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1. INTRODUCTION 

We refer to optimal design problems when it is necessary to determine an optimal 

composite in a given class of admissible composites. The investigation of opti- 
mal design problems for composite conductive materials is of mathematical and 
practical interest. The problems for optimal composites are usually formulated as 

variational problems of minimization of stored energy in the composite material 
(see e.g. [1, 2, 5, 6] and papers cited therein). If unknown variables (e.g. the form 
of inclusions, their locations, size, etc.) and/or constrains have geometric nature 

we deal with shape optimization problems (or optimal design problems). Typi- 
cal physical constrains are the given conductivities of the components, condition 
of ideal contact on the boundary matrix-inclusions, and the external field outside
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the composite. The latter two conditions can be represented in the form of the 

boundary value problems for certain potentials. 

For periodic composites the optimal design problems coincide with the problem 

of optimization of effective conductivity tensor [6] in the so called representative cell. 

We have to mention also a number of approaches which are devoted to the study of 
laminate composites (see e.g. [13]), fibre composites (see e.g. [8]), composites with 
the reach microstructure (see e.g. [16]), nano-composites (see e.g. [14, 15]), etc. 

This paper contains the description of a new approach in the study of optimal 
effective properties of the plane composite materials. In contrast to highly developed 

theory based on the weak and variational statement of the corresponding problems, 
this approach is oriented on the construction of the analytic solutions and even 

(when it is possible) the closed form solution. To show the perspectivity of this 
approach we use very simple examples, although several situations of more general 
type were considered recently as well. 

We propose another statement of optimal design problems. The principal dif- 

ference is that we fix shape and size of the inclusions. In particular, we consider a 
bounded domain occupied by a host material with N inclusions (N can be equal to 
unity). Hence, each inclusion has a positive concentration in the bulk material. It 

is known that if the characteristic size ¢ of the inclusion tends to zero (simultane- 

ously N tends to infinity with fixed concentration of inclusions), the homogenization 

theory [7] can be applied. Such an approach does not work for our model. 

We also discuss optimal design problems for unbounded domains. In this case 
for simple external field the considered problem is equivalent to the problem of 
optimization of the effective conductivity of dilute composite materials, when con- 
centration of inclusions is sufficiently small. Anyway the problem that we arrive at 
could not be handled via the homogenization method. 

The main mathematical difficulty which we try to overcome is that at the mo- 

ment an analytic solution of the R-linear boundary value problem (Markushevich’s 
problem in another sources) is not known. Moreover, the physically relevant state- 
ment of the optimal design problem in potential case leads to mixed boundary 

conditions (different kind of boundary value problems on each component of the 

boundary). By using our approach we could overcome these difficulties at least in 
the case of very important model situations. Among the achievements presented in 
the paper we ought to mention the discovered phenomena of “packing” of inclusions 
in the optimal composites. 

Our study is useful in technical applications, because this problem corresponds 

to the following engineering task. A designer has at his disposal a material of given 
shape on the boundary of which a prescribed external field is applied. Let the 
designer also have inclusions of a given shape and size. It is necessary to locate 
these inclusions with a fixed concentration in such a way that the conductivity in 

the fixed direction will be maximal (minimal). So using our formulas a designer can 
project complex fibre composite materials to reach optimal properties. 

In Section 2 we formulate the problem, 2.e., describe an objective functional 

and the constraints in terms of the complex potentials satisfying boundary value 
problems. A simpler form of the problem follows after certain calculations. Section 3 
is devoted to the solution of the problem in the case of weakly inhomogeneous 
materials. Special attention is paid to the case of external field determined by the
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gradient (1,0). Our results are illustrated in Section 4 by a number of special cases. 
We have solved a problem for a bounded domain with one inclusion and a problem 
for an unbounded domain with two inclusions. Final remarks and discussion are 
presented in Section 5. 

