
Journal of The Institution of Engineers, Singapore 
Vol.35, No.l February 1995 ,

ON THE BINARY SEQUENCES WITH 
INDISTINGUISHABLE SIGNATURE FOR A GIVEN 
ERROR MULTIPLICITY IN ELECTRONIC TESTING
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ABSTRACT
Distinct binary seąuences (2m -  1 bits long) may be 
compressed by an m-bit signature register into the 
same signature ualue, when a given error multiplicity 
is considered. Analytical expressions to compute the 
number of distinct seąuences collapsed into the same 
signature are presented, by exploiting the properties 
of the binary Hamming codę theory and o f the 
binomial coefficients. ,

INTRODUCTION
With the recent progress of VLSI technology, it is 
possible to fabricate thousands of gates and 
interconnections into a single chip. The advantages 
of VLSI are reduced system cost, higher performance 
and greater reliability. However, these advantages 
would be lost unless VLSI chips can be' tested 
effectively and economically. For this reasoń testing 
is playing at present extremely important role in VLSI 
design and manufacturing processes. Over a couple 
of decades many test approaches have been proposed. 
Signature analysis is one of the most well-known and 
effective among them.

Signature analysis sińce its introduction in 1977 by 
Hewlett-Packard (Frohwerk,1977) is widely used both 
in external tester environment and in the Built-In- 
Self-Test environment reducing the volume 
(compressing) of the diagnostic data (Bardell et al., 
1987). The compression is achieved by means of an 
m-bit linear feedback shift register (signature 
register), whose structure is determined by the 
adopted primitive irreducible polynomial of degree m 
(m=l,2,3,...) (Williams, 1986; Bardell et al., 1987).

The polynomial division algorithm over GF(2) is the 
basie mathematic tool to describe the signature 
compression. For an re-bits dividend (where the length 
n of the seąuence being compressed is usually greater 
than m), an (ra-mj-bits ąuotient and an m-bits 
reminder (i.e., the signature) are obtained. The actual 
га-bit input seąuence of the signature register and 
the reference one (related to the fault-free operation 
of the Circuit under test) are indirectly compared by 
observing the possible matching between their 
signatures: the actual and the reference input

seąuences are assumed eąual if their signature are 
identical.

It is worth to notę that the same signature will be 
generated for 2n_m distinct ąuotients; the reference 
seąuence is thus associated to several (namely, 
2n_m -  1) re-bit binary seąuences. These 2n-m -  1 
binary seąuences -  related to erroneous behayiors of 
the circuit under test in the presence of faults - are 
undetectable sińce they cannot be distinguished from 
the reference seąuence.

Let us consider the error seąuence defined as the 
modulo-2 bit-wise addition of the actual binary 
seąuence (in the presence of errors) and the reference 
one (Bardell et al., 1987). The weight of an error 
seąuence may then be defined as the Hamming weight 
of the binary seąuence itself (i.e., the number of non- 
zero components (Blahut,1983)).

It is well-known that signature compression has the 
ability to detect all single-bit errors for any n value, 
and all double-bit errors for n < 2m -  1 (Bardell et 
al., 1987; Smith, 1980; Yarmolik et al., 1989). 
Therefore the 2n-m -  1 signature indistinguishable 
error seąuences associated with the given reference 
one have weight greater than 2.

A detailed knowledge of the relationship between the 
error multiplicity (i.e., the weight of the error 
seąuence) and the number of undetectable erroneous 
binary seąuences collapsed onto the reference one is 
important:

-  to analyze the signature compression effectiveness 
(Bardell et al., 1987; Yarmolik, 1990),

-  to locate the erroneous bits within the circuit 
under test by using information derived from the 
error signature (Chan et al., 1990; Demidenko et 
al., 1993),

-  to develop and investigate effective methods for 
data compression (Robinson et al., 1988), and for 
other applications.

Some partial results concerning these tasks (e.g., 
recurrent-type expressions, formulae for low-
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multiplicity error cases, approximate Solutions, and 
so on) were obtained (Bardell et al.; Yarmolik,1990; 
Chan et al.,1990; Demidenko et al.,1993; Robinson et 
al., 1988). In this paper, we present the analytical 
method to derive the generał solution for the case 
n = 2m -  1.

