории;
- 0,4 при автомобилях III, IV категорий;
- б) до автомобилей или конструкций здания на другой стороне проезда от ряда хранения маневрируемого автомобиля, м, не менее:
 - 0,7 при автомобилях I категории;
 - 0,8 при автомобилях II категории;
 - 1,0 при автомобилях III, IV категорий.

Минимальные размеры места хранения автомобилей должны быть, м, не менее:

- длина 5,0;
- ширина -2,3;
- ширина (для инвалидов, пользующихся креслами-колясками) 3,5.

Организация движения на стоянках, размещаемых на уровне земли, должна обеспечивать двухстороннее или одностороннее движение автомобилей по проездам и максимальное разделение пешеходных и транспортных путей.

При организации одностороннего движения стоянки временного хранения автомобилей вместимостью 20 мест и более, а также при организации двухстороннего движения стоянки временного хранения автомобилей вместимостью 50 мест и более должны иметь раздельные въезд и выезд на расстоянии не менее 15 м друг от друга шириной не менее 3,5 м каждый. При меньшей вместимости таких стоянок они могут иметь совмещенный въезд и выезд шириной не менее 6 м.

Стоянки постоянного хранения автомобилей вместимостью 50 мест и более должны иметь не менее двух въездов (выездов), расположенных на противоположных сторонах стоянки, шириной не менее 3,5м каждый. Один из въездов (выездов) на стоянку используется для регулярного движения, остальные — для аварийной эвакуации автомобилей.

Количество аварийных выездов устанавливается исходя из вместимости стоянки – один аварийный выезд на каждые 200 автомобилей.

Автомобили, в зависимости от их габаритных размеров, подразделяются на категории, указанные в табл. 10.

Таблица10

Lagingaro				
Категории автомобиля	Габаритные размеры автомобиля, м			
категории автомооны	по длине	по ширине		
[#	до 6 включительно	до 2,1 включительно		
I	свыше б до 8 включ.	свыше 2,1 до 2,5 включ.		
11144	свыше 8 до 12 включ.	свыше 2,5 до 2,8 включ.		
IV	свыше 12	свыше 2,8		

^{*} В том числе мотоциклы с колясками и без колясок, мотороллеры и мопеды.

Примечания

Ход работы:

В качестве исходных данных для проектирования автомобильной парковки принимается план участка улицы, выполненный в практической работе № 1.

^{**} В том числе сочленённые автобусы

^{1.} Категория автомобиля, габаритные размеры которого по длине или ширане отличаются от приведенных в табиице, должна определяться по размеру, относящемуся к большей (по порядку) категории.

^{2.} Категория автопоездов устанавливается по габаритным размерам автомобилей-тягачей.

Здание (место проектирования, определяемое по табл. 10) необходимо расположить условным контуром на расстоянии 70 м справа от оси участка городской улицы.

Пользуясь требованиями к размещению автомобильной парковки, необходимо определить место заезда и выезда на парковку, рассчитать количество и тип необходимых парковочных мест, определить удобную конфигурацию парковки, определить схему движения на ней, а также расставить планировочные размеры, нанести разметку и дорожные знаки.

Чертеж выполняется в масштабе М 1:500.

Варианты для проектирования представлены в табл.10.

Таблица 11 – Варианты для проектирования парковок

Вариант	1	2	3	4	5	6	7	8	9
Место проектирования автомобильной стоянки и парковки	Ясия-сад на 500 детей	Школа-интернат на 855 детей	Колисдж на 1050 человек	Институт повышения квалификации на 1560 учанихся	Информационный центу площицью 1550 м2	Поликличника с количеством посещений 1850 пг.	Санаторий на 2650 отдыхающих	Спортивный комплекс общей площадью 2850м2	Парк с посещением 500 человек в день
Вариант	10	11	12	13	14	15	16	17	18
Место проектирования автомобильной стоянки и парковки	Торговый центр общей ппопадыю 1680м2	Мебельный магазин торговой плоцадью 600 м2	Рынок на 150 торговых мест	Кафе на 50 посадочиъх мест	Ателье на 75 единовременных посятителей	Вокзал на 500 пассажиров, пребъявающих в час пик	Гостиница высшего разряда на 90 мест	Кемпият на 80 косетителей	Продуктовый магизин с торговой илопадьзо 250 м2

Пример запроектированной парковки показан на рисунке 11.

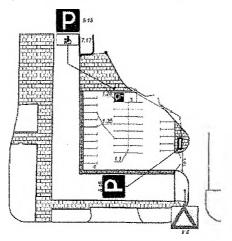


Рисунок 11 - План запроектированной парковки

Отчёт о выполнении работы

Результатом работы является план запроектированной парковки (рис.11).

Список рекомендуемой литературы

- I. Улицы населенных пунктов. Строительные нормы проектирования: ТКП 45-3.03-227-2010 (02250).
- 2. Градостроительство. Районы усадебного жилищного строительства. Нормы планировки и застройки: ТКП 45-3.01-117-2008 (02250).
- 3. Градостроительство. Схема комплексной территориальной организации региона (области, района, группы районов). Правила проектирования: ТКП 45-3.01-118-2008 (02250).
- 4. Благоустройство территорий. Озеленение. Правила проектирования и устройства: ТКП 45-3.02-69-2007 (02250).
- 5. Градостроительство. Населенные пункты. Нормы планировки и застройки: ТКП 45-3.01-116-2008 (02250).
- 6. Градостроительство. Районы усадебного жилищного строительства. Нормы планировки и застройки: ТКП 45-3.01-117-2008 (02250).
- 7. Проектирование дорожных одежд улиц населенных пунктов: ТКП 45-3,03-3-2004 (02250).
- 8. Гаражи-стоянки и стоянки автомобилей. Правила проектирования и устройства»: ТКП 45-3.02-25-2006 (02250).

Учебное издание

Составители:

Горох Надежда Анатольевна Шведовский Пётр Владимирович

УЛИЦЫ НАСЕЛЕННЫХ ПУНКТОВ

Методические указания к практическим занятиям по курсу «Городские улицы и дороги» для студентов специальности 1-70 03 01 Автомобильные дороги

дневной и заочной форм обучения

Ответственный за выпуск: Шведовский П.В. Редактор: Боровикова Е.А. Компьютерная вёрстка: Соколюк А.П. Корректор: Никитчик Е.В.