2. FORMULATION OF THE OPTIMAL DESIGN PROBLEM 

2.1. Boundary value problem. Let us consider a bounded simply connected 
domain Q in the extended complex plane C U oo. Let D, (k = 1,2,...,N) be 

mutually disjoint disks D, := {2 € C : |z — ax| < r} of equal radii belonging to Q. 
N 

Hence, Q is divided onto the multiply connected domain D = Q — (J D x (matrix) 
k=1 

and the non-overlapping disks D, (inclusions). 
We study the conductivity of the composite material, when the domains D and 

D; are occupied by materials of conductivities \,, and A;, respectively. Suppose 
that the conductive field is potential, z.e., there exists a potential u(z) satisfying 
the Laplace equation 

N 

Au=0 in ()D,uD. (2.1) 
k=1 

Let the conjugation conditions (conditions of ideal contact or transmission condi- 

tions) 
Out Ou- 
On oe on Tr, B= 1.2 escciNs (2.2) ut=u, Am 

be valid. Here < is the outward normal derivative, the circle T, := {z € C: 

|z — ax| =r} is the boundary of D, and 

a) = lim u(z), u(t) := lim u(z), 

z€D z€D, 

for t € Ty, K=1,2,...,N. 

We also assume that u(z) satisfies a boundary condition on 0Q. Let h(t) be a 
given Hdélder continuous function on the curve 0Q. The following boundary condi- 
tions are considered: the Dirichlet condition 

u(t) = h(t), t€dQ, (2.3) 

the Neumann condition 3 

= =h(t), t€dQ, (2.4) 

and the mixed condition when the Dirichlet and Neumann conditions are given on 
different parts of 0Q. 

It is possible to introduce two types of the complex potentials corresponding to 
the problem (2.1)—(2.4) [12]. The first type has the form 

y(z) = u(z) +iv(z), zED; yx (z) = AF (ug(2) +iv;z(z)), 2z€ Dr,
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where the functions y(z), y,(z) are analytic in D, D; respectively and continuously 
differentiable in the closures of the considered domains. Observe that the function 
y(z) is single valued in D due to its definition and condition (2.2). Then two real 
conditions (2.2) on each T;, can be written in terms of these potentials 

p(t) = ~r(t) Lae per(t), lt = ay ate k= 1,2, 5+: NV, (2.5) 

where p = (A; — Am)/(Ai + Am) is a contrast parameter (see e.g. (3]), known also 
as Bergmann parameter. The relation (2.5) is a special case of so called R-—linear 
condition. The Dirichlet condition (2.3) becomes 

Rey(t) =h(t), te dQ. (2.6) 

The function h(t) can be considered as the real part of a function f(t) analyti- 
cally continued into the domain Q. Then (2.6) can be written in the form of the 

homogeneous condition 

Re(y(t) — f()) =0, te dQ. (2.7) 

Remark. The function f(z) can be considered as a solution of the problem (2.5)- 
(2.6) with p = 0 (or more exactly, of the Schwarz problem (2.6) for the domain Q). 
In this case the potential f(z) does not depend on A; = Am. 

The second type of the potentials is defined by the derivatives 

we) = oe) = FEE, ale) = vil2) (2.8) 
Then (2.2) implies the following R—linear condition 

2 

w(t) = w(t) +p (=) wx (t), \t =— ay| =T, k= 1S issn iN: (2.9) 

Here we use the relation [12] 

2 

) HM, lee iegl'eche (2.10)   [ve ()]' = -p ( 
t— ay 

Let n(t) = ni + ing be the outward normal vector to 0Q expressed by complex 
values. Then the Neumann condition (2.4) takes the form 

Re{n(tu(H}=fil), t€aQ, (2.11) 

since 

On =, ON a Oe ate + in) Oy ge 
on On By ee ee OL 

where f;(z) is a solution to the Schwarz problem 

Re fi(t)=hi(t), t€ dQ, (2.12)
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for the bounded simply connected domain Q. Thus the problem (2.12) can be re- 
formulated as the special case of the homogeneous Riemann-Hilbert problem 

Re{n(t)u(t) — fi(t)}} =0, te dQ. (2.13) 

2.2. Optimal design problem. We now consider the problem (2.1)-(2.2), 
ie., (2.5)-(2.7) in terms of complex potentials. Local relation between the flux q 
and the gradient Vu is given by the state law (Fourier’s law in thermal conductivity 

or Ohm’s law in electric problems) 

