МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «Брестский государственный технический университет»

Кафедра информатики и прикладной математики

ЗАДАНИЯ К КОНТРОЛЬНЫМ РАБОТАМ №1

по дисциплине «Информатика»

и краткие методические указания по их выполнению для студентов инженерно-технической специальности

1 - 70 04 03 «Автомобильные дороги»

заочной формы обучения

УДК 004.9

Задания по дисциплине «Информатика» к контрольной работе № 1 предназначены для студентов первого курса специальности «Автомобильные дороги» заочной формы обучения.

Методические рекомендации содержат сведения о требованиях к содержанию, структуре и оформлению контрольных работ, базовых алгоритмах программирования, примеры решения типовых задач, приведенные для выполнения в среде EXCEL + VBA, системе компьютерной математики МАТНСАD. Методические рекомендации имеют целью оказать помощь студентам в подготовке к контрольной работе по названной дисциплине.

Составитель: Хомицкая Т.Г., ст. преподаватель

Вариант всех заданий выбирается студентом по *таблице 1* следующим образом. Пусть студент **И**ванов П.С. имеет шифр 8453217. Тогда отыскиваем в *таблице 1* столбец с буквой **И** (первая буква фамилии) и строку с номером **7** (последняя цифра шифра). На пересечении столбца **И** со строкой **7** находим числа **1** и **20**. Первое число (**1**) означает номер варианта в *разделе А* задания, второе число (**20**) – номер варианта в *разделе Б* того же задания.

Таким образом, <u>задание 1</u> КР №1 у Иванова П.С. формулируется следующим образом:

ЗАДАНИЕ 1.

1. Вычислить в СКМ MATHCAD и ЭТ EXCEL значение величины s

$$s = 2 \cdot q \cdot (p \cdot r^2 - \sqrt{7.6}) - \sqrt[3]{r^2 + 4.1} + p \cdot (r - \sqrt[4]{2.5} \cdot q^2),$$

зависящей от величин р, q и г

$$\rho = \frac{\alpha^2 + \beta x}{(xy + \alpha)x} - \frac{2.7\gamma}{x^2}, \ q = \frac{\alpha(x^2 + \beta y^2)}{3.71\beta^2 x + y}, \ r = \frac{3\beta}{x^2} \cdot \frac{\gamma + xy}{\alpha x + \beta y^3}.$$

 Составить в среде VBA линейную программу на языке BASIC в виде подпрограммы-функции для вычисления заданной величины s. Вычислить в ЭТ EXCEL значение определенной функции, задав значения входным переменным.

Аналогично формируются другие задания контрольных работ.

Таблица 1. I – начальная буква фамилии; II – последняя цифра шифра.

/=	А Б	ВГ	Д Е,Ē Ж	З И,Й К	л М Н	О П Р	C T y	Ф Х Ц	Ч Ш Щ,Ы	эюя
0	5,14	2,3	1,4	3,11	5,16	3,20	1,12	4,1	2,14	4,11
1	3,6	4,5	5,17	2,12	1,1	2,17	5,10	1,17	4,7	3,5
2	4,17	5,20	3,2	4,9	2,9	1,15	5,2	3,9	1,3	2,8
3	2,15	1,14	4,16	5,9	1,18	3,4	4,20	2,7	5,11	3,15
4	4,8	3,16	5,1	1,8	3,8	2,5	4,12	5,13	2,4	1,16
5	1,5	1,2	2,16	3,19	4,15	5,7	2,1	4,2	3,1	5,8
6	2,6	5,5	1,13	5,15	4,4	4,19	3,18	1,7	3,10	2,19
7	1,19	3,7	4,10	1,20	2,18	5,12	2,13	3,14	5,3	4,3
8	3,12	2,11	2,2	4,6	3,3	4,14	1,6	5,18	1,11	5,19
9	5,6	4,18	3,17	2,10	5,4	1,9	3,13	2,20	4,13	1,10

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Студент должен выполнить контрольную работу, строго придерживаясь указанных ниже требований. Работа, выполненная без их соблюдения, к защите не допускается и возвращается студенту на доработку.

- 1. Контрольная работа должна быть выполнена строго по варианту. <u>Контрольная работа, выполненная не по своему варианту, возвращается студенту</u> без проверки и к защите не допускается.
- 2. Контрольная работа должна быть оформлена на отдельных листах формата A4.
- 3. Для выполнения заданий контрольной работы рекомендуется использовать версии *Microsoft Excel 2003* и *MathCAD 13*;
- 4. Контрольная работа должна содержать:
 - титульный лист, содержащий <u>название дисциплины, Фамилию, Имя.</u> Отчество студента, номер группы, шифр и личную подпись студента:
 - номер варианта (раздел А, раздел Б);
 - полное условие каждого задания;
 - распечатки на принтере в соответствии с заданием документов МАТНСАD, рабочих листов EXCEL с результатами вычислений (с выводом заголовков строк и столбцов, без сетки) и отчетов по результатам (для заданий, выполненных с помощью Поиск решений): программ из редактора VBA;
 - описание действий, применяемых для решения каждого задания;
 - пояснения к представленным программам и используемым в них операторах;
 - перечень используемой литературы.
- 5. **Формат** вывода всех числовых результатов должен быть в обычном виде и не менее чем с 8 (восемью) цифрами после десятичного разделителя.
- 6. Контрольная работа должна быть выполнена и представлена на проверку за две недели до начала сессии. Студент обязан учесть все замечания рецензента и внести в нее необходимые исправления.
- 7. Документы Excel и MathCAD должны быть оформлены в виде файлов на рабочем диске (R:) ЛВС БРГТУ <u>к началу сессии</u>.

При условии правильности выполнения контрольная работа <u>допускается к защите</u>. Студенты, допущенные к защите и успешно выполнившие лабораторные работы в сессию, допускаются к сдаче зачета по дисциплине. <u>Зачет предполагает полные ответы на любые вопросы из списка вопросов к зачету или выполнение аналогичного задания за компьютером в присутствии преподавателя.</u>

ЗАДАНИЕ №1:

- 1. Вычислить в СКМ МАТНСАD и ЭТ EXCEL значение величины $\mathbf s$ в соответствии с вариантом (раздел A), зависящей от величин $\mathbf p$, $\mathbf q$ и $\mathbf r$, заданных в разделе $\mathbf b$.
- 2. Составить в среде VBA линейную программу на языке BASIC в виде подпрограммы-функции для вычисления заданной величины \mathbf{s} . Вычислить в ЭТ EXCEL значение определенной функции, задав значения входным переменным.

<u>Замечание:</u> Для корректного выполнения задания переменные x, y, α , β и γ должны принимать положительные значения.

Раздел А: варианты формул, определяющих величину s.

1.
$$s = 2 \cdot q \cdot (p \cdot r^2 - \sqrt{7.6}) - \sqrt[3]{r^2 + 4.1} + p \cdot (r - \sqrt[4]{2.5} \cdot q^2)$$

2.
$$s = \sqrt{8.3} \cdot q \cdot p^2 - \sqrt[5]{r^2 \cdot (2.2 \cdot q - p)^2} + \sqrt[3]{5.1} \cdot r \cdot (q \cdot p - r)$$

3.
$$s = \sqrt[4]{5,3} \cdot q \cdot (p+r) + p \cdot (q-4,2 \cdot r^2) - \sqrt{9,7} \cdot \sqrt[4]{p^2 + r^2}$$

4.
$$s = (3 \cdot p - \sqrt{4.9} \cdot r) \cdot q - 1.3 \cdot r^2 \cdot \sqrt[6]{r^2 + 5 \cdot q^2} + \sqrt[3]{8.3} \cdot q \cdot p^2$$

5.
$$s = \sqrt[5]{6.5} \cdot q \cdot (p + 2 \cdot r^2) - \sqrt[4]{2.8 \cdot q^2 + p^2} - \sqrt{5.1} \cdot q \cdot (r - p)$$

Раздел Б: варианты функций р, q, r.

№ вар.	р	q	r
1	$\frac{\alpha}{\beta} \cdot \frac{xy^2 + \alpha\beta}{x + \gamma y^2}$	$\frac{7.2 x^2 y^2 + \gamma}{\alpha x + \beta (y + x)}$	$\frac{\alpha^2 y^2 - x}{\gamma^3 x + \beta y^2}$
2	$\frac{\beta y^2 (x-y^2)}{\alpha x^2 + \gamma y^2}$	$\frac{\beta x^2 y^2 (x+y^2)}{\gamma \alpha^2 + \beta^2}$	$\frac{\alpha}{x} \cdot \frac{2,9 \gamma x + \beta}{3 \alpha (x^2 + y^2)}$
3	$\frac{\gamma(x^2+y^2)}{1.7\alpha^2(x+y)}$	$\frac{\alpha y}{\beta x^2 + \gamma y} - y^2$	$\frac{\alpha}{x} \cdot \frac{0.63 \beta x^2 + \gamma}{4.2 \alpha^2 (x+y)}$
4	$\frac{\alpha y - \beta x^2}{\beta x^2 (x + y^3)}$	$\frac{y}{\alpha} \cdot \frac{\alpha x - \beta x y}{x^2 + 7.2 \beta y^2}$	$\frac{(\alpha + \beta y) x^2}{1,86 \beta^2 + \gamma x y}$
5	$\frac{y}{x} \cdot \frac{1.7 \alpha^2 x^2 + y}{\gamma (x + y^2)}$	$\frac{0.9 x^2 - \beta y}{x^2 + \gamma y^2}$	$\frac{3,6 \alpha \beta (x+y)}{\gamma x^2 y^2 + 5 y}$
6	$\frac{\beta(x+\gamma y^2)}{x(\alpha x y^2 + \beta y)}$	$\frac{\gamma y^2 + x(\beta - y)}{9.3\gamma x^2 y}$	$\frac{2}{x} \cdot \frac{\gamma^3 y + \beta x}{\alpha^2 + (xy)^2}$
7	$\frac{\alpha x^3 + 3.78 \beta y}{(x^2 y + \beta) y}$	$9,73 \beta - \frac{2 \times y^2}{\times y + x^2 \gamma}$	$\frac{\alpha}{y} \cdot \frac{\gamma x - \beta y (x + y)}{\alpha^2 \beta + x}$
8	$\frac{\beta(x+\gamma y^2)}{\alpha y(\alpha x+\beta y)}$	$\frac{x}{y} \cdot \frac{\beta x + \gamma (y - x)}{3.5 x^2 + y^2}$	$\frac{\beta^3 x + \gamma y}{\alpha^2 x^2 + y^2}$
9	$\frac{3\beta(x^2-3y^2)}{2.8\gamma x+\alpha}$	$\frac{y}{x} \cdot \frac{\alpha^2 x + \beta^2}{\beta (x^2 + y^2)}$	$\frac{\alpha x^2 + y^2}{\beta y^2 (x + y) + \gamma}$

