МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Кафедра высшей математики

ВЫСШАЯ МАТЕМАТИКА ОБЩИЙ КУРС

Контрольные работы №3, №4)

Методические указания и варианты заданий для студентовзаочников экономических специальностей

Второе издание, переработанное

В соответствии с действующей программой для студентов-заочников і курса экономических специальностей подобраны индивидуальные задания к двум контрольным работам и даны решения типовых вариантов к каждой из них.

Составители: Тузик Т.А., доцент Тузик А.И., профессор, к.ф.-м.н.,

Рецензент: зав. кафедрой высшей математики Брестского государственного университеляма, А.С.Пушкина,

Общие методические указания

Основной формой изучения курса высшей математики для студентовзаочников является самостоятельная работа с учебниками, учебными пособиями, сборниками задач и упражнений, справочниками. Список основных и наиболее доступных их них приводится в конце пособия.

Изучение любого раздела курса следует начинать с конспекта установочных лекций, соответствующих глав учебника, учебного пособия или руководства к решению задач, в которых имеется необходимая теория, приводятся расчетные формулы и решения задач по темам. После этого, по аналогии с решением типового варианта к контрольной работе, можно приступать к решению самой контрольной работы.

Номер варианта контрольной работы совпадает с двумя последними цифрами номера зачетной книжки (шифра).

При выполнении контрольной работы следует руководствоваться следующими требованиями:

- Контрольная работа должна быть выполнена и представлена на проверку в срок, предусмотренный учебным планом.
- Контрольную работу желательно выполнять в отдельной тетради, оставляя поля для замечаний рецензента.
- 3. Условия всех задач нужно записывать полностью, а их решения располагать в порядке номеров, указанных в заданиях.
- 4. В конце работы надо указать перечень использованной литературы, поставить подпись и дату.
- 5. В случае, если работа «не допущена к защите», студент в этой же тетради должен исправить все отмеченные оппибки и недочеты к представить ее на повторное рецензирование.

В случае необходимости студент может обращаться за консультациями к преподавателю кафедры, проверяющему контрольные работы в группе, лектору потока, либо к преподавателям, проводящим консультации студентов-заочников по графику, утвержденному на кафедре.

Вопросы учебной программы И семестр

- 1. Функции нескольких переменных. Определение и вычисление частных производных,
- 2. Полный дифференциал функции нескольких переменных и его применение в приближенных вычислениях.
- 3. Частные производные высших порядков. Теорема о равенстве смещанных производных.
- 4. Производная по направлению. Градиент и его свойства.
- 5. Экстремум функции нескольких переменных. Необходимые условия экстремума. Достаточные условия экстремума для функции двух переменных, Метод наименьших квадратов.
- Определение и свойства неопределенного интеграла. Таблица неопределенных интегралов.
- Замена переменных и интегрирование по частям в неопределенном интеграле.
- 8. Определенный интеграл как предел интегральной суммы и его основные свойства.
- 9. Определенный интеграл с переменным верхним пределом. Формула Ньютона-Лейбница.
- 10. Замена переменных и интегрирование по частям в определенном интеграле. Несобственные интегралы с бесконечными пределами.
- 11. Вычисление площадей и длин дуг кривых в декартовых координатах, в параметрическом виде, в полярных координатах.
- 12. Теорема о существовании и единственности решения задачи Коши для дифференциального уравнения (ДУ) 1-го порядка. ДУ с разделяющимися переменными. Линейные ДУ 1-го порядка.
- 13. Структура общего решения линейного однородного ДУ 2-го порядка. ЛОДУ 2-го порядка с постоянными коэффициентами.
- 14. Структура общего решения ЛНДУ 2-го порядка. ЛНДУ 2-го порядка с постоянными коэффициентами со специальной правой частью.
- 15. Числовые ряды. Основные понятия (сумма ряда, сходимость, расходимость). Необходимый признак сходимости ряда.
- Достаточные признаки сходимости ряда с положительными членами.
 Признаки Д'Аламбера и Коши.
- 17. Интегральный признак Коши сходимости ряда. Сходимость обобщенного гармонического ряда (ряда Дирихле).
- 18. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимости знаконеременного ряда.
- 19. Область сходимости степенного ряда.