Am Vu in D, 

q= N (2.14) 
AiVu in (LU Dy. 

kai 

We introduce the value A, by the relation 

Nek = ie Ih OM dedy + 2, Sal Suk de dy, (2.15) 
Dy 

where 

= | Re f’(z) dz dy. (2.16) 
Q 

In the right-hand part of (2.15) we have the x-coordinate of the total flux passing 
through the domain Q. In the left-hand part we have the x-coordinate of the total 
flux of the potential f(z) multiplied by a new value A, which will be called the 
conductivity of the domain Q in the z-direction. The direction z is fixed only for 

definiteness, and the conductivity of the domain Q in any other direction can be 

considered in the same way. One can consider the function f(z) as a solution to 
the homogeneous Schwarz problem (2.7) for the domain Q, i.e., for a homogenized 
material with a constant conductivity A.. Then (2.15) can be considered as equality 
of the fluxes in the x-direction of the composite and homogenized materials. 

Further, we normalize the given function f(z) assuming that 

s | ef Qaeda = | Reyays f h(t) dy = |QI. (2.17) 
Q aQ aQ 

In particular if the external field is determined by the potential f(z) = z then 
(2.17) is fulfilled. Therefore if u(z) and u,(z) satisfy the problem (2.1)—(2.2), (2.12) 
for the square Q, the relation (2.15) coincides with the definition of the effective 
conductivity of a composite material in the z-direction (for details see [11] and [4]). 

Using Green’s formula and the mean value theorem of the harmonic function 
theory one can rewrite (2.15) in the following form 

N 

Ne nf udy + mr?(A; — Am) pe Bobi cy (2.18) 
aQ kel Or
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We can replace the potential u(z) by Re f(z) on OQ. Using (2.10) we write (2.18) 
in the form 

re “= am = Cin qe 1+ ay (2.19) 

For our purposes it is convenient to rewrite i in terms of the complex potentials 

N 2p le 1 
es L+ 2prlQlx > Re 9.(ax), (2.20) 

Nar? . j : 3 ; 
where vy = ——— is the concentration of the inclusions in Q. 

|Q| 
In the present paper we are interested in the following optimal design problems: 

é 
Problem A. Let Q be a given bounded domain in C, f(z) be a given function ana- 
lytic in Q and the fixed constant p satisfy the inequality |p| < 1. Let N disks of the 
fixed radius r be embedded in Q. Let y(z) and y;.(z) satisfy the problem (2.5), (2.7). 

The question is to locate these disks in such a way that the functional A, from 
(2.20) possesses the maximum (minimum) value. 

In this statement the disks have to be mutually disjoint but possibly touching 
each other and the boundary of Q. 

If the boundary of Q is far away from all inclusions we can model this case 
putting OQ to infinity. Then instead of the boundary condition on OQ we assume 
that f(z) has a singularity at infinity. In this case we also use the formula (2.20) 
assuming that v|Q] is a given positive number. 

Problem B. Let v|Q| be a given positive number, f(z) be a given function analytic 
in C and the fixed constant p satisfy the inequality |p| < 1. Let N disks of the fixed 
equal radius r be embedded in C. Let u(z) and v(z) satisfy the problem 

Fe 
  

2 

; =) ti(t)— SO), 6—Gel = rey KS 162) 0005 Ny A221) 
— ak 

w(t) = ve(t)+p ( 

where v(t) is analytic in D,, w(z) is analytic in the complement of all D, in the 
extended complex plane C U {oo} and w(00o) = 

The question is to locate these disks in such a way that the functional Ag from 
(2.20) possesses the maximum (minimum) value. 

We have to mention that for fixed positions of the inclusions problem (2.5), (2.7) 
as well as problem (2.21) has a unique solution (cf. [12, Cor. 2.3}). 

In order to study Problems A and B it is sufficient to investigate the value 

N N 
= se Rey;.(az) or o= $= Revx(ax) (2.22) 

k=1 k=l 

instead of A, because only this part of 

as =1+ op lel, 
Dei 

depends on the locations of the inclusions, i.e., depends on the parameters ax. 