№ вар.	D	а	r
10	$\frac{y}{x} \cdot \frac{\alpha^2 x + 3\beta^2 - y}{\alpha x^2 + y}$	$\frac{q}{3 \times y^3} - \beta y$	$\frac{8,6\alpha^2\beta}{\beta x + \gamma(x + y^2)}$
11	$\frac{\beta x + 5.7}{\alpha^2 x^2 + \beta^2 y^2}$	$\frac{3x}{y} \cdot \frac{1 - (\beta y)^2}{9.3\alpha x^3 + \gamma}$	$\frac{(\gamma x + y)^2 + 2.4}{\alpha x^2 (\alpha y + x)}$
12	$\frac{(\alpha + \beta y^2)x + y}{x^2 + \beta y^2}$	$\frac{\beta}{y} \cdot \frac{\gamma x^2 + x y^4}{\alpha^2 + \beta^2}$	$\frac{3.7 \gamma y - x}{7 \alpha (x^2 + y^2)}$
13	$\frac{\alpha x^2 (x - y^3)}{\beta y + \alpha x^3}$	$\frac{\beta}{y} \cdot \frac{\alpha x^2 - 3.7 \gamma y^2}{\alpha x + \gamma^2 y}$	$\alpha \times y + \frac{1,86 \gamma y}{\alpha x^2 + \beta y}$
14	$\frac{\alpha}{\beta^2} \cdot \frac{x y - 2.7 \gamma^2}{x^3 + y}$	$\frac{(3\alpha-2x)^2}{2,7\beta x+\gamma y}$	$0.4x - \frac{\beta x^2 + 5}{x + 3y^2}$
15	$\frac{\alpha}{3} \cdot \frac{\gamma + (x - y)^2}{\alpha^2 (x^2 + y)}$	$2.6 \alpha x + \frac{\gamma y}{x^2 + y^2}$	$\frac{8,3\gamma x - \alpha y}{2\alpha (x + y^2)}$
16	$\frac{\alpha^2}{3.7} \cdot \frac{\gamma - 2(\alpha x)^3}{\beta x (x^2 + y^2)}$	$\frac{4.7 \alpha + \beta x^3}{(\alpha x)^2 + x y}$	$3\alpha x^2 - \frac{\beta y^3 + x}{\alpha^2 \gamma + y}$
17	$\frac{2.7 \alpha^2 - \beta y^2}{3 x + \alpha y^2}$	$\frac{3}{y^2} \cdot \frac{\alpha x + \beta y^2}{x^2 + (\alpha y)^2}$	$\frac{5.3\gamma^3 x}{x^2 + y^2} - \frac{\beta}{xy}$
18	$\frac{(\alpha^2 x - \beta y^2) x}{\alpha x^2 + y^2}$	$\frac{x}{y} \cdot \frac{(\alpha x)^2 - \beta y^2}{9.8 \alpha x^2 + \gamma}$	$7,63 \gamma x - \frac{\beta}{\gamma x + y^2}$
19	$\frac{2\alpha^2 x + \beta y^2}{2,9 x^2 y + \alpha}$	$\frac{3,1\alpha}{xy}\cdot\frac{\alphax-y}{\beta^2+y^2}$	$\frac{\gamma x - 3(x^2 + y)}{4.8 \gamma (x + y^2)}$
20	$\frac{\alpha^2 + \beta x}{(x y + \alpha) x} - \frac{2.7 \gamma}{x^2}$	$\frac{\alpha (x^2 + \beta y^2)}{3,71\beta^2 x + y}$	$\frac{3\beta}{x^2} \cdot \frac{\gamma + xy}{\alpha x + \beta y^3}$

ЗАДАНИЕ №2:

- 1. Вычислить в СКМ MATHCAD и ЭТ EXCEL значение величины ${\bf u}$ в соответствии с вариантом (раздел A), зависящей от функций f1, f2 и f3, заданных в разделе Б.
- 2. Составить в среде VBA линейную программу на языке BASIC в виде подпрограммы-функции для вычисления заданной величины u. Вычислить в ЭТ EXCEL значение определенной функции, задав значения входным переменным.

Замечание: Для корректного выполнения задания переменные а и b должны принимать значения из промежутка от 0,5 до 1,5.

Раздел А: варианты формул, определяющих величину **u**.
1.
$$u = \arctan \frac{a \cdot (f_1 - 2 \cdot f_3)}{e^2 + \sqrt{|f_2 - f_3^2| + a^2}} + \sin \frac{b \cdot f_1^2 + |7,5 - f_2|}{e^{f_2 - f_3^2} + 2} - \log_2 \frac{\pi}{7}$$

$$2. u = \ln \frac{(e^{f_3 - 4f_1} + 3) \cdot f_2^2 + 1}{(f_1 - f_2)^2 + a \cdot b} - \cos \frac{|3,1 - f_2| + 2,3 \cdot b^2}{e^3 + \sqrt{(f_1 - f_2)^2 + a}} + \log_3 \frac{\pi}{8}$$

$$3. u = \cos \frac{e^4 + f_3^2 \cdot (5 \cdot f_1 - f_2)}{2 + \sqrt{(f_1 + 2 \cdot f_2)^2 + b}} + \operatorname{arctg} \frac{|4,1 \cdot f_1 - f_2| - f_3}{e^{5 \cdot f_1 - f_2} + 2 \cdot a^2} - \log_4 \frac{\pi}{5}$$

$$4. u = \sin \frac{1,7 \cdot (f_3 - f_2) + 8 \cdot f_1}{e^{f_2 - 6 \cdot f_1} + f_3^2} - \inf \frac{e^3 + \sqrt{(a - 3 \cdot f_1^2)^2 + a}}{|a - 3 \cdot f_1^2| + b^2} + \log_3 \frac{12}{\pi}$$

$$5. u = \ln \frac{3 \cdot e^4 + |f_2 - a \cdot f_1|}{a^2 + \sqrt{|f_1^2 - 4 \cdot f_2| + 7,5 \cdot b}} + \operatorname{arctg} \frac{f_1 \cdot (f_2 - b^2 \cdot f_3)}{e^{f_1^2 - 4 \cdot f_2} + 7 \cdot f_3^2} - \log_7 \frac{14}{\pi}$$

Раздел Б: варианты функций f1, f2, f3,

Раздел Б: варианты функций f_1 , f_2 , f_3 .					
№ вар.	f ₁ (x)	$f_2(x)$	f ₃ (x)		
1	$3\sin\frac{x}{2x^2+1}$	$\sqrt[4]{3 + \ln^2(1 + x^4)}$	$0.5 \text{tg} \frac{2\pi}{7} + e^{1-x^2}$		
2	$\sqrt[3]{\frac{x^2+e^{3-x}}{2}}$	$3\sin^2(5x+2,43)$	$\frac{1}{2x^2+5}-tg\frac{\pi}{5}$		
3	$2\ln\frac{x^2+2}{5}$	$tg\frac{\pi}{7}-\sqrt[3]{3+4x^2}$	$3 - \sin^3(5 x + 2)$		
4	$x^2 + \ln \frac{1}{3x^2 + 2}$	$3 \operatorname{tg} \frac{2\pi}{5} - \cos^2(2 x)$	$0.3 \times + \sqrt[3]{\frac{2 + x^2}{3}}$		
5	$tg\frac{2\pi}{5} - 5e^{1-2x}$	$\frac{\sqrt[5]{(2+\cos x)^3}}{3+x^2}$	$\sin^3\frac{2x-3}{7}$		
6	$3-2\cos^2\frac{x+7}{3}$	$tg\frac{4\pi}{5} + \sqrt[3]{2e^{2+x}}$	$\ln \frac{3}{2x^2+1}$		
7	$2\cos\frac{1}{\sqrt[3]{3x^2+5}}$	$x^2 + 2 tg \frac{\pi}{7}$	$3\ln^2(1+3x^2)$		
8	$4 tg \frac{3\pi}{8} + \cos^3 \frac{3x}{5}$	$ \ln \frac{5}{2x^2 + 3} $	$2\sqrt[5]{(5,2x^4+1)^2}$		
9	$5\sqrt[4]{(x^2+4)^3}$	$0,3\cos^3\frac{x}{x^2+1}$	$7 \operatorname{tg} \frac{\pi}{8} - 3 \sqrt{x^2 + 1}$		
10	$3 \operatorname{tg} \frac{2\pi}{7} - 2 \operatorname{e}^{3-x}$	$0.7 + \sin^4 \frac{x}{2}$	$\ln\left(3+\sqrt[3]{x^2+1}\right)$		
11	$4-\cos^2\frac{3x-7}{2}$	$tg \frac{4\pi}{7} - 3 ln(2 + x^2)$	$\sqrt[3]{7 \times + e^{1+x}}$		
12	$3\ln\frac{2}{x^2+3}$	$tg\frac{3\pi}{5}-\cos^2\frac{x-1}{3}$	$\sqrt[3]{x^2 + e^{x+1}}$		

