Многие из указанных команд открывают свой окна со своими наборами функций и команд. Для удобства пользователя большинство команд продублировано на панели инструментов (рис. 2, 3).

Литература

1. Игнатюк В.И., Богомолов Д.В. Об учете упругой податливости соединения стержней в узлах в расчетах плоских стержневых систем методом конечных элементов / БГТУ. Брест.2002. 13с. Деп. в БелИСА 24.05.2002 г.. № Д200240.

2. Игнатюк В.И., Богомолов Д.В. О формировании разрешающих уравнений МКЭ в расчетах плоских стержневых систем с учетом упругой податливости узловых соединений // Вестник БГТУ. 2003. № 1: Строи-

тельство и архитектура. С. 70 - 74.

3. Расчет плоских стержневых систем методом конечных элементов с использованием ЭВМ: Методические указания по строительной механике для студ. строит. спец. / В.И. Игнатюк; Брест. политехн. ин-т. Брест, 1990. 42c.

УДК 519.3

игнатов а.ю.

Научный руководитель: доцент Игнатюк В.И.

О РАСЧЕТЕ ПРОСТРАНСТВЕННЫХ РАМ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ С УЧЕТОМ УПРУГОЙ ПОДАТЛИВОСТИ УЗЛОВЫХ СОЕДИНЕНИЙ

В реальных сооружениях соединение стержней в узлах чаще всего не является идеально жестким либо шарнирным, а имеет определенную упругую податливость, которая обычно не учитывается в расчетах, но может существенно влиять на распределение усилий в системах. Для учета этого фактора необходимо в методике расчета учитывать возможность упругой податливости узловых соединений, что и реализовано в полученных авторами зависимостях для метода конечных элементов (МКЭ).

Разрешающие уравнения МКЭ имеют вид [1, 3]

$$[K] \cdot \{\Delta\} = \{P\} \tag{1}$$

где: [K] - матрица жесткости системы; ${}^{\{\Delta\}}$ - вектор перемещений узлов системы; ${}^{\{P\}}$ - вектор внешних узловых нагрузок. При учете упругой податливости присоединения стержней (конечных элементов) к узлам должны быть внесены соответствующие изменения в матрицу жесткости системы [K] и в вектор внешних нагрузок ${}^{\{P\}}$. Матрица жесткости системы формируется [1, 3] из матриц жесткости отдельных конечных элементов (стержней). Вектор узловых нагрузок включает в себя чисто узловые внешние нагрузки, действующие на систему, и узловые силы и моменты от действия на стержни распределенных нагрузок, которые представляются в виде соответствующих векторов узловых нагрузок ${}^{\{P_{\alpha}\}}$. Поэтому учет упругой податливости присоединения стержней к узлам может быть выполнен на уровне определения матриц жесткости и векторов узловых нагрузок конечных элементов.

Пространственный стержневой конечный элемент имеет 12 степеней

свободы, и матрица жесткости его будет иметь размер 12×12, в которой каждый из ее коэффициентов $r_{ik} (i=1...12,\ k=1...12)$ представляет собой реакции на концах КЭ в направлении і-ой связи от единичного перемещения к-ой связи. Вид матрицы жесткости пространственного стержневого элемента при учете упругой податливости присоединения его к узлам получен и представлен в работе [2]. Там же приведены и выражения векторов узловых сосредоточенных нагрузок от действия на стержни равномерно распределенных и распределенных по треугольному закону нагрузок при учете упругой податливости присоединения элементов к узлам в местной системе координат. Комбинация этих случаев позволяет получить зависимости и для трапециидально распределенных нагрузок на стержни.

Преобразование матриц жесткости и векторов внешних нагрузок конечных элементов из местных в общую систему координат производится

$$[K_{\tau}] = [T_{\alpha}]^{T} \cdot [K'_{\tau}] \cdot [T_{\alpha}]; \qquad \{P_{\alpha\tau}\} = [T_{\alpha\tau}]^{T} \{P'_{\alpha\tau}\},$$

с помощью выражений [1] $[K_{r}] = [T_{\alpha}]^{r} \cdot [K'_{s}] \cdot [T_{\alpha}]; \qquad \{P_{qs}\} = [T_{\alpha}]^{r} \{P'_{qs}\},$ где: $[K'_{s}]$, матрица жесткости S-го элемента соответственно в местной и общей системах координат; $[T_{\alpha}]$, $[T_{\alpha}]^T$ - обычная и транспонированная матрицы преобразования координат (из местной системы в глобальную) для s-го элемента; $\{P'_{qs}\}$, $\{P_{qs}\}$ вектора узловых сосредоточенных сил соответственно в местной и глобальной системах координат от действия на элемент распределенных нагрузок [2].