Therefore, Problem A can be formulated also as follows:
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Problem Ao. Let Q be a given domain in C, f(z) be a given function analytic in 
Q and the fixed constant p satisfy the inequality |p| < 1. Let N disks of the fixed 
radius r be embedded in Q. Let y(z) and y,x(z) satisfy the problem (2.5), (2.7). 

The question is to locate these disks in such a way that the functional o from 
(2.22) possesses the maximum (minimum) value. 

Along similar lines Problem Bp corresponding to Problem B can be formulated. 

Remark. If inclusions have another shape different from the circular one, the 
objective functional o becomes 

o= ff Re v,(z) dx dy, 
P 

where P is the union of all inclusions, w,(z) is the potential in the k-th inclusion. 

Theorem 1. For any fixed value of contrast parameter p (|p| < 1) and a fired 
radius of inclusions r there exists an optimal configuration which solves Problem A 

(Problem Ap). 

Proof. The Problem Ap means optimization of the functional A, in (2.22) on the 

set of the solutions of (2.9). In [12] the solution to R—linear problem (2.9) was solved 
in analytic form. The components v%(z) = v%(z3p,7?, a1,..-,an)) of this solution 

are analytic in p, r? and continuous in a1,...,ay. Therefore the functional A, is 

continuous with respect to the variables a;,...,aj and hence bounded on the set 

2 := {(a1,...,an) €C™ : a; €Q, f=1,...,N3 lax —a;| > 2r, kK AF}. (2.23) 

To find optimal configuration solving the Problem A it is sufficient now to find 
an extremum of the real-valued function A, of N complex variables a),...,a@y in 

the bounded closed domain 2. The existence of the later problem follows from the 
classical Weierstrass Theorem for a compact domain in C’. Oo 

3. WEAKLY INHOMOGENEOUS MATERIALS 

In this Section we provide a deeper study of Problem B for weakly inhomogeneous 
materials, i.e., for materials with small contrast parameter p. 

At the beginning we assume that the location of the disks D; is known. Using 
[12] one can represent the functions ¢(z), v%(z) in the form 

(2) = VO (2) + pe (2) + O(9?), 
(3.1) 

vi (z) = Vp (2) + pvp’ (2) +O(?), pO. 
Let us substitute (3.1) in (2.9) and compare the coefficients at p° and p!. The first 
relation is then the jump problem for a multiply connected domain 

YO) =vOR)-f't), |t-axl=r, &=1,2,...,N, (3.2) 

with respect to (z) and w(z) analytic in D and D, respectively. Since f(z) 
is by assumption analytic in Q, then the unique solution for (3.2) has the form 

YO(2z)=0, YO(z)=F"(z), k=1,2,...,N. (3.3)
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The second relation gives another jump problem after substituting (3.3) 

2 

v@=WPo+(Z) 7'®, |t—al=r, k=1,2,...,N. (34) 
ieee 

Due to relation (2.8), between complex potentials y and wv one can consider 
instead of (3.4) the problem 

PYM =—9PO)-FO, lt-al=r, k=1,2,...,N, (3.5) 

with respect to the scanpler potentials y)(z) and p(z =) for which (y)(z))/ = 

(2), (pO (z))’ = vk? (z) and y (oo) = 0 (see (2.8) and (2.10)). Let us note 
that 5 

_— r FO) = (R= +a) 
is analytically continued to |z — ax| > r, since f(z) is analytic in |z — ax| <r. Then 
the unique solution to (3.5) can be found in the form 

    

  
  

  
  

    

  

= r 
Ma=-Y I(x +m); z€Q, 

m=1 = ne 
(3.6) 

oy (2) = -Dt (x =+ an) LED, K=4,2,0.0,N, 
mk 

where in the sum > the index m runs over 1 to N except m # k. Therefore, 
mk 

vy ro nf 
Z@=>> () f (== +m) FED: FH12 co, Ne BO 

mtk 

Substituting (3.3), (3.7) in (3.1) and further to (2.22) we obtain 

vane (Sst00-+03 5 (Gta) 1 eae tee) 100%: 
=1 mk 

(3.8) 
Further investigation of the extremal values of ¢ can be performed by the standard 
calculus techniques. 