№ вар.	f ₁ (x)	$f_2(x)$	<i>f</i> ₃ (x)
13	$x-\cos\frac{7x-1}{2+x^2}$	$2e^{1-4x} + \sin^3 \frac{x}{2}$	$tg\frac{2\pi}{7} + \sqrt[5]{x^2 - 7x}$
14	$3\cos\frac{1}{5x^2+3}$	$5 + \sqrt[4]{2 \ln^3 (x^2 + 1)}$	$3 \text{ tg} \frac{2\pi}{5} - e^{1+2x}$
15	$\frac{\sin^2 x - 1}{2} - tg \frac{3\pi}{7}$	$2-\ln^2\frac{2}{3x^2+1}$	$\sqrt[3]{e^{1-x^2}+2}$
16	$tg\frac{4\pi}{7}-3\sin^2\frac{x}{2}$	$2\sqrt[7]{(4x^2+1)^2}$	$0.3 \ln \frac{1}{5x^2 + 2}$
17	$\sqrt[5]{9 \times -2 e^{6-x}}$	$\ln \frac{1 + 2\cos^2 x}{5}$	$tg\frac{3\pi}{8}-\sin(1+3x^2)$
18	$\cos^3\frac{4x-7}{3}$	$5-3\ln\frac{2}{3x^2+2}$	$3\sqrt[4]{7} x^2 + tg \frac{3\pi}{5}$
19	$\frac{2x}{3+1.7\sin^2 x}$	$tg \frac{3\pi}{7} - 2 ln \frac{2}{x^2 + 2}$	$x\sqrt[3]{(3x^2+1)^2}$
20	$3 \ln (2 + 3 x^2)$	$\sqrt[4]{3 x^2 + 1} - tg \frac{2\pi}{5}$	$\cos^4\frac{x-5}{3x^2+1}$

ЗАДАНИЕ №3:

- 1. Вычислить в СКМ МАТНСАD и ЭТ EXCEL значение функции **у(x)** в соответствии с вариантом (раздел A), зависящей от функций, заданных в разделе Б.
- 2. Составить в среде VBA разветвляющуюся программу на языке Basic в виде подпрограммы-функции для вычисления функции у(x). Вычислить в ЭТ Excel значение определенной функции, задав значение переменной x.

Замечание: Для корректного выполнения задания переменная α должна принимать положительные значения.

Раздел А: варианты опорных формул для функции у(х).

1.
$$y = \begin{cases} \frac{\sqrt[3]{z_1^2 + \alpha} - f_1 \cdot z_2}{4 + \ln(1 + f_2^2)} &, \text{ если } x < \frac{\sqrt{\alpha} - 5\pi}{3}, \\ |z_1 - f_2| + \sqrt{3 + \arctan^2(z_2)} &, \text{ если } x \ge \frac{\sqrt{\alpha} - 5\pi}{3}; \end{cases}$$

2. $y = \begin{cases} \frac{\arctan(\alpha + f_1 \cdot z_2)}{f_2^2 + |f_1 - \alpha \cdot z_1|} &, \text{ если } x \le \frac{2\pi - \lg \alpha}{9}, \\ \sin(z_1 + f_1^2) - \alpha \cos^2(f_1) &, \text{ если } x > \frac{2\pi - \lg \alpha}{9}; \end{cases}$

3. $y = \begin{cases} \sqrt{f_2^2 + 1} - \alpha \cdot \arctan(f_1 + z_2) &, \text{ если } x < \frac{3\pi - \sqrt[3]{\alpha}}{4}, \\ \frac{\sin(f_2) - z_1^2}{1 + e^{z_2}} - \sqrt{\alpha + f_1^2} &, \text{ если } x \ge \frac{3\pi - \sqrt[3]{\alpha}}{4}; \end{cases}$

$$4. \quad y = \begin{cases} \sqrt{\alpha + 4z_2^2} - \arctan(f_1 - f_2) &, & \text{если} \quad x \leq \frac{7\pi + \ln \alpha}{5}, \\ \frac{z_2 - \sin^2(f_2 + 3 \cdot z_1)}{1 + f_1^2 \cdot |\alpha - f_2|} &, & \text{если} \quad x > \frac{7\pi + \ln \alpha}{5}; \end{cases}$$

$$5. \quad y = \begin{cases} \frac{\arctan(f_2) - \sqrt{f_1^2 + \alpha}}{|f_1 \cdot z_1 - f_2| + 2} &, & \text{если} \quad x < \frac{2\pi - 5}{e^{\alpha}}, \\ \ln(\cos^2(f_1) + 4 \cdot \alpha) - z_2^2 &, & \text{если} \quad x \geq \frac{2\pi - 5}{e^{\alpha}}. \end{cases}$$

Раздел Б: варианты функций $f_1(x)$, $f_2(x)$, $z_1(x)$, $z_2(x)$.

№ вар.	$f_1(x)$	$f_2(x)$	$z_1(x)$	$z_2(x)$
1	x x - 1	0,2 x	sinx	$cos(x^2 + 2x)$
2	cos(2x - 1)	sin ² x	$0.1\sqrt{2+x^2}$	2x- x ² -9
3	2x-1 +x	5 cos(x2)	x2 ^{-x}	2,3 x + 1
4	x ⁴ - 3	2x+1	In (3+ x - 1)	cos² x
5	In (1+ x)	5 cos x	xe ^{-x}	$2x + x^2$
6	e ^{2x}	x - 1 +x	$2(x^2-1)$	sinx
7	arctg x	$\cos(3x + 0.1)$	x ³ - 2 x	2+3x
8	√ x +1	0,1 x	x ² sin x	1+ x
9	arctg x	3 sin x	x ³ + 2 x	$\sqrt{x^2 + 0.1}$
10	$cos(x^2-1)$	$(x-1)^2-2$	2 x + e ^{2 x}	2 x+1 -x
11	$x-3x^2$	2x + sin ² x	³ √3 x − 2	In(2x-1 +2)
12	$\sqrt{1 + \cos x}$	x - e ^{0,5x}	$-x^2+2x$	– 3 sin x
13	x+2 -x	sin(5x - 1)	$ln(3+x^2)$	1+2x ²
14	x ² - 2x	$3\sin(x^2-1)$	1- arctg ² x	$ln(x^4 + 1)$
15	arctg(x ² - 2x)	$\sin(x+2x^3)$	4,2 ³ √x + 1	$x^2 - 3.6$
16	-2x ²	x-3 +2x	$ln(x^2 + 3)$	cos(1-x)
17	∛x−2	1+ sin x	4 cos ² x	-0,7 x + 2
18	$x^2 - e^{3+x}$	4 – x ²	ln(2+ x - 1)	6,3 sin ² x
19	sin ² (x - 1)	$2 x^2 + 3x $	x + e ^{-3+x}	2 x ³ - 5 x
20	$ln(2x^2 + 3)$	-2x ³	$\sqrt{1 + \cos x}$	e ^{-2 x}

ЗАДАНИЕ №4:

- 1. В ЭТ EXCEL и СКМ МАТНСАD построить таблицу значений и график функции f(x) в соответствии с заданным вариантом (раздел Б) на заданном отрезке [a,b] при заданном числе разбиений n (раздел A).
- 2. В СКМ МАТНСАD на заданном отрезке [a,b] найти

а) все корни функции y = f(x) с помощью функции root();

- б) все локальные экстремумы (максимумы и минимумы) функции y = f(x) с помощью функций maximize() (minimize()).
- 3. В ЭТ EXCEL выполнить задание пункта 2 с помощью надстройки Поиск решения, используя таблицу значений функции y = f(x), построенную при выполнении задания пункта 1.

Раздел А:

	Отрезок [a,b]	Число разбиений п
1.	$[-4\pi/7,3\pi/5]$	n = 30
2.	$[-3\pi/5,\pi/2]$	n = 27
3.	$[-\pi/2,3\pi/5]$	n = 31
4.	$[-2\pi/3,\pi/2]$	n = 29
5.	$[-\pi/2,2\pi/3]$	n = 28

Раздел Б:

№ вар.	f(x)	№ вар.	f(x)
1	$2x^2 + \cos(3x^2 - x + 2)$	11	$x^2 - \sin(2x^2 + x + 6)$
2	$x^2 - \sin(2x^2 - 3x + 4)$	12	$2x^2 + \cos(3x^2 + 2x - 5)$
3	$x^2 - \cos(3x^2 + x + 6)$	13	$2x^2 + \sin(3x^2 + 3x - 2)$
4	$x^2 + \sin(2x^2 + x - 4)$	14	$2x^2 - \cos(3x^2 - 2x - 2)$
5	$2x^2 - \cos(x^2 + 4x - 4)$	15	$x^2 - \sin(2x^2 - 5x + 1)$
6	$2x^2 - \sin(2x^2 + 3x + 3)$	16	$2x^2 + \cos(3x^2 + x - 4)$
7	$3x^2 + \cos(2x^2 - 5x + 3)$	17	$x^2 - \sin(3x^2 + x - 5)$
8	$2x^2 - \sin(x^2 - 5x - 4)$	18	$x^2 - \cos(x^2 + 4x - 2)$
9	$x^2 - \cos(x^2 + 3x - 3)$	19	$3x^2 + \sin(x^2 - 6x + 1)$
10	$x^2 + \sin(3x^2 - 2x + 4)$	20	$3x^2 - \cos(3x^2 + 2x - 5)$

ЗаданиЕ №5:

Дана система линейных алгебраических уравнений (СЛАУ)

$$\begin{cases} a_{11} \cdot x + a_{12} \cdot y + a_{13} \cdot z = b_1 \\ a_{21} \cdot x + a_{22} \cdot y + a_{23} \cdot z = b_2 \\ a_{31} \cdot x + a_{32} \cdot y + a_{13} \cdot z = b_3 \end{cases}$$
 или в матричном виде — A $\cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = b$, где A $= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

В соответствии с вариантом матрица А выбирается из раздела Б, вектор b из раздела А.