КОНТРОЛЬНАЯ РАБОТА № 3

Задание 1. Найти неопределенные интегралы следующих функций:

	pinane and a second	
1.	a) $\int \left(3x^6 + \frac{4}{x} + \sqrt[5]{x^2} - \frac{2}{x^4}\right) dx$;	$6) \int \frac{\ln x}{x^2} dx.$
2.	a) $\int \left(5x^3 - \frac{8}{x^2} + 4\sqrt{x} + \frac{1}{x}\right) dx$;	$6) \int (2x-3)\sin 4x dx.$
3.	a) $\int \left(7\sqrt{x^5} - \frac{2}{x^5} - 3x^4 + \frac{4}{x}\right) dx$;	$6) \int (x^2 + x) e^x dx.$
4.	a) $\int \left(3x^4 + \sqrt[5]{x^3} - \frac{2}{x} - \frac{4}{x^3}\right) dx$;	6) $\int x \sin(2x-3) dx.$
5.	a) $\int \left(6x^3 - \frac{5}{x} + 3\sqrt{x^5} - \frac{7}{x^4}\right) dx$;	$6) \int (4x+3)\cos 3x dx.$
6.	a) $\int \left(2x^5 - \frac{4}{x^3} + \frac{6}{x} + 3\sqrt{x}\right) dx$;	$6) \int (3x-1)\cos 2x dx.$
7.	a) $\int \left(2\sqrt{x^3} - \frac{7}{x} + 6x^2 - \frac{2}{x^5}\right) dx$;	$6) \int (x-7)e^{2x} dx.$
8.	a) $\int \left(6x^5 + \frac{5}{x} - \sqrt[3]{x^7} - \frac{7}{x^6}\right) dx$;	6) $\int (x-4)\cos 3x dx.$
9.	a) $\int \left(4x^5 + \frac{3}{x} - \sqrt[5]{x^2} - \frac{2}{x^4}\right) dx$;	$6) \int (2x-5)e^x dx.$
10.	a) $\int \left(3x^8 + \frac{4}{x} - \sqrt[4]{x^3} - \frac{2}{x^5}\right) dx$;	6) $\int \ln(x+2) dx$
11.	a) $\int \left(4x^2 - \frac{3}{x} - \sqrt{x^7} - \frac{3}{x^6}\right) dx$;	$6) \int (3x+4)\sin x dx.$
12.	a) $\int \left(8x^3 + \frac{6}{x^4} - \sqrt[6]{x^5} + \frac{7}{x^3}\right) dx$;	$6) \int (4x-3)\cos 2x dx.$
13.	a) $\int \left(5x^2 - \sqrt[3]{x^4} + \frac{4}{x^3} - \frac{3}{x}\right) dx$;	$6) \int (3x+5)\sin x dx.$
14.	a) $\int \left(3x^5 - \frac{4}{x} - \sqrt{x^5} + \frac{10}{x^5}\right) dx$;	$6) \int (8x-2)\cos 4x dx.$

		and the commence of the commen
15.	a) $\int \left(5x^4 - \frac{8}{x^2} + 4\sqrt{x} - \frac{1}{x}\right) dx$;	6) $\int (4x-1)e^{-x} dx$.
16.	a) $\int \left(4x^5 - \frac{3}{x} - \sqrt[5]{x^7} + \frac{6}{x^2}\right) dx$;	$6) \int (x+3)\sin 2x dx.$
17.	a) $\int \left(\sqrt[4]{x^5} - \frac{5}{x} + \frac{4}{x^3} + 3x^4 \right) dx$;	$f) \int (2x+4)\cos 6x dx.$
18.	a) $\int \left(8x^5 - \frac{4}{x^4} + \frac{3}{x} - \sqrt[4]{x^5}\right) dx$;	$6) \int (x-6)\sin\frac{x}{2}dx.$
19.	a) $\int \left(\frac{7}{x} + \frac{4}{x^3} - \sqrt[3]{x^5} - 2x^6\right) dx$;	$6) \int (3x+2)\cos 6x dx.$
20.	a) $\int \left(\frac{6}{x^4} - \frac{3}{x} + 3x^3 - \sqrt{x^7}\right) dx$;	6) $\int \frac{\ln x}{\sqrt{x}} dx$.
21.	a) $\int \left(8x^3 - \frac{4}{x} - \frac{6}{x^4} + \sqrt[9]{x^2}\right) dx$;	6) $\int (4x-5)e^{x/2} dx$.
22.	a) $\int \left(4x^3 + \frac{3}{x} - \sqrt[5]{x^4} - \frac{3}{x^4}\right) dx$;	$6) \int (6x+1)\cos\frac{x}{2}dx.$
23.	a) $\int \left(7x^4 + \frac{4}{x} - \sqrt[6]{x^5} + \frac{8}{x^6}\right) dx$;	$6) \int (2x-8)\sin x dx.$
24,	a) $\int \left(\sqrt[4]{x^3} + \frac{5}{x} - \frac{6}{x^5} - 5x^4 \right) dx$;	$6) \int \sqrt{x} \ln x dx.$
25.	a) $\int \left(3\sqrt{x} - \frac{4}{x^5} + 6\sqrt[3]{x^2} - \frac{7}{x}\right) dx$;	$\int (8-x) e^{-2x} dx.$
26.	a) $\int \left(9x^5 - \frac{6}{x} - \frac{5}{x^4} + \sqrt[5]{x^7}\right) dx$;	$6) \int \left(x + \frac{1}{2}\right) \sin \frac{x}{4} dx.$
27.	a) $\int \left(\frac{3}{x^3} + \frac{8}{x} - 2\sqrt{x^3} + 5x^4\right) dx$;	6) $\int \left(x - \frac{1}{4}\right) \cos \frac{x}{8} dx.$
28.	a) $\int \left(4\sqrt[4]{x^3} - \frac{6}{x} - \frac{4}{x^5} - 3x^7\right) dx$;	$\int \ln(x+4)dx.$
29.	a) $\int \left(10x^4 + 3\sqrt{x^5} - \frac{4}{x} - \frac{5}{x^4}\right) dx$;	6) $\int (2x+3)e^{-4x} dx$.
30.	a) $\int \left(5x^3 + \frac{6}{x^3} - \sqrt[3]{x^8} - \frac{6}{x^5}\right) dx$;	$\int \int (x+2)\cos\frac{x}{4}dx.$