Процедура формирования матрицы жесткости системы из матриц же-

сткости ее элементов описана в работе [1].

После определения перемещений узлов из решения системы уравнений (1) усилия в элементах сооружения (в местной системе координат) определяются с помощью зависимости

$$\{r_s'\} = [K_s'] \cdot [T_{\infty}] \cdot \{A_s\} - \{P_{gs}'\},$$
 (3) где: $\{\Delta_s\}$ - перемещение узлов рассматриваемого элемента. Расчет систем методом конечных элементов выполняется [1] в соот-

ветствии со следующим алгоритмом:

1. Определение расчетной дискретной модели заданной стержневой системы (разделение ее на конечные элементы (КЭ), назначение узлов) и описание ее структуры (нумерация узлов и стержней).

2. Выбор общей и местных систем координат и определение

координат узлов в общей системе координат.

3. Составление матрицы перемещений узлов расчетной дискретной: модели системы $\{\Delta\}$.

одели системы ^{сел}. 4. Идентификация конечных элементов (определение их типов, длин, жесткостей и установление соответствия между номерами стержней и

номерами начального и конечного узлов КЭ).

5. Преобразование внешних нагрузок (преобразование пролетных равномерно распределенных нагрузок на стержни к узловым нагрузкам, преобразование сосредоточенных узловых сил из местных систем в общую систему координат, определение суммарных узловых сил в

🐰 каждом узле дискретной модели).

6. Построение матриц жесткости конечных стержневых элементов $\lfloor K_s' \rfloor$

в местных системах координат.

7. Определение для каждого конечного элемента направляющих синусов и косинусов и составление матриц преобразования $[\Gamma_{ca}]$.

8. Получение матриц жесткости элементов $[K_i]$ в общей системе координат (2).

9. Формирование матрицы жесткости [к] всей системы в общей системе координат.

10. Получение системы разрешающих уравнений путем учета

граничных условий (наличия опорных связей).

11. Решение системы разрешающих уравнений и определение узловых перемещений $\{\Delta\}$ расчетной модели.

12. Определение усилий $\{r_s'\}$ в конечных элементах (3), построение

эпюр внутренних усилий в системе.

Рассмотрим пространственную раму, представленную на рис. 1, жесткости стержней в которой приняты равными: $EJ_y = EJ_z = 1\cdot 10^6$ кН·м; $GJ_{\kappa\mu} = 1\cdot 10^6$ кН·м; $EA = 1\cdot 10^7$ кН. На рис. 1 показаны также разбивка рамы как дискретной модели на конечные элементы (пять КЭ) и выбор узлов их соединения между собой и с основанием. Учитывая, что каждый узел в пространственной системе (а их шесть) имеет шесть степеней свободы, получим для рассматриваемой рамы 36 возможных независимых перемещений узлов (6×6). Учитывая граничные условия (наличие жестких опор в узлах 1, 3, 5, и 6), часть перемещений узлов будем иметь равными нулю. Останутся для определения 12 перемещений узлов 2 и 4. В результате получим систему 12-ти разрешающих уравнений.

Для расчета рассматриваемой рамы методом конечных элементов согласно выше изложенному алгоритму, включая вычисление матриц жесткости конечных элементов в местной и в общей системах координат, формирование матрицы жесткости [К] расчетной дискретной модели, решение систем уравнений и вычисление усилий в стержнях рамы, составлена

программа в компьютерной математической среде «Mathcad 2000».

С использованием этой программы выполнены расчеты рамы при изменении величины жесткости в 11-ой связи c_{11} , то есть жесткости угловой связи относительно оси y_3 (или оси х общей системы координат), соединяющей третий стержень с узлом 4. Величины жесткостей всех остальных связей приняты равными бесконечности, что соответствует жесткому соединению стержней в узлах. Результаты расчета ряда усилий в раме представлены в таблице, где обозначено: M_3^{3en} , M_3^{3pon} — изгибающие моменты относительно оси y_3 соответственно на левом и правом концах третьего стержня (рис 1); N_1 , N_2 , N_3 , N_4 , N_5 — продольные силы соответственно в первом, втором, третьем, четвертом и пятом стержнях расчетной схемы рамы (рис: 1).