- 1. В ЭТ EXCEL решить СЛАУ:
- как матричное уравнение с помощью матричных функций и формул массивов;
 используя надстройку Поиск решений.
 В СКМ МатнСАD решить СЛАУ¹;
- - как матричное уравнение с помощью встроенных возможностей:
 - с помощью специальной функции МАТНСАD; с помощью блока Given ... Find.
- 3. Сравнить результаты, полученные в ЭТ Ехсец и СКМ МАТНСАD.

Раздел А: варианты вектора b.

i docui A. dapadiiiibi demiropa d.								
№ вар.	1	2	3	4	5			
вектор b	$\begin{pmatrix} -3 \\ 2 \\ -5 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -7 \\ 2 \end{pmatrix}$	4 -5	$\begin{bmatrix} 6 \\ -3 \\ 4 \end{bmatrix}$	7 -1 -8			

Раздел Б: варианты матрицы А.

N/0 -00			арианты матриц		
№ вар.	матрица А	№ вар.	матрица <i>А</i>	№ вар.	матрица А
1	$\begin{pmatrix} 1 & -2 & 3 \\ 2 & 3 & -4 \\ 3 & -2 & -5 \end{pmatrix}$	8	$ \begin{pmatrix} 7 & 5 & 2 \\ 1 & -1 & -1 \\ 1 & 1 & 2 \end{pmatrix} $	15	$ \begin{bmatrix} 3 & 4 & 1 \\ -2 & 1 & 3 \\ 2 & 0 & 1 \end{bmatrix} $
2	$ \begin{pmatrix} 1 & 2 & 1 \\ 3 & -5 & 2 \\ 2 & 7 & -1 \end{pmatrix} $	9	$ \begin{pmatrix} 2 & 1 & 4 \\ 2 & -1 & -3 \\ 3 & 4 & -5 \end{pmatrix} $	16	$ \begin{pmatrix} 3 & 4 & 2 \\ 2 & -1 & -3 \\ 1 & 5 & 1 \end{pmatrix} $
3	$ \begin{pmatrix} 2 & -1 & 3 \\ 1 & 3 & -2 \\ 0 & 2 & -1 \end{pmatrix} $	10	$ \begin{pmatrix} 2 & -1 & -3 \\ 3 & 4 & -5 \\ 0 & 2 & 7 \end{pmatrix} $	17	$ \begin{pmatrix} 4 & -3 & 2 \\ 2 & 5 & -3 \\ 5 & 6 & -2 \end{pmatrix} $
4	$ \begin{pmatrix} 1 & 1 & 2 \\ 2 & -1 & 2 \\ 4 & 1 & 4 \end{pmatrix} $	11	$ \begin{bmatrix} 2 & -1 & -1 \\ 3 & 4 & -2 \\ 3 & -2 & 4 \end{bmatrix} $	18	$ \begin{pmatrix} 1 & 5 & 1 \\ 2 & -1 & -1 \\ 1 & -2 & -1 \end{pmatrix} $
5	$ \begin{pmatrix} 3 & -1 & 0 \\ -2 & 1 & 1 \\ 2 & -1 & 4 \end{pmatrix} $	12	$ \begin{pmatrix} 1 & 5 & -1 \\ 2 & -1 & -1 \\ 3 & -2 & 4 \end{pmatrix} $	19	$ \begin{bmatrix} 5 & 8 & -1 \\ 1 & 2 & 3 \\ 2 & -3 & 2 \end{bmatrix} $
6	$ \begin{pmatrix} 1 & 2 & 4 \\ 5 & 1 & 2 \\ 3 & -1 & 1 \end{pmatrix} $	13	$\begin{pmatrix} 1 & 3 & -1 \\ 2 & 5 & -5 \\ 1 & 1 & 1 \end{pmatrix}$	20	$ \begin{pmatrix} 3 & -1 & 1 \\ 2 & -5 & -3 \\ 1 & 1 & -1 \end{pmatrix} $
7	$ \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 1 \\ 2 & 1 & 3 \end{pmatrix} $	14	$ \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 3 & -1 & 1 \end{pmatrix} $		

¹ Выполнить в MathCAD проверку решения СЛАУ для каждого из подпунктов.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ №1

ЗаданиЕ №1:

Пусть требуется выполнить задание:
1. Вычислить в СКМ МАТНСАD и ЭТ EXCEL значение величины **s**

$$s = \sqrt{3} \cdot p^2 (q + \sqrt[3]{2.75} \cdot r) - \sqrt[5]{r^2 + 4 \cdot q^2}$$

$$s=\sqrt{3}\cdot p^2(q+\sqrt[3]{2,75}\cdot r)-\sqrt[5]{r^2+4\cdot q^2}$$
 , зависящей от величин p, q и r
$$p=\frac{\alpha}{y}\cdot\frac{y^2x^2-\alpha}{\gamma^2+\alpha\beta},\;q=\frac{2,7y-x\beta}{\alpha\gamma^2+x},\;r=\alpha x^2+\frac{7,21y}{\beta^2+3\gamma}.$$

2. Составить в среде VBA линейную программу на языке BASIC в виде подпрограммы-функции для вычисления заданной величины в. Вычислить в ЭТ Ехсец значение определенной функции, задав значения входным переменным.

Пример выполнения задания:

При выполнении данного задания необходимо определить, какие из переменных будут независимыми (входными параметрами), а какие зависимыми (вычисляемыми параметрами).

Для поставленной задачи: входные параметры $-\alpha$, β , γ , κ и γ , вычисляемые параметры – р, q и г.

1 (а)Выполнение задания в СКМ МАТНСАD

Задание 1

Определение значений входных параметров

$$\alpha := 2$$
 $\beta := 3$ $\gamma := 1$ $x := 1.5$ $y := 0.8$

Задание выражений для вычисляемых параметров и вывод результатов расчета

$$p := \frac{\alpha}{y} \cdot \frac{y^2 \cdot x^2 - \alpha}{\gamma^2 + \alpha \cdot \beta}$$

$$p = -0.2$$

$$q := \frac{2.7 \cdot y - x \cdot \beta}{\alpha \cdot \gamma^2 + x}$$

$$q = -0.66857143$$

$$r := \alpha \cdot x^2 + \frac{7.21y}{\beta^2 + 3\gamma}$$

$$r = 4.98066667$$

$$s := \sqrt{3} p^2 \cdot \left[q + \sqrt[3]{2 \cdot 75} r \right] - \sqrt[5]{r^2 + 4q^2}$$
 $s = -1.4902164$

- 1 (б)Выполнение задания в ЭТ Excel
 - 1) Создаем таблицу для расчета и вводим значения в соответствующие ячейки для входных параметров:

1 Задание 1		
2 Входные пара	метры	Вычисляемые параметр
3 alfa=	2	p=
# beta=	3	q=
5 gamma=	1	r=
8 x=	1,5	
7 v=	0.8	S=

2) Заполняем соответствующие ячейки формулами

в ячейку E3: = $B3/B7*(B7^2*B6^2-B3)/(B5^2+B3*B4)$ в ячейку E4: = $(2,7*B7-B6*B4)/(B3*B5^2+B6)$ в ячейку Е5: = В3*В6^2+7,21*В7/(В4^2+3*В5) в ячейку E7: = $3^{(1/2)}$ *E3 2 *(E4+2,75 $^{(1/3)}$ *E5)-(E5 2 +4*E4 2) $^{(1/5)}$

В результате получим:

	Задание 1			
2	Входные пара	метры	Вычисл	яемые параметры
3	alfa=	2	p=	-0.2
4	beta=	3	q=	-0,668571429
5	gamma=	1	r=	4,980666667
6	x=	1.5		
7	y=	0,8	s=	-1,4902164

2 Составление в среде VBA программы на языке BASIC и использование ее при расчетах в ЭТ ЕХСЕL

Поскольку расчет значений идет последовательный и результатом вычислений является единственное значение, то данная программа относится к процедурам-функциям с линейной структурой. Для разработки программы следует:

- выбрать имя процедуры-функции;
- выбрать обозначения всех математических величин задачи на языке VBA;
- составить текст функции в соответствии с блок-схемой линейного вычислительного процесса и правилами оформления процедур-функций.
- 1) Назовем процедуру-функцию для вычисления заданной величины Vel S (назвать функцию просто S нельзя, т.к. в EXCEL есть столбец с аналогичным именем).
- 2) Введем обозначения переменных:

для входных параметров $\alpha \rightarrow a$, $\beta \rightarrow b$, $\gamma \rightarrow g$, $x \rightarrow x$, $y \rightarrow y$, для вспомогательных величин $p \rightarrow p$, $q \rightarrow q$, $r \rightarrow r$, s1 u s2для искомой величины $s \rightarrow s$

Записи типа $\alpha \rightarrow a$, $r \rightarrow r$ означают, что переменным α и r будут присвоены имена а и г соответственно.

