СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

1. Запрутин, Г.Н. Исследование прочности и деформативности контакта при срезе в сборно-монолитных конструкциях // Сб. научн. тр. Челябинск. политехн. ин-та. – Челябинск, 1974. – №149. – С. 162-172.

2. Корейба, С.А. Определение прочностных характеристик технологических швов между старым и новым бетонами / С.А. Корейба, Ю.К. Люненко, Н.Г. Негура, А.П. Скрипкин // Совершенствование строительных конструкций и строительного производства. - Кишинев, 1984. - С. 28-33.

3. Городецкий, Б.Л. Экспериментально-теоретические исследования прочности контакта в сборномонолитных предварительно напряженных железобетонных конструкциях: дис. ... канд. техн. наук: 05.23.01 - Свердловск: 1969. - 184 с.

4. Мирсаяпов, Ил.Т. Исследование выносливости сборно-монолитных железобетонных изгибаемых элементов: дис. ... канд. техн. наук: 05.23.01. - Москва 1988. - 243 с.

5. Харченко, А.В. Исспедование прочности сборно-монолитных изгибаемых конструкций по нормальным сечениям: Автор. дис. ... канд. техн. наук 05.23.01 - Киев, 1978. - 19 с.

УДК 624.04:519.3

Веренич А.А.

Научный руководитель: доцент Игнатюк В.И.

РАСЧЁТ ИЗГИБАЕМЫХ ПЛИТ, ОПЁРТЫХ ПО КОНТУРУ, НА ВЕРТИКАЛЬНЫЕ НАГРУЗКИ

Уравнение Софи Жермен-Лагранжа[1, 2]:

$$\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{q(x, y)}{D},\tag{1}$$

где $D = \frac{Eh^2}{12(1-v^2)}$, h – толщина плиты, E – модуль упругости, v – коэффициент Пуассона, q(x,y) – функция заданной нагрузки, w(x,y) – функция прогибов точек плиты, в разностной форме с учетом выражений, представленных в [3], для і-й точки принимает вид:

$$20w_i - 8(w_a + w_b + w_c + w_d) + 2(w_e + w_f + w_g + w_h) + (w_k + w_i + w_m + w_n) = \frac{q\lambda^4}{D}, \quad (2)$$

где a, b, c, d, e, f, g, h, k, l, m, n – узлы сетки; λ – шаг сетки (рисунок 1).

ляются выражениями: $M_{x} = -D\left(\frac{\partial^{2} w}{\partial x^{2}} + v \frac{\partial^{2} w}{\partial v^{2}}\right) \cdot M_{y} = -D\left(\frac{\partial^{2} w}{\partial v^{2}} + v \frac{\partial^{2} w}{\partial x^{2}}\right),$ которые в разностной форме записываются в виде: $M_{x,t} = \frac{D}{\lambda^2} [(2+2v)w_t - v(w_t + w_c) - (w_b + w_d)],$

$$M_{ij} = \frac{D}{2} [(2+2v)w_{ij} - v(w_{ij} + w_{ij}) - (w_{ij} + w_{ij})].$$
 (5)

Изгибающие моменты в сечениях плиты М, и М, опреде-

 $M_{y,j} = \frac{D}{\lambda^2} [(2+2v)w_i - v(w_b + w_d) - (w_a + w_c)].$

Плита является двухмерной системой, поэтому для удобства составления разностных выражений вида (2, 4, 5) их удобно представить в матрично-операторной форме:

Рисунок 1

(3)

(4)

$$M_{x,i} = \frac{D}{\lambda^2} \cdot \begin{bmatrix} -1 & -\nu \\ 2+2\nu - 1 \end{bmatrix} \cdot w_i \qquad M_{y,i} = \frac{D}{\lambda^2} \cdot \begin{bmatrix} -\nu & 2+2\nu & -\nu \\ -1 & 2+2\nu & -\nu \end{bmatrix} \cdot w_i \qquad (7)$$

где каждая клеточка оператора отвечает соответствующему узлу сетки (рисунок 1) по месту её положения относительно средней клетки (i-й узел), а её содержание указывает, на какой коэффициент в разностном уравнении следует умножить перемещение w соответствующего узла.