In the case f(z) = z we obtain from (3.8) 

      

o=N+po,+0(p*), 

where 

a= 2m Ge mo (3.9) 

depends on the locations of the centers a,, and the last term is comparatively small 
with respect to others.
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Theorem 2. Let p be sufficiently small and f(z) = z. Then there exists a configu- 
ration of inclusions for which the functional \~- possesses the maximum (minimum) 

value, i.e. there exists a solution to the Problem B. 

Each inclusion corresponding to this solution touches at least one other inclusion. 

Proof. For p being sufficiently small one can neglect the last term in (3.8). Then 
only changing part of the functional A, we have to consider the functional o, defined 
in (3.9). It is the real-valued function of N complex variables (a@1,...,an) € Q, 
where 22 is defined in the previous section by relation (2.23). The domain Q is a 
compact subset of C’. Hence o; possesses its maximum (minimum) in 2 due to 
the Weierstrass Theorem. It follows from the definition of the domain 2 that o; 

is a harmonic function in 2. Therefore extremal points of the function o, belong 
to the boundary of 2 by the Maximum Principle for harmonic functions of several 

variables in a compact domain in C’. Thus the second statement of the theorem 

follows. Oo 

4. SOME EXAMPLES AND PARTICULAR CASES 

4.1. Problem a with one inclusion. Following the previous section we con- 
sider first Problem A for weakly inhomogeneous materials, i.e., in the case of small 

contrast parameter p. 

Let the domain Q be the unit disc Q = U (it can be supposed without loss 

of generality due to conformal equivalence of the form of the considered boundary 
value problems). In the case N = 1 the domain Q is divided by the circle T(a,r) := 
{z € C: |z—a| =r} with the fixed radius r onto two parts: D™ = {z € C: |z—a| < 
r} and the doubly connected domain D+ = U \ D~. Let a real-valued function h(t) 
and a complex-valued function f(t) be given Hélder continuous functions on OQ = T 
and T(a,r) := 0 D~ respectively, 

[ Ali) dy Sh (4.1) 
T 

The question is to locate the disk D~ in U in such a way that 

o := Rey’(a) — max(min), (4.2) 

i.e., the functional o possesses the maximum (minimum) value on the set of the 
solutions of the following boundary value problems: 

Rey(t)=A(t), t€ aT, (4.3) 

gt (t)-e ()=fO, te Tar), (4.4) 
Here we use the same notation for the complex potentials in matrix and in inclusions; 

y(z) corresponds to y"!)(z) and y\)(z) from (3.5). 
Let us first assume that the location of a point a is known, solve mixed bound- 

ary value problem (4.3)—(4.4) and then consider the corresponding optimization 
problem.
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The Cauchy type integral 

$0) es IO a, 2eDtuD- (4.5) 
277i Ta,r) T—2z 

  

solves the jump problem (4.4). Introduce the unknown function V(z) := y(z)—®(<), 
z €U. It is analytic in U, because ¥+(t) — ¥~(t) = 0 on T(a,r). The real part of 
the boundary value of this function on the unit circle T is equal to 

Re W(t) = Re(y(t) — ®(t)) = h(t) —Re®(t), teT. (4.6) 

The equality (4.6) is a Schwarz problem for the unit disc U with respect to the 
function W(z). Its solution has the form 

vl f AO 1 fey 1 PRetO, 2 / Rew ves [ ea za aries dela HO dt +iep 
a 

where Cp is an arbitrary real constant. Then the solution to the problem (4.3)—(4.4) 
is given by the formula 

p(z) = V(z) + &(z), (4.8) 

where (z) and ®(z) are defined in (4.7) and (4.4) respectively. Hence 

bef ot a eS) ge iG) , x aeeis a 

YN) ee Lays n(t—a)? | -Qmi Jaan) (t—) 
    dt. (4.9) 

Therefore, the problem (4.2)-(4.4) is reduced to the determination of extremum of 

the function F(£,7) :-= Rey’(€ + in), a = € + %n, in the closed disk K := {(€,n) : 

C497 <G—r))}. 