3) Функция для вычисления величины в может иметь вид:

```
РИКЦИЯ ДЛЯ ВЫЧИСЛЕНИЯ ВЕЛИЧИНЫ В МОЛЕТ VIMI

Function Vel_S(a, b, g, x, y)

p = a/y * (y ^2 * x ^2 - a) / (g ^2 + a * b)

q = (2.7 * y - x * b) / (a * g ^2 + x)

r = a * x ^2 + 7.21 * y / (b ^2 + 3 * g)

s1 = 3 ^ (1/2) * p ^2 * (q + 2.75 ^ (1/3) * r)

s2 = (r ^2 + 4 * q ^2) ^ (1/5)
          s = s1 - s2
           Vel_S = s
  End Function
```

Для расчета величины s с использованием определенной процедуры-функции, необходимо из активной ячейки (например, В9) вызвать Вставка -- Функция...:

в разделе категория выбрать Определенные пользователем, а затем указать функцию Vel_S

в поле для входных параметров установить ссылки на соответст-<u>2 шаг</u> вующие ячейки

Таким образом, формула примет вид:

В результате получим:

	A	В	C
1	Задание	1	
2	Входные	параметры	
3	alfa=	2	
4	beta=	3	
5	gamma-	1	
6	x=	1.5	
7	y=	0.8	
8	Вычислен	ние с использов	анием функции
9	S=	-1 4902164	

ЗАДАНИЕ №2:

Пусть требуется выполнить задание:

1. Вычислить в СКМ МАТНСАD и ЭТ EXCEL значение величины и

$$u = \arctan \frac{\sqrt{f1^2 + 1} + b}{3 \cdot a + |f2 - e^4|} - \ln \frac{f1^2 + 1}{b + 3 \cdot f3^2} + \log_{1/2} \frac{3 \cdot \pi + 1}{8},$$

зависящей от функций f1, f2 и f3

$$f1(x) = tg \frac{3\pi}{8} + x$$
, $f2(x) = e^{x+1}$, $f3(x) = cos^3 \frac{x}{2}$.

2. Составить в среде VBA линейную программу на языке Basic в виде подпрограммы-функции для вычисления заданной величины в. Вычислить в ЭТ EXCEL значение определенной функции, задав значения входным переменным.

Пример выполнения задания:

При выполнении данного задания необходимо определить, какие из переменных будут независимыми (входными параметрами), а какие зависимыми (вычисляемыми параметрами).

Для поставленной задачи: входные параметры – х, а и b; вычисляемые параметры – u, значения функций f1(x), f2(x) и f3(x).

1 (а)Выполнение задания в СКМ МАТНСАD

Задание 2

Определение значений входных параметров а := 2 b := 1.7Задание функций, определение значений функций при х = 0,5 и вывод результатов расчета

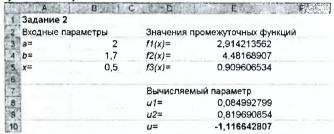
fl(x) :=
$$\tan\left(\frac{x}{8} \cdot \pi\right) + x$$
 zfl := fl(0.5) zfl = 2.91421356
f2(x) := e^{x+1} zfl := f2(0.5) zf2 = 4.48168907
f3(x) := $\cos\left(\frac{x}{2}\right)^3$ zf3 := f3(0.5) zf3 = 0.90960653

Задание выражений для вычисляемого параметра и вывод результата

$$u := a tan \left(\frac{\sqrt{zf1^2 + 1} + b}{3a + \left| zf2 - e^4 \right|} \right) - ln \left(\frac{zf1^2 + 1}{b + 3 \cdot zf3^2} \right) + log \left(\frac{3 \cdot \pi + 1}{8}, \frac{1}{2} \right)$$

$$u := -1.11664231$$

- 1 (б)Выполнение задания в ЭТ EXCEL
 - 1) Создаем таблицу для расчета и вводим значения в соответствующие ячейки для входных параметров.
 - 2) Заполняем соответствующие ячейки формулами


```
в ячейку E3: = TAN(3*\Pi U()/8)+B5
в ячейку E4: = EXP(B5+1)
в ячейку E5: = COS(B5/2)^3
```

в ячейку E8: = ATAN((KOPEHb(E3^2+1)+B4)/(3*B3+ABS(E4-EXP(4))))

в ячейку E9: = $LN((E3^2+1)/(B4+3*E5^2))$

в ячейку E10: = E8-E9+LOG($(3*\Pi M)+1)/8;1/2$)

В результате получим:

2 Составление в среде VBA программы на языке BASIC и использование ее при расчетах в ЭТ Ехсел

Так как расчет значений идет последовательно и результатом вычислений является единственное значение, то данная программа относится к процедурам-функциям с линейной структурой.

- 1) Назовем процедуру-функцию для вычисления заданной величины Vel_U.
- 2) Введем обозначения переменных:

```
для входных параметров
                                                     a \rightarrow a, b \rightarrow b, x \rightarrow x
для значений функций
                                                     f1(x) \rightarrow f1, f2(x) \rightarrow f2, f3(x) \rightarrow f3
для вспомогательных величин
                                                     Pi, z, u1, u2 и u3
для искомой величины
                                                     u \rightarrow u
```

Число π вычислим по формуле $\pi=4\cdot arctg(1)$, поскольку $tg\frac{\pi}{4}=1$.

3) Функция для вычисления величины и может иметь вид:

```
Function Vel_U(a, b, x)
Pi = 4 * Atn(1)
f1 = Tan(3 * Pi / 8) + x
    f2 = Exp(x + 1)
    f3 = Cos(x/2)^{'} 3
    z = f1 ^2 + 1
    u1 = Atn((Sqr(z) + b) / (3 * a + Abs(f2 - Exp(4))))
u2 = Log(z / (b + 3 * f3 ^ 2))
u3 = Log((3 * Pi + 1) / 8) / Log(1 / 2)
    u = u1 - u2 + u3
    Vel U = u
End Function
```

Для расчета величины и с использованием определенной процедуры-функции введем формулу:

```
в ячейке В7
              = Vel U(B3;B4;B5)
```

В результате получим:

	A	B
1	Задание 2	
2	Входные па	раметры
3	a=	2
4	b=	1,7
5	x=	0.5
6	Вычислени	е с использованием функции
7	u=	-1.11664281

ЗАДАНИЕ №3:

1. Вычислить в СКМ MATHCAD и ЭТ Excel значение функции у(x)

$$y = \begin{cases} \frac{f_1^3(x)}{f_2^2(x) + z_1(x)z_2(x)}, & \text{если } x < \frac{5\pi + \alpha^2}{11}; \\ \frac{\sin f_2(x)}{\sqrt{1 + z_1^2(x)z_2^2(x)}}, & \text{если } x \ge \frac{5\pi + \alpha^2}{11}; \end{cases}$$

зависящей от функций

$$f_1(x) = x^2$$
, $f_2(x) = |x|$, $z_1(x) = \arctan(2x)$, $z_2(x) = x - 1$.

2. Составить в среде VBA линейную программу на языке Basic в виде подпрограммы-функции для вычисления заданной величины **s**. Вычислить в ЭT Excel значение определенной функции, задав значения входным переменным.

Пример выполнения задания:

При выполнении задания можно подставить в опорную функцию у(x) выражения для функций $f_1(x)$, $f_2(x)$, $z_2(x)$, упростив, по возможности, получившуюся формулу. Для рассматриваемого примера получаем

$$y = \begin{cases} \frac{x^6}{x^2 + (x - 1)\operatorname{arctg}(2x)}, & \text{если } x < \frac{5\pi + \alpha^2}{11}; \\ \frac{\sin|x|}{\sqrt{1 + (x - 1)^2 \operatorname{arctg}^2(2x)}}, & \text{если } x \ge \frac{5\pi + \alpha^2}{11}. \end{cases}$$

Определим тип переменных для преобразованной задачи: входные параметры – x и α ; вычисляемый параметр – y.

1 (а)Выполнение задания в СКМ МАТНСАD

Задание 3

Определение значений входных параметров

Задание вспомогательных функций и вывод значений вспомогательных функций при x = -1,2

$$y1(x) := \frac{x^6}{x^2 + (x - 1) \cdot atan(2 \cdot x)}$$
 $y1(-1.2) = 0.741452$

$$y2(x) := \frac{\sin^{\frac{1}{2}}|x|^{\frac{1}{2}}}{\sqrt{1 + (x - 1)^{2} \cdot atan(2 \cdot x)^{2}}}$$
 $y2(-1.2) = 0.33602187$

Проверка условия (для контроля) при х= -1.2 результирующее значение 1 означает истина (условие верно). результирующее значение 0 - ложь (условие не верно)

$$-1.2<\frac{5\cdot\pi+\alpha^2}{11}=1$$

Определение функции у(x) с помощью встроенной логической функции if() и вывод результата расчета
$$y(x) := if\left(x < \frac{5 \cdot \pi + \alpha^2}{11} , y1\left(x\right), y2\left(x\right)\right) \quad y\left(-1.2\right) = 0.741452$$

Демонстрация работы встроенной логической функции if():

- 1 (б)Выполнение задания в ЭТ Ехсец
 - 1) Создаем таблицу для расчета и вводим значения в соответствующие ячейки для входных параметров.
 - 2) Заполняем соответствующие ячейки формулами

в ячейку E3: = (B4-1)*ATAN(2*B4)

в ячейку E4: = $B4^6/(B4^2+E3)$

в ячейку E5: = SIN(ABS(B4))/КОРЕНЬ(1+E3^2) в ячейку F6: = B4<(5*ПИ()+B3^2)/11

в ячейку E9: = $ECЛИ(B4<(5*ПИ()+B3^2)/11;E4;E5)$

Замечание: для вычисления значений выражений, которые зависят от некоторого условия, используется встроенная функция ЕСЛИ() из категории логические.