Рассмотрим, например, прямоугольную плиту, которую разобьём сеткой на 14×12 частей с одинаковым шагом в обоих направлениях (рисунок 2). Рассматриваемые здесь и далее плиты симметричны относительно обеих осей x и y, поэтому расчёт будем вести для четверти плиты.

Для каждой точки сетки, в которой имеется неизвестное перемещение w, записывается уравнение вида (6). При записи этих уравнений приходится использовать контурные узлы и один ряд внеконтурных узлов (рисунок 2).

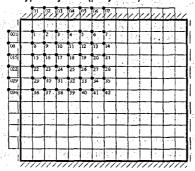


Рисунок 2

Значения функции w в этих узлах, с использованием граничных условий, выражаются через её значения во внутренних узлах и в конечных разностях для защемлённого края имеют вид [3]:

a)
$$w_{KOMM} = 0$$
; 6) $w_{20KOMM} = w_{MINTODIK}$. (8)

Для шарнирноопёртого края соответственно получим:

a)
$$w_{\text{конт.}} = 0$$
; 6) $w_{\text{лаконт.}} = -w_{\text{внутрик.}}$ (9)

Тогда для плиты, представленной на рис. 2, будем иметь:

$$w_{01} = w_1$$
, $w_{02} = w_2$, $w_{03} = w_3$ if $w_{001} = -w_1$, $w_{08} = -w_8$, $w_{015} = -w_{15}$ if T. A.

Рассмотрим железобетонную плиту перекрытия размером $l=7\,\mathrm{M}$, $b=6\,\mathrm{M}$, $b=0,22\,\mathrm{M}$, жестко защемленную с двух противоположных сторон и шарнирно опертую с двух других сторон, нагруженную по всей плоскости равномерно распределённой нагрузкой. Приведенные характеристики материала плиты примем равными: $E=1\cdot10^{\circ}\,\mathrm{kTa}$, v=0,2.

Плиту разобьем квадратной сеткой с шагом $\lambda = 0,5 \, \mathrm{M}$ – нумерация узлов представлена на рисунке 2. Плита имеет две оси симметрии x и y, поэтому расчёт можно выполнить для четверти плиты. Для каждого узла сетки составляем разностные уравнения вида (2) с учётом граничных условий (9), (10). Решая систему уравнений, составленную в 154

конечно-разностной форме, в среде компьютерной математики MathCAD [4], получим величины перемещений, показанные в табл. 1. На основании величин прогибов на рисунке 6 изображён деформированный вид плиты. По полученным результатам для прогибов по выражениям (7) вычислим изгибающие моменты в узловых сечениях (табл. 1) и построим эпюры изгибающих моментов M_{\star} и M_{\star} (рисунки 3, 4).