EVALTJATION OF THE NUMBER OF 
INDISTINGUISHABLE SEQUENCES
Signature compression is often described by using 
terms and methodology of the well-established theory 
of binary cyclic codes (Bardell et al., 1987; Blahut, 
1983; Rao et al., 1989). Let us consider the binary 
cyclic codę of length n = 2m -  1, for which the 
characteristic polynomial is the miniraal polynomial 
over GF(2) for some primitive element GF(2m). It has 
been proved that-such a codę is equivalent to the 
binary Hamming codę of length n (Blahut, 1983; Lidl 
et al., 1983).

Therefore, in the presence of errors having 
multiplicity i (i = 0, 1, 2, ..., 2ra -  1), the number of 
undetectable errors in a (2m -  l)-bit binary seąuence 
(i.e., the number of error seąuences having weight i) 
is eąual to the number of codę words with weight i in 
the binary Hamming codę of length 2m -  1. This 
number is given by the following theorem.

Theorem 1.
The number Vj of codę words with weight i in the 
binary Hamming codę of,length 2m -  1 is:
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m = 1, 2 3, ■, i = 0, 1, 2, .... 2m- l ( 1)

where L*J and ft"| are the floor and the ceiling 
functions, respectively.

Proof.'
It has been shown (Lidl et al., 1983) that the weight 
enumerator for the binary Hamming codę, having 
length n = 2m — 1 and dimension (n-m) over GF(2), is 
giyen by:
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By grouping the homogeneous components, it is:

V(z) = 2~m
2m- l

I
i=l

2m- l
Since V(z) = ^  У д , where V; is the number of codę
words with weight i in the binary Hamming codę 
(Blahut, 1983), we finally obtain by comparing the 
above two expressions:
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Remark 1.
The expression (1) can be rewritten in a simpler form, 
for odd and even values of yariable i.
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Some characteristics of Vj are defined by the following 
corollaries: they are useful to simplify the 
computation of Vj for all possible values of i.

Corollary 1.

V2k+l = 2 - m
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By rearranging the components of this expression, 
we obtain:

- V(z) = 2~m (l + z)2m~1. + [2m - l )  (l (1 -z )

Proof.
Let us consider the expressions given in Remark 1 
for V2k and V2k+1. PascaTs'triangular eąuation for 
the binomial coefficients (Gellert et al., 19i89) states
that a

b + 1
a + 1 
b + 1

By applying the binomial decomposition (Gellert et By summing v 2k and V2k+1 and by applying the 
al., 1989) to (1 + z)2 -1 and to (1 -  z2)2 _1 it is: PascaTs triangular eąuation:
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Corollary 2.

V2k =
2m~1-k V2k-1, k = 1, 2, 3, ..., г™-1- !  (5)

Proof. ;
By applying the binomial coefficient property
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Corollary 3 -  Symmetry property.

Vi = , i = 0, 1, 2, (6)

Proof.
By applying the binomial coefficient property

У
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to expression Eqn. (1) and by taking
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and

-.m-1 2m- i - 1 , the last expression for Vj

can be rewritten in the following form:

V; = 2
f 2m- l   ̂
2m - i - 1

+ (-l)
2 —1—i

< 2m~1 -1  Л 
2m- i - l i2’ - ’)

J

that is eąual to V2m_i_!.

CONCLUSION
Analytical expressions Eqns. (1-3) have been derived 
to compute, for a given error multiplicity, the number 
of erroneous binary sequences (having length n = 
2m- l )  which are undetectable by the m-bit signature 
register compression. The corollary expressions 
Eqns. (4-6) show some properties of Vj that can be 
used to simplify such computation. Our results 
complete and generalize the expressions presented 
in several earlier papers on the subject (e.g., (Bardell 
et al., 1987; Yarmolik et al., 1989; Yarmolik, 1990; 
Chan et al., 1990; Demidenko et al., 1993; Robinson 
et al., 1988)).

t ■ ; ' . . j ■

These results can be applied for error localization by 
using information derived from error sequence 
signature, in the area of data compression techniques, 
and for testable design. For example, in the case of 
multiple-bit error localization in the sequence being 
compressed by using the superposition approach 
defined in (Chan et al., 1990; Demidenko et al., 1993), 
the above expreśsions give the number of sets óf 
partial signatures (corresponding to single-bit error 
ocćurrences) into which the actual signature must be 
partitioned.
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