Синтаксис функции

ЕСЛИ(логическое_выражение; значение_1; значение_2)

Если значение логического_выражения есть истина, то функция возвращает значение_1, в противном случае (значение логического_выражения ложь) функция возвращает значение_2.

В результате получим:

Входные па	раметры	Значения промежуто	чных функций	
alfa=	2.4	(x-1)*arctg(2x)=	2.587211456	
ቪ x=	-1.2	y1(x)=	0,741452003	
rå		y2(x)=	0,336021868	
Ž		Контрольная провери	ка условия: ИСТ	ТИН
		Значен е искомой 🖨		
k#!		v(x)=	0 741452003	

2 Составление в среде VBA программы на языке BASIC и использование ее при расчетах в ЭТ EXCEL

Поскольку расчет значения функции зависит от условия и результатом вычислений является единственное значение, то данная программа относится к процедурам-функциям с разветвляющей структурой.

Для программирования такой структуры необходимо использовать оператор If / Then / Else.

Синтаксис оператора:

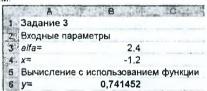
If условие Then операторы_1 Else операторы_2 End If

Если условие выполняется, то управление переходит на группу операторов_1, в противном случае (условие не выполнятся) управление переходит на группу операторов_2. После выполнения операторов работа оператора if заканчивается.

1) Назовем процедуру-функцию для вычисления заданной функции Fun_Y.

2) Введем обозначения переменных:

```
для входных параметров x \to x , \alpha \to a для вспомогательной величины Pi , z для искомого значения функции y(x) \to y
```


3) Функция для вычисления значения функции у(х) может иметь вид:

```
Function Fun_Y(x, a)
Pi = 4 * Atn(1)
z = (x - 1) * Atn(2 * x)
If x < (5 * Pi + a ^ 2) / 11 Then
y = x ^ 6 / (x ^ 2 + z)
Else
y = Sin(Abs(x)) / Sqr(1 + z ^ 2)
End If
Fun_y = y
End Function
```

Для расчета значения функции $\mathbf{y}(\mathbf{x})$ с использованием определенной процедуры-функции введем формулу:

в ячейке B6 = Fun_Y(B4;B3)

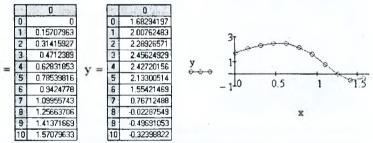
В результате получим:

ЗАДАНИЕ №4:

Пусть требуется выполнить задание:

1. В СКМ МАТНСАD и ЭТ ЕХСЕL построить таблицу значений функции $f(x) = x + 2 \cdot \sin(x^2 + x + 1)$ и её график на отрезке $[0, \pi/2]$ при числе разбиений n = 15.

- 2. В СКМ МАТНСАD на отрезке $[0,\pi/2]$ найти
 - а) все корни функции y = f(x) с помощью функции root();
 - б) все локальные экстремумы (максимумы и минимумы) функции y = f(x) с помощью функций Maximize() (Minimize()).
- 3. В ЭТ EXCEL выполнить задание пункта 2 с помощью надстройки Π оиск решения, используя таблицу значений функции y = f(x), построенную при выполнении задания пункта 1.


Пример выполнения задания:

а) Выполнение задания в СКМ МАТНСАD.

Задание 4

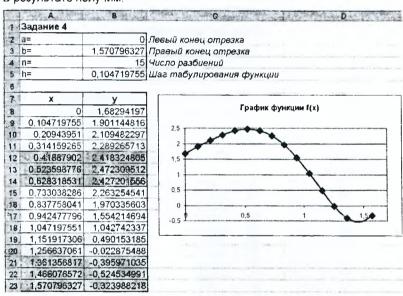
$f(x) := x + 2 \sin^{1} x^{2} + x + 1^{1}$	определение функции	
$a := 0$ $b := \frac{\pi}{2}$	определение левого и правого концов отрезка	
n := 10	количество разбиений	
$h := \frac{b-a}{n}$ $h = 0.15707963$	шаг табулирования функции	
i := 0 n	определение ранжированной переменной	
$x_i := a + i \cdot h$	определение узлов табулирования	
$\mathbf{x}_i \coloneqq \mathbf{f}(\mathbf{x}_i)$	определение значений функции в узлах табули- рования	

Таблица значений функции и график функции по значениям в узлах табулирования

- б) Выполнение задания в ЭТ Excel.
 - 1) Задаем отрезок, число разбиений и вычисляем шаг табулирования:

A Car	8	C
1 Задание	4	
2 a=	0	Левый конец отрезка
3. b=	=ПИ()/2	Правый конец отрезка
.4 n=	10	Число разбиений
5 h=	=(B3-B2)/B4	Шаг табулирования функции

2) Создаем таблицу значений: задаем заголовки столбцов, вводим формулы в ячейки А8, А9, В8


A.O. A.O. B.	
7 ₃ ×	у
8 =B2	=A8+2*SIN(A8^2+A8+1)
9 =A8+\$B\$5	=A9+2*SIN(A9^2+A9+1)

и тиражируем формулы на необходимый диапазон

$$A9 \rightarrow A10:A18$$
, $B8 \rightarrow B9:B18$

- 3) Строим график функции с использованием мастера диаграмм
 - тип диаграммы точечная, вид со значениями, соединенными сглаживающими линиями;
 - на вкладке *Диапазон данных* задаем диапазон, по которому будет строиться график A7:B18;
 - на вкладке Заголовки задаем названия диаграммы (График функции f(x)), на вкладке Легенда отключаем флажок;
 - помещаем диаграмму на текущем листе.

В результате получим:

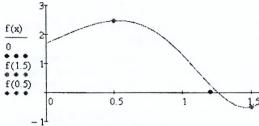
По таблице значений проведем анализ функции f(x):

- на отрезке [1,15; 1,26] содержится *нуль функции*, поскольку на этом отрезке функция меняет знак, т.е. f(1,15) > 0, a f(1,26) < 0;
- на отрезке [0,43; 0,63] содержится покальный максимум, поскольку справедливы неравенства f(0,52) > f(0,43) и f(0,52) > f(0,63);
- на отрезке [1,36; 1,57] содержится локальный минимум, поскольку истинны неравенства f(1,47) < f(1,36) и f(1,47) < f(1,57).
- 2. Выполнение задания в СКМ MATHCAD.

Задание 4

1) Определение

$$f(x) := x + 2\sin(x^2 + x + 1)$$
 - функция $a := 0$ $b := \frac{\pi}{2}$ - границы отрезка


2) Построение графика функции у(x) на отрезке [a, b] и определение начальных точек:

Примечание:

начальным приближениям для поиска корней и

локальных экстремумов

Точки на графике соответсвуют

x, 1.2, 1.5, 0.5

3) Определение нулей функции y = f(x):

1 способ:

$$xk1 := 1.2$$
 $f(xk1) = 0.243946$ - начальное значение нуля $xk1 := root(f(xk1), xk1)$ - уточнение значения нуля $xk1 = 1.251477$ $f(xk1) = 3.513985 \times 10^{-10}$ вывод результата $2 \ conoco6$: $xk2 := root(f(xk2), xk2, 1.1, 1.3)$ - вычисления значения корня

$$xk2 = 1.251477 \quad f(xk2) = 0$$
 на отрезке - вывод результата

4) Определение локальных экстремумов функции y = f(x):

локальный максимум

! очевидно, что значение хтіп надо локализовать

Примечание:

Для того, чтобы локализовать экстремум на отрезке, необходимо использовать блок

$$\min:=1.4$$
 $f(xmin)=-0.477102$ - начальное значение корня

Given

 $1 \le xmin \le 1.5$
 $xmin:=Minimize(f,xmin)$
 $xmin=1.458154$ $f(xmin)=-0.525479$ - вывод результата

3. Выполнение задания в ЭТ Excel¹.

 $^{^{1}}$ При поиске корней и локальных экстремумов рекомендуется каждый из пунктов выполнять на отдельном рабочем листе.

Воспользуемся таблицей значения функции y = f(x), построенной при выполнении процедуры **Tab_fun** в пункте 1. В таблице выделены отрезки, содержащие нуль и локальные экстремумы функции y = f(x).

а) Выберем отрезок, содержащий нуль функции y = f(x) с помощью операций копирования и специальной вставки:

Правка → Специальная вставка → ⊙ значения

В соседние ячейки введем начальные значения (в ячейку A8 – значение, принадлежащее выбранному отрезку, в ячейку B8 – формулу для расчета функции y=f(x)):

17 HET

	A	8			
1	1 Отрезок, содержащий корень				
2	X	У			
3	1,151917306	0,490153185			
4	1,256637061	-0,022875488			
6	Уточнение знач	івния:			
7	xk	yk			
8	1,25	0,006606142			

7 (A	8	C
1	Отрезок, содер:	жащий корень	
2	X	У	
3	1,151917306	0,490153185	
4	1,256637061	-0.022875488	
6	Уточнение знач	ения:	
7	xk	yk	
8	1.251	=A8+2*SIN(A8^2	+A8+1)

Уточним значение нуля функции, используя надстройку *Поиск решения*

(Сервис → Поиск решения)

параметры диалогового окна: установить целевую ячейку В8 равной Означению Оизменяя ячейки А8

100	A	A Particular			
.1	 Отрезок, содержащий корень 				
2	Х	y			
3	1,151917306	0.490153185			
4	1,256637061	-0,022875488			
6	Уточнение зна	чения:			
7	xk	yk			
8	1,251476619	-1,18833E-08			