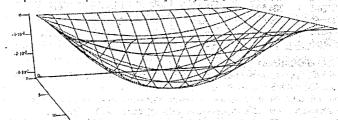


Рисунок 3 - Деформированный вид плиты

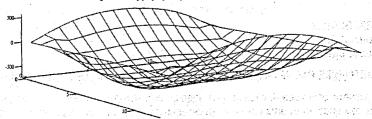


Рисунок 4 – Эпюра изгибающего момента М

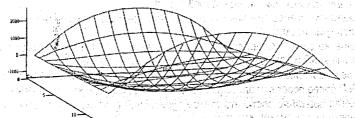


Рисунок 5 – Эпюра изгибающего момента М,

Таблица 1 - Перемещения и изгибающие моменты в плите

Iau	таолица т – перемещения и изгиоающие моменты в плите						
Узел	W_i , M	M_{xi} , H· M	<i>М_{,,i}</i> , Н∙ м	Узел	w_i, M	M_{xi} , H * M	M_{yi} , H· M
1	3.797e-7	-114.422	-135.281	22	2.171e-6	-666.266	-71.745
2 -	1.006e-6	-67.316	-301.831	23	6.178e-6	-92.709	171.62
3	1.651e-6	-67.723	-504.687	24	1.054e-5	245.018	379.86
4	2.203e-6	-88.368	-696.561	25	1.443e-5	434.187	542.686
5	2.611e-6	-112.539	-848.307	26	1.74e-5	532.802	657.885
6	2.859e-6	-130.334	-944.181	27	1.925e-5	578.124	726.163
7	2.941e-6	-136.763	-976.837	28	1.987e-5	590.997	748.744
8	1.076e-6	-213.148	-14.592	29	2.491e-6	-787.691	-83.112
9	2.824e-6	-44.288	-17.925	30	7.154e-6	-120.843	202.911
10	4.686e-6	72.782	-43.376	31	1.227e-5 ::	281.662	458.009
11	6.318e-6	126.965	-78.776	: 32	1.685e-5	512.197	664.473
12	7.549e-6	146.205	-113.181	33	2.037e-5	635.457	814.246

-			* *		
U	род	олже	ниет	габли	цы 1

13	8.304e-6	150.435	-137.569	34	2.255e-5	693.646	904.484
14	8.557e-6	aa 150.686 aa	-146.323	35	2.329e-5	710.494	934.572
-15	1.678e-6	-477.007	-56.928	36	2.601e-6	-829.532	-87.697
16	4.667e-6	-59.382	106.088	37	7.489e-6	-131.478	211.971
17	7.884e-6	177.618	226.444	38	1.287e-5	293.206	481.861
18	1.073e-5	304.609	310.643	39	1.769e-5	538.173	702.26
19	1.289e-5	366.632	365.257	40	2.14e-5	670.11	863.215
20	1.422e-5	392.953	395.638	41	2.37e-5	732.85	960.613
21	1.467e-5	399.974	405.347	42	2.448e-5	751.106	993.158

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

1. Караманский, Т.Д. Численные методы строительной механики / Пер с болг.; под ред. Г.К. Клейна. – М.: Стройиздат, 1981. – 436 с.

2. Веренич, А.А. О методике расчета изгибаемых плит методом конечных разностей / А.А. Веренич // Сборник конкурсных научных работ студентов и магистрантов / БрГТУ. – Брест, 2012.

3. Макаров, Е.Г. Инженерные расчеты в MathCad: учебный курс. – СПб.: Питер, 2005. – 448 с.

УДК 624.04:519.3

Веренич А.А.

Научный руководитель: доцент Игнатюк В.И.

О МЕТОДИКЕ РАСЧЁТА ИЗГИБАЕМЫХ ПЛИТ МЕТОДОМ КОНЕЧНЫХ РАЗНОСТЕЙ

В расчёте сооружений существуют задачи, для которых получить точное решение в замкнутом виде во многих случаях, на сегодняшний день, либо невозможно, либо очень сложно [1, 2]. В таких случаях для решения задач используют численные методы. Один из них – метод конечных разностей (МКР) [1, 2].

Применение метода конечных разностей характеризуется следующими особенностями и преимуществами:

- решение задачи сводится к решению системы алгебраических уравнений относительно значений искомой функции на заданном множестве точек;
 - в решениях МКР используются и получаются достаточно простые выражения;
 - МКР более прост в реализации, чем, например, метод конечных элементов (МКЭ);
- всегда возможно составить систему уравнений с симметричной ленточной матрицей, являющейся основой решения;
 - возможно применение разностных уравнений повышенной точности [2].

В работе рассматривается расчёт методом конечных разностей изгибаемых плит с промежуточными опорами при действии вертикальной статической нагрузки.

Решения задач строительной механики и теории упругости, в сущности, являются решениями некоторых дифференциальных уравнений или систем дифференциальных уравнений. Точное решение таких уравнений возможно в отдельных простых случаях при специально подобранных физических характеристиках и граничных условиях рассматриваемой конструкции. Практика располагает огромным числом разнообразных конструкций, для которых во многих случаях точного решения в замкнутом виде не существует. В этих случаях численные методы дают богатые возможности для получения решения. Метод конечных разностей — классический образец метода этого направления.

Основная идея метода конечных разностей состоит в следующем [1, 2]. На объекте располагается система узловых точек. Задача считается решённой, если известны значения участвующих в решении функций в этих точках.