g protection of the contraction of the contraction

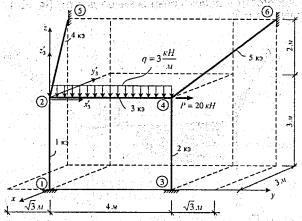


Рис. 1. Расчетная схема рамы

Вид эпюры изгибающих моментов относительно осей y' местных систем координат стержней в раме при $c_{11} = \infty$, соответствующем жесткому соединению и третьего стержня с узлом 4, показан на рис. 2. На рис. 3 - 7 представлены графики изменения усилий M_3^{new} , M_3^{new} , N_1 , N_2 , N_3 , N_4 , N_5 от величины жесткости 11-ой связи c_{11} . Анализ полученных результатов.

Величины усилий в сечениях рамы в зависимости от жесткости 11-й связи позволяет сделать следующие выводы:

	100		1.0	4 + 75 %				
C ₁₁	lg c ₁₁	М 3 ген кН · м	М ₃ ^{пран} , кН∙м	N ₁ , κΗ	N ₂ , кН	№, кН	N ₄ , кН	№, кН
∞	∞ .	0,632	5,93	2,003	9,69	8,327	6,199	5,898
	8	0,632	5,93	2,003	9,69	8,327	6,199	5,898
10 ⁵	5	0,641	5,897	2,011	9,68	8,33	6,205	5,904
10⁴	4	0,726	5,617	2,084	9,591	8,358	6,254	5,946
5·10 ³	3,7	0,81	5,536	2,157	9,503	8,386	6,302	5,989
2.103	3,3	1,02	4,638	2,339	9,283	8,454	6,423	6,096
103	3	1,27	3,809	2,555	9,022	8,536	6,560	6,223
800	2,9	1,364	3,496	2,637	8,924	8,567	6,62	6,271
500	2,7	1,571	2,805	2,817	8,707	8,635	6,740	6,377
300	2,48	1,791	2,076	3,007	8,477	8,707	6,865	6,489
200	2,3	1,944	1,567	3,139	8,317	,×8,757 ·	6,953	6,567
100	2	2,144	0,903	3,312	8,108	8,822	7,068	6,668
50	1,70	2,268	0,488	3,42	7,977 <i>∞j</i>	8,863	7,14	6,732
-30	1,48	2,324	0,303	3,468	7,919	8,881	7,172	6,76
10	1	2,412	0,105	3,52	7,857	8,901	7,206	6,79
1	0	2,413	0,011	3,545	7,827	8,91	7,222	6,805
0,5	0,5	2,415	0,0053	3,546	7,825	8,911	7,223	6,806
0,1	0,1	2,415	0,001	3,547	7,824	8,911	7,224	6,806
0,01	0,01	2,415	0,001	3,547	7,824	8,911	7,224	6,806
0	0	2,415	0 .	3,547	7,824	8,911	7,224	6,806

⁻ при изменении жесткостей связей от нуля до бесконечности распределение усилий в раме изменяется от варианта рамы с шарнирным соединением в соответствующей связи до рамы с жестким соединением в этой связи;

- при жесткости угловой связи меньше десяти (lg 10=1) ее можно принимать шарнирной;

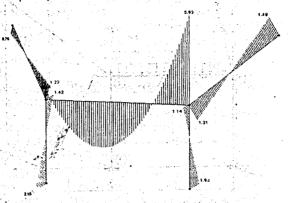


Рис. 2. Эпюра М_и

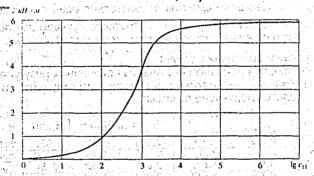


Рис.: 3. Зависимость величин правого момента относительно оси ^у в третьем стержне от жесткости 11-ой связи

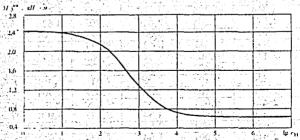


Рис. 4. Зависимость величин левого момента относительно оси У в третьем стержне от жесткости 11-ой связи

PROCESS CONSTRUCTIONS SEE SERVED AND PROPERTY.