Сформируем <u>отчет по результатам:</u>

1 Microsoft Excel 11.0 Отчет по результатам
2 Рабочий лист: [Пример Excel.xis|Корень функции
3 Отчет создан: 31.05.2011 20:36:09

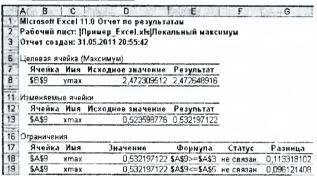
6 Целевая ячейка (Значение)
7 Ячейка Имя Исходное эначение Результат
8 \$8\$ ук 0,006006142 -1,18833E-08

11 Изменяемые ячейки
12 Ячейка Имя Исходное значение Результат
13 \$A\$8 хк 1,25 1,251476619

16 Ограничения

б) Выберем отрезок, содержащий локальный максимум функции y = f(x):

3	A	В
	Отрезок, со	одержещий
1	локальный	максимум
2	X	У
3	0,41887902	2,4183248
4	0,52359878	2,47230951
5	0,62831853	2,42720156
7	Уточнение зн	начения
8	xmax	ymax
9	0.52359878	2,47230951


7	A	B C
- 6	Отрезок, со	одержащий
1	локальный	максимум
2	х	Y
3	0.41887902	2,4183248
4	0.52359878	2,47230951
5	0,62831853	2,42720156
7	Уточнение зн	начения:
8	xmax	ymax
8	0.52359878	=A9+2*SIN(A9^2+A9+1)

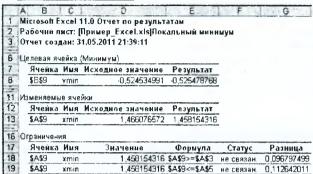
Уточним значение локального максимума, используя надстройку *Поиск решения*.

параметры диалогового окна: установить целевую ячейку В9 равной ⊙ максимальному значению изменяя ячейки А9 ограничения (добавить) А9 <= А5; А9 >= А3;

1	A	В
	Отрезок, со	эдержащий
1	локальный	максимум
2	Х	У
3	0,41887902	2,4183248
4	0,52359878	2,47230951
5	0,62831853	2,42720156
7	Уточнение значения:	
8	xmax	ymax
9	0,53219712	2,47264892

Сформируем отчет по результатам:

Аналогично выполнить расчет локального минимума. Выберем отрезок, содержащий локальный максимум функции y = f(x):


1	А В Отрезок, содержащий покальный минимум			А В С Отрезок, содержащий покапьный минимум			
2	х	٧	2	X	У		
3	1,36135682	-0 39597103	3	1,36135682	-0,39597103		
4	1,46607657	-0,52453499	4	1.46607657	-0,52453499		
5	1,57079633	-0,32398822	5	1,57079633	-0,32398822		
7	Уточнение значения:		7	Уточнение зн	Ruнечън		
8	xmin	ymin	8	xmin	ymin		
9	1,46607657	-0,52453499	9	1,46607657	=A9+2"SIN(A9^2+A9+1		

Уточним значение локального минимума, используя надстройку *Поиск решения*.

параметры диалогового окна:
установить целевую ячейку В9
равной ⊙ минимальному значению
изменяя ячейки A9
ограничения (добавить) А9 <= А5;
А9 >= А3;

	Α,	В			
33	Отрезок, содержащий				
1	локальный минимум				
2	X	У			
3	1,36135682	-0,39597103			
4	1,46607657	-0,52453499			
5	1,57079633	-0.32398822			
7	Уточнение зн	начения			
8	xmin	ymin			
9	1,45815432	-0,52547877			

Сформируем отчет по результатам:

ЗАДАНИЕ №5:

Пусть требуется выполнить задание:

Дана система линейных алгебраических уравнений (СЛАУ)

$$\begin{cases} -x - 2 \cdot y + z = 2 \\ 4 \cdot x + y - z = 3 \\ 5 \cdot x + 3 \cdot y + z = -1 \end{cases}$$

- 1. В ЭТ EXCEL решить СЛАУ:
 - как матричное уравнение с помощью матричных функций и формул массивов;
 - используя надстройку Поиск решений.
- 2. В СКМ МАТНСАD решить СЛАУ:
 - как матричное уравнение с помощью встроенных возможностей;
 - с помощью специальной функции МАТНСАD;
 - с помощью блока Given ... Find.
- 3. Сравнить результаты, полученные в ЭТ EXCEL и CKM MATHCAD. Пример выполнения задания:
- а) Выполнение задания в ЭТ EXCEL.

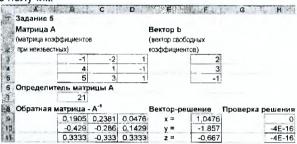
Запишем СЛАУ в виде матричного уравнения

$$A \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = b \cdot \text{ rde } A = \begin{pmatrix} -1 & -2 & 1 \\ 4 & 1 & -1 \\ 5 & 3 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$

Матричный метод решения СЛАУ:

- введем матрицу коэффициентов при неизвестных (A) в диапазон B3:D5 и вектор свободных коэффициентов (b) в диапазон F3:F5;
- вычислим определитель матрицы det A, т.е. введем формулу в ячейку В7: =МОПРЕД(В3:D5)
- вычислим обратную матрицу А⁻¹, т.е. введем формулу массивов в диапазон ячеек B9:D11: {=MO5P(B3:D5)}
- найдем вектор-решение

в диалазон ячеек F9:F11:


{=MУМНОЖ(B9:D11,F3:F5)}

• выполним проверку (вычисление невязки)

в диапазон ячеек H9:H11: {=MУМНОЖ(B3:D5;F9:F11)-F3:F5}

Замечание: Формулы, используемые для выполнения задания, являются формулами массивов (јотмечены фигурными скобками). Поэтому их ввод осуществляется комбинацией клавиш CTRL + SHIFT + ENTER.

В результате получим

При решении СЛАУ с помощью надстройки Поиск решения

(а) введем исходные данные и расчетную формулу

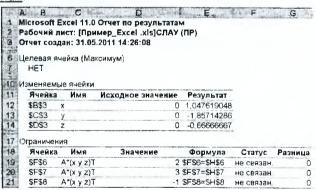
в ячейку F5: = СУММПРОИЗВ(\$B\$3:\$D\$3;B5:D5)

которую тиражируем на необходимый диапазон F6 → F7:F8;

(б) вызываем надстройку Сервис → Поиск решения и вводим параметры диалогового окна надстройки Поиск решения:

изменяя ячейки

B3:D3


ограничения (добавить)

F5 = H5; F6 = H6; F7 = H7

В результате выполнения будет получено решение СЛАУ, а также автоматически выполняется проверка:

1 3a	дание 5					
2	X	У	Z			
33 €	1.047619	-1,857143	-0.666667			
4		A		A*(x y z)T		b
5	-1	-2	1	2	=	2
us.	4	1.	-1	3	=	3
7.5	5	3:	1	-1	=	-1

При использовании надстройки *Поиск решения* сформируем <u>отчет по результатам</u>:

б) Выполнение задания в СКМ МАТНСАD.

Задание 5

п.1) как матричное уравнение

$$\underline{\mathbf{A}} := \begin{pmatrix} -1 & -2 & 1 \\ 4 & 1 & -1 \\ 5 & 3 & 1 \end{pmatrix} \quad \underline{\mathbf{b}} := \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$

$$|A| = 21$$

$$\mathbf{A}^{-1} = \left(\begin{array}{ccc} 0.1905 & 0.2381 & 0.0476 \\ -0.4286 & -0.2857 & 0.1429 \\ 0.3333 & -0.3333 & 0.3333 \end{array} \right)$$

$$x1 := A^{-1} \cdot b$$

$$x1 := \begin{pmatrix} 1.04761905 \\ -1.85714286 \\ -0.666666667 \end{pmatrix} \qquad x1 \to \begin{pmatrix} \frac{22}{21} \\ \frac{13}{7} \\ \frac{2}{3} \end{pmatrix}$$

$$A \cdot x1 - b = \begin{bmatrix} 0 \\ -1.33226763 \times 10^{-15} \\ 0 \end{bmatrix}$$

- определить матрицу А и вектор b
- вычислить определитель матрицы А
- вычислить обратную матрицу для матрицы А
- вектор-решение СЛАУ
- результат вычислений
- проверка решения (вычисление невязки)

п.2) с помощью специальной функции

$$x2 := lsolve(A,b)$$

$$\mathbf{x2} = \begin{pmatrix} 1.04761905 \\ -1.85714286 \\ -0.66666667 \end{pmatrix}$$

- результат вычислений

п.3) с помощью блока решения

$$\mathbf{x} := 0 \quad \mathbf{y} := 0 \quad \mathbf{z} := 0$$

Given

$$-x - 2y + z = 2$$

$$4x + y - z = 3$$

$$5x + 3y + z = -1$$

$$x3 := Find(x,y,z)$$

- начальное значение переменных
- определение блока Given ... Find

- поиск решения СЛАУ

$$\mathbf{x3} = \begin{pmatrix} 1.04761905 \\ -1.85714286 \\ -0.666666667 \end{pmatrix}$$
 - результат вычислений

!!! Выполнить проверку для каждого пункта

Рекомендация по выполнению распечаток из Excel:

- 1) Оформить колонтитулы ($Bu\partial \to Kолонтитулы$), где указать ФИО, группу и вариант.
- 2) Добавить заголовки строк и столбцов

 Φ айл \rightarrow Параметры страницы \rightarrow Лист \rightarrow \square заголовки строк и столбцов.