  

  

In the case 

f(z) =z (4.10) 

the integral (4.5) becomes 

2 a, z€D*, 
Soi [drs 2 (4.11) 

2ni Jaa,r) T — 2 we ve Ds 
z2—-@a@ 

In this case we have Re V(t) = Re H(t) + r? Re ; 2 

is a solution to the following Schwarz problem for the unit disc 

  on the unit circle, where H(z) 

ReH(t)=A(t), teT. 

The symmetry relation on the unit circle = 1/t yields 

W(t) = Re (HW + *=)- Re (H(t) e = 3) i teT. 

(4.12) 

    
          

. 

1 —Gt’
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2, 2 
Hence (z) = H(z) + JE ee | yg! (z) = H'(z) + E 

values of the functional 

  
1—az (—az)?’ The optimal 

2 2 
a HON y Sth ek esd eae poet o = Rey'(a) = Re H'(a) + cee Re oe [roe er: dr+ (=P 

depend now on the given function h. 
2 

Example. Assume h(t) = Ret. Then o = Rey’(a) = 1+ a= eF depends only 

on |a|, 0 < ja] < 1—r. It is obvious that the maximal value of the functional o is 

equal to maxo = 1+ aH (reached at ja] = 1—r). 

4.2. Problem B with two inclusions. Consider the Problem B with the arbi- 
trary value of the contrast parameter p. We assume additionally that N = 2 and 
f(z) = z. Therefore we need to find an optimal values of the functional 

o = Re{¢} (a1) + 93(a2)} (4.13) 

on the set of all analytic functions with (co) € C, satisfying the boundary condition 

gt(t)=9°(t)+pe-@) +t, tel, (4.14) 

where L = L, UL, Ly = T(ax,r) = {2 €C: |z —a,x| =r}, k = 1,2, are two circles 
with the fixed radius r. Location of their centers a1, a2 (|a; — a2| > 2r) has to be 

determined. 

Let z be an arbitrary point on the complex plane C. Denote by the 2(,) the point 
2 

  symmetric to z with respect to the circle T(a;,7), te. z(,) = —— +az, k= 1,2. 
— at 

Introduce the function 

pi(z) + pP2((ay) = 2) z€D,UL, 

Q(z) = ¢ %2(2) + pei (21) — 265 z€ D2UL», (4.15) 

P(z) + pypr(Z(y)) + p%2(Z(a)), 2 € Dz 

By construction the function Q(z) is analytic in the domains D,, Dp and D. From 
the boundary condition (4.14) it follows that the function Q(z) has no jump across 
the circles T(az,7r), k = 1,2, i.e. Nt(t) —Q7(t) = 0 because 

Ot (t) - 2 (t) = gil) — pr -F- glt) = 0. 
From the Liouville theorem it follows that 

2 i 
=< = eeeae + € = —2(1) — 2g) + €0-     

Then we obtain the system of functional equations 

(ei(2) = —ppal@y) - Hy tems. 2 Thy 
(4.16) 

p2(z) = —per1(2y) = 21) +o, z€D2
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From the second equation of the system we can find the values 2(Z(o)) making 

symmetry with respect to the second circle 

2(2(o)) = —ppi((Z(2))aay) - (2(2))(1) + % = pyi(a(z)) —a(z)+%. (4.17) 

Then 

gi(z) = pyila(z)]+hi(z), 2 € Di, (4.18) 

where a(z) is the combination of two symmetries: 

* \* sz = ) a(z) = (2) ir) = TE nLa) 

2 

+ ay, (4.19) 

  and inhomogeneous term h;(z) = p*a(z) — — @ — p& + co. Applying the 

method of successive approximation (also called the Banach-Cacciopoli Fixed Point 
Theorem) we obtain that the solution y(z) in D can be represented in the form 
of the following series, uniformly converging in Dj): 

Pilz) = > P** hilar (z)] =h,(z)+p?hifa(z)}+..., z€ Di, (4.20) 
k=0 

where a;(z) denotes the composition of k copies of a(z). 