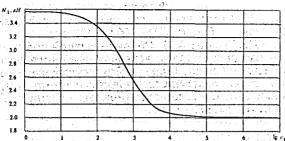


Рис. 5. Зависимость величины продольных сил в первом стержне от жесткости 11-ой связи кН м

- при жесткости угловой связи более 100000 $^{-M}$ (lg 10 5 =5) упругую связь можно считать абсолютно жесткой (c = $^\infty$);

- при изменении величины жесткостей связей от 10 до 100000 М ((lg c =1÷5) следует учитывать в расчетах упругую податливость таких связей;

наличие упругой податливости угловой (изгибной) связи влияет на перераспределение не только изгибающих моментов, но и всех остальных усилий; при этом изменение этих усилий, как видно из рис. 3 - 7, может быть довольно существенным;

- поэтому при наличий упругой податливости связей необходимо определять ее величину и оценивать ее влияние на распределение усилий

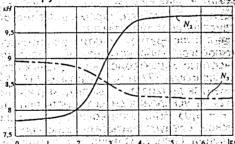


Рис. 6. Зависимость величин продольных сил во втором и третьем стержнях от жесткости 11-ой связи

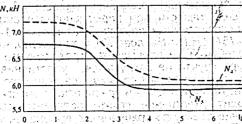


Рис. 7. Зависимость величин продольных сил в четвертом и пятом стержнях от жесткости 11-ой связи

1. Игнатюк В.И. Метод конечных элементов в расчетах стержневых

систем: Уч. пособие. - Брест: БГТУ, 2004. - 172 с.

2. Игнатюк В.И., Игнатов А.Ю. Об учете упругой податливости узловых соединений в расчетах методом конечных элементов пространственных стержневых систем // Вестник Брестского государственного технического университета. - 2004. - № 1(19): Строительство и архитектура. - С. 118 -122.

3. Масленников А.М. Расчет строительных конструкций численными

методами. - Л.: ЛГУ, 1987. - 224 с.

УДК 624.131.551.5 КАЗИМИРОВ А.Н.

Научный руководитель: доцент Климук А.М. ОБЗОР МЕТОДОВ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ СВОЙСТВ ГРУНТОВЫХ ОСНОВАНИЙ

Еще в 40-х годах Д.Д.Барканом /1/ были проведены опыты, в которых исследовался сдвиг песка по песку при передаче динамических воздействий образцу через жесткий штамп, одновременно служивший для создания статической нагрузки на грунт. Результаты опытов Д.Д.Баркана показали, что с увеличением интенсивности динамических воздействий наблюдается значительное уменьшение сопротивления грунта сдвигу. Им получена зависимость некоторого эффективного коэффициента трения (отношение сдвигающего усилия к статической нагрузке, передаваемой на грунт со стороны жесткого штампа) от величины ускорения колебаний и был сделан вывод, что с увеличением ускорения колебаний коэффициент внутреннего трения уменьшается, стремясь ассимптотически к неко-

торому пределу; зависящему от вида грунта.

Д.Д.Баркан /1/ ввел в литературу понятие о критическом ускорении, которое он назвал "порогом виброуплотнения". Влияние критического ускорения на прочностные характеристики песчаных грунтов исследовалось также Н.Н.Масловым /2/ и В.А.Ершовым /3/. Данные авторы в результате экспериментов приходят к выводу, что критическое ускорение составляет 10-12% от ускорения силы тяжести при статическом нормальном давлении Р = 0,05 МПа. При колебаниях с ускорением, превышающем критическое, следует учитывать возможность существенного снижения сопротивления сдвигу. Однако Н.Н.Ермолаев и Н.В.Сенин /4/ считают, что снижение сопротивления сдвигу песчаного грунта происходит при значительно больших ускорениях, превышающих 50% от ускорения силы тяжести при нормальном давлении 0,05 МПа и даже равных ускорению силы тяжести при нормальном давлении 0,15 МПа.

На основании многочисленных опытов Д.Д.Баркана /1/, В.А.Ершова /3/, О.А.Савинова /5/ и Н.Н. Маслова /2/ установлено, что до тех пор, пока ускорение колебаний не превышает определенного критического значения, структура грунта не изменяется, уплотнения и осадки не происходит, сопротивление сдвигу сохраняется таким же, как при отсутствии колебаний. При превышении критического значения ускорения колебаний происходит уплотнение грунта, появляется осадка, уменьшается сопротивление сдвигу по сравнению с его значением при статических нагрузках. Таким образом, данные авторы под критическим ускорением колебаний понимают наибольшее ускорение колебаний, при