Например,

Иванов И.С. (группа В-310)

Раздел А - 0: Раздел Б - 0

	Α	В	C	D	I E	
1	Задание 1					
2	Входные параметры			Вычисляемые параметры		
3	alfa=	2	р	=	-0,2	
4	beta=	3	q	=	-0,668571429	
5	gamma=	1	7=	=	4,980666667	
6	X=	1,5				
7	y=	0,8	s	•	-1,4902164	

ЛИТЕРАТУРА

- 1. Быков, В.Л. Основы информатики: пособие для студентов технических специальностей / В.Л. Быков, Ю.Л. Ашаев. — Брест: БрГТУ, 2006. — 430 с.
 2. Васильев, А. Excel 2007 на примерах. — СПб.: БХВ-Петербург, 2007. — 656 с.
 3. Гарнаев, А.Ю. VBA в подлиннике. — СПб.: БХВ-Петербург, 2005. — 848 с.

- 4. Гельман, В.Я. Решение математических задач средствами Excel. Практикум. -СПб: Питер, 2002. - 240 с.
- 5. Гурский, Д.А. Вычисления в MathCAD 12 / Д.А. Гурский, Е.С. Турбина. СПб.: Питер, 2006. – 544 с.
- 6. Очков, В. MathCAD 14 для студентов, инженеров и конструкторов. СПб.: БХВ-Петербург, 2007. - 368 с.
- 7. Плис, А.Н. MathCAD: Математический практикум для инженеров и экономистов: учеб. пособие / А.Н. Плис, Н.А. Сливина. - 2-е изд. - М.: Финансы и статистика. 2003. - 656 c.
- 8. Половко, А.М. MathCAD для студента / А.М. Половко, И.В. Ганичев. СПб.: БХВ-Петербург, 2006. - 336 с.
- Попов, А.А. Excel: Практическое руководство: учебное пособие для вузов. М.: ДессКом, 2000. - 301 с.
- 10.Рудикова, Л. Microsoft Excel для студента. СПб.: БХВ-Петербург, 2005. 368 с. 11.Салманов, О.Н. Математическая экономика с применением MathCAD и Excel. СПб.: БХВ-Петербург, 2003. - 464 с.
- 12. Слепцова, Л.Д. Программирование на VBA в Microsoft Office 2007. М.: Вильямс, 2007. - 432 c.
- 13. Соколенко, А. Microsoft Office Excel 2007. Просто как дважды два. М.: ЭКСМО, 2007. - 256 c.
- 14. Уокенбах, Дж. Профессиональное программирование на VBAв Excel 2003. М.: Вильямс. Диалектика, 2005. - 800 с.
- 15. Черняк, А.А. Высшая математика на базе MathCAD. Общий курс / А.А. Черняк, Ж.А. Черняк, Ю.А. Доманова. - СПб.: БХВ-Петербург, 2005. - 608 с.

ВОПРОСЫ К ЭКЗАМЕНУ ПО КУРСУ «ИНФОРМАТИКА»

Общие сведения о базовом и прикладном ПО.

- 1. Понятие об информации, представление информации в ЭВМ, измерение информации.
- 2. Общие сведения об аппаратном обеспечении персональных компьютеров.
- 3. Дисковая память, ее основные характеристики.
- 4. Программное обеспечение ПК. Классификация программного обеспечения.
- 5. Операционная система Windows. Назначение и краткая характеристика.
- 6. Файловая система: понятие о файле, имя, расширение имени, атрибуты файла
- 7. Файловая система: каталог (папка), имя каталога, структура каталога.
- 8. Файловая система: понятие маски файлов.
- 9. Основные возможности операционной системы по работе с файлами и папками с помощью окон.
- 10. Работа с файловой системой с помощью Проводника.
- 11. Назначение и основные возможности приложений FAR MANAGER, TOTAL COMMANDER.

Табличный процессор Excel.

- 12. Назначение и основные возможности табличного процессора EXCEL.
- 13. EXCEL: работа с листами книги.
- ЕХСЕL: ввод числовой и текстовой информации. Адресация ячеек. Ввод и редактирование формул.
- 15. EXCEL: форматирование ячеек и листов.
- 16. EXCEL: построение диаграмм.
- 17. EXCEL: использование встроенных функций, мастер функций.
- 18. EXCEL: основные статистические, логические и математические функции, использующиеся при разработке таблиц.
- 19. EXCEL: понятие массива, операции над матрицами и массивами (сложение, вычитание, поэлементное умножение и деление).
- 20. EXCEL: использование матричных функций для отыскания обратной матрицы, умножения матриц, транспонирования и вычисления определителя.
- 21. Матричный метод решения систем линейных алгебраических уравнений (СЛАУ) с постоянными коэффициентами.
- 22. EXCEL: реализация матричного метода решения СЛАУ.
- 23. EXCEL: надстройка Поиск решения и её использование для решения СЛАУ.
- Правила и примеры записи и вычисления математических выражений в компьютерных системах.
- 25. Определяемые и наиболее распространенные встроенные арифметические функции.
- 26. Инструмент Подбор параметра и его использование для решения уравнений.
- 27. Инструмент Поиск решения и его использование для отыскания экстремумов.
- 28. Использование надстройки *Поиск решения* для подбора параметров эмпирической функции методом наименьших квадратов.

Система компьютерной математики (СКМ) МАТНСАD.

- 29. Назначение системы компьютерной математики (СКМ) МАТНСАD.
- Интерфейс СКМ МАТНСАD. Особенности редактирования математических объектов.
- 31. CKM МАТНСАD. Вычисления по формулам.
- 32. СКМ МАТНСАD. Построение графиков функций.
- 33. СКМ МАТНСАD. Работа с векторами и матрицами.
- СКМ МАТНСАD. Решение систем линейных алгебраических. уравнений (матричный способ).
- 35. CKM MATHCAD. Решение СЛАУ с помощью блока GIVEN / FIND.
- 36. Отделение корней функции одной переменной; использование функции *Root*() для уточнения корней.
- 37. Использование блока Given/Minimize/Maximize для уточнения экстремумов.

Система программирования Visual Basic For Application (VBA).

- 38. Основные сведения о VBA.
- 39. Понятие процедуры-функции в VBA. Структура, формальные и фактические параметры, использование процедур-функций.
- 40. Понятие процедуры VBA, ее отличия от процедуры-функции. Структура, формальные и фактические параметры, использование процедур.
- 41. Константы и переменные. Типы данных в VBA.
- 42. Примеры простейших линейных процедур-функций. Оператор присваивания.
- 43. Основные встроенные числовые функции.
- 44. Программирование арифметических формул.
- 45. Понятие отношения. Логические операции, условия.
- 46. Оператор IF / THEN / ELSE. Программирование разветвляющихся формул.
- 47. Понятие метки. Операторы семейства GoTo: GoTo M, IF...GoTo M, On...GoTo...
- 48. Построение разветвляющихся программ на базе операторов перехода.
- 49. Ввод данных с листа электронной таблицы (ЭТ) и вывод результатов на пист
- 50. Построение циклических программ на базе операторов перехода.
- 51. Оператор цикла FOR / NEXT. Простейшие циклические программы.
- 52. Оператор цикла WHILE / WEND. Построение таблицы значений функций.
- 53. Оператор цикла Do / Loop. Вычисление сумм.
- 54. Вложенные циклы. Понятие массива. Операторы Dім и REDім.
- 55. Считывание и вывод элементов числовых массивов на лист ЭТ, простейшие операции над ними.
- 56. Символьные выражения и операторы присваивания.
- 57. Функции CHR(), ASC(), VAL(), STR(), LEN(), MID(), INSTR(), STRCOMP(); примеры их использования.
- 58. Операторы открытия, закрытия и удаления файлов (OPEN, CLOSE, KILL). Структура текстового файла.
- 59. Ввод информации из текстовых файлов и ее запись в текстовые файлы (операторы INPUT #, PRINT #, WRITE #).

ПРИЛОЖЕНИЕ

Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет»

Кафедра информатики и прикладной математики

КОНТРОЛЬНАЯ РАБОТА № 1 по дисциплине «ИНФОРМАТИКА»

(Группа, факультет	шифр)
(Фамили	я И.О)
(Вариант: разде.	л А, раздел Б)
(Подп	ись)
Допущен	к защите
(Фамилия И.О. п	реподавателя)

СОДЕРЖАНИЕ

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ	4
КОНТРОЛЬНАЯ РАБОТА №1	
задание №1	5
задание №2	
задание №3	
задание №4	10
задание №5	10
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ №1	
задание №1	
задание №2	14
задание №3	16
задание №4	18
задание №5	24
Литература	27
Вопросы к зачету и экзамену по курсу «Информатика»	28
Приложение	30

Методические материалы (конспект и примеры из лекций, лабораторные работы, вопросы и примеры к контролю знаний), связанные с выполнением контрольных работ и подготовкой к успешной сдаче зачета (экзамена), находятся в локальной вычислительной сети БрГТУ в папке:

U:\ VT&PM \ Zaoch_f \ Информатика АД

Для консультаций по дисциплине «Информатика»:

bstu_zf@mail.ru

Составитель: Татьяна Георгиевна Хомицкая

ЗАДАНИЯ К КОНТРОЛЬНЫМ РАБОТАМ №1

по дисциплине «Информатика»

и краткие методические указания по их выполнению
для студентов инженерно-технической специальности
1 - 70 04 03 «Автомобильные дороги»

заочной формы обучения

Ответственный за выпуск: Хомицкая Т.Г. Редактор: Строкач Т.В. Компьютерная верстка: Кармаш Е.Л. Корректор: Никитчик Е.В.

Подписано к печати 02.12.2011 г. Формат 60х84 1/₁₆. Гарнитура Arial. Усл. печ. л. 1,86. Уч. изд. л. 2,0. Тираж 50 экз. Заказ № 1133. Отпечатано на ризографе учреждения образования «Брестский государственный технический университет». 224017, г. Брест, ул. Московская, 267.