The absolute and uniform convergence of (4.20) is verified e.g. in [12]. The main 
observation leads to the conclusion that |a’(z)| < 1 in Dj. The same argument yields 
the following representation of the solution y2(z): 

2(2) = S- p**he[Bx(z)] = haz) + p?ho[G(z)]+---, 2 € Da, (4.21) 

where 6;,(z)-k-th iteration of the mapping 

* \* r(z = ay) 

PG) = Caney = 8 aq = aa) (2 — an) 
2 

— ay — p% + Co. z— a1 

+ aa, 

ho(z) = p?(z) —   

To study the properties of the functional (4.13) we calculate now the derivatives 
of the functions (1, (2. By the symmetry of their definition it is sufficient to calculate 

yi (a1): 

$4 (a1) = hi (ar) + ph [ax(a1)] - a’[a.—1(a1)] >... - a’(a1) 
k=l 

= |o?o(a) = i maRl @ + yea a! [ap—1(a1)] >... a) (422)
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where 

4 , rf 

Gta = [(@1 — @2)(a, — ag) — r?]?" 

Me as ai 

©) = G=ae-a)- FP 
Then by the direct calculation one can prove. 

Lemma. For each k = 0,1,..., the function 7, := (@; — @2)(ax(a1) — a2) ts a real- 
valued function depending on the parameter A = |a; — a2|. Moreover >; is positive 
for A > 2r. 

Proof. The statement is evident for k = 0. For k = 1 one has from (4.23) 

a (4.23) 

r?(a, — a2) 
a(a,) —a2= “Tey apie — es) <9 + (a, — a2) = c(A)(a; — a2), 

A? — 2r? 
c(A) = Aa 

Hence lemma is proven for k = 1. The final conclusion follows from the induction 

argument. O 

Theorem 3. For all fired |p| < 1 effective functional possesses its maximal value 
on the set of the solutions of the boundary value problem occurs when circular inclu- 
sions are touching each other and located along real axis. The effective functional 
possesses its minimal value on the set of the solutions of the boundary value problem 
when circular inclusions are touching each other and located along imaginary azis. 

Proof. First we note that the values y{(a;) and y5(a2) are equal. Hence the 
functional o can be represented in the form 

2 2 oe 
“- Oy, f is , 2k 7 

o =2|p*a'(a,) + Re — =| + ! +Re Ge rl a? aj, (a1) 

=: x0(@1, a2, p) + X1(@1, a2, p) - (a1, a2, p). (4.24) 
For all aj, @2, |a, — a2| > 2r and all z € D, we have 

4 rt 
Tf : < <1. 

(min. <p; |(@1 — @2)(z — a2) — r?|)? ~ (2r? — r?)? 

Since a(Di) C Dj, then |aj.(z)| < 1, Vz € Di, Vk = 1,2,... Thus the series 

w(a1,@2,p) in (4.24) converges for all |p| < 1 uniformly with respect to aj, a2, 
Jay — ag| > 2r. 

It follows from Lemma that all terms in the series u(a),a2,p) are positive. 
Therefore for each fixed |p| < 1 the function w(a1,a2,) possesses its maximal 
values on the boundary of the domain |a; — ag| > 2r, i.e. 

la'(z)| <   

Sse eare) (asa Oe?) iv (01, 42, P)|\9,—aa|=2r° 

From the other side for each fixed p the expressions x0(a1, a2, P), X1(@1, @2, Pp) in 
(4.24) possess their maximal (positive) values on the boundary of the domain |a; — 
a@2| > 2r if aj — ag = +2r and minimal (negative) values on the boundary of the 

domain |a; — ag| > 2r if ay — ag = +2rz. It proves our theorem. O
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5. CONCLUSIONS 

The method of complex potentials is applied to optimal design problems under 
di 

in 

fferent constraints in the case of circular inclusions. 

Examples show that in some cases the optimal configurations for the problems 
a bounded domain or in the whole plane can be obtained either in the case of 

symmetric location of the inclusions or in the case of percolation, i.e., when the 
inclusions either touch each other or the boundary of the matrix. 
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