Задание 2. Найти среднее значение издержек производства $K(x) = ax^2 + bx + c$, выраженных в денежных единицах, если объем продукции x меняется от x_1 до x_2 единиц. Указать объем продукции, при котором издержки принимают среднее значение.

Вариант	a	ь	С	x_I	<i>x</i> ₂
1	3	4	5	1	3
2	6	2	1	0	4
3	3	6	3	2	6
4	9	8	4	0	8
5	6	4	3	1	7
6	4	3	2	2	5
7	3	8	2	3	6
8	6	2	7	2	7

Определить запас товаров на складе, образуемый за n дней, если поступление товаров характеризуется функцией $f(t) = at^2 + bt + c$.

Bap.	9	10	11	12	13	14	15
а	12	3	15	9	6	3	12
b	2	6	4	4	2	2	4
С	3	7	1	3	10	8	2
n	2	3	5	4	6	3	5

Определить объем продукции, произведенный рабочим за n-ный час, если производительность труда задана функцией $f(t) = \frac{at+b}{ct+d}$.

Bap.	16	17	18	19	20	21	22	23
n	3	1	2	4	2	1	3	4
a	12	20	10	4	9	24	24	4
b	9	8	10	5	4	11	20	18
c	3	4	5	4	3	6	4	2
d	2	1	3	3	1	2	3	7

Найти полные издержки производства, если объем продукции x=a единицам, а зависимость издержек от общего объема имеет вид $K(x) = bx^3 + cx^2 + dx$.

Bap.	24	25	. 26	27	28	29	30
а	48	12	36	60	42	24	36
b	1	1	1	1	1	4	3
с	3	6	9	3	2	3	t en le
d	-4	3	-2	8	-2	12	-10

Задание 3. Дана функция $z = ax^3 + bx^2y + cxy^2 - 2axy + 3by + c$, точка $A(x_0, y_0)$, вектор $\vec{a} = (l, m)$. Найти:

- 1) эластичности $E_{x}(z)$ и $E_{y}(z)$ в точке $A(x_{0}; y_{0});$
- 2) матрицу Гессе функции z в точке A и вычислить ее определитель;
- 3) градиент функции z в точке А;
- 4) производную функции z в точке A по направлению вектора $\vec{a} \approx (l;m)$.

Вар.	Ü	<i>b</i>	C	x ₀	orania de la comencia del la comencia de la comencia del la comencia de la comenc	T I	m
1	1	1	3	4	1	4	3
2	2	1	2	2	1	4	-3
3	2	3	L	1	2	-4	3
4	4	2	. 3	-1	ha ha bhaile a h-imheann a thealann an caitheach Canaille an an Aireann an Aireann an Aireann Canaille an Aireann a	-4	-3
5	3	2	4	-1	-2	3	4
6	2	4	3	1	w I	-3	4
7	3	2	1	1	-2	3	-4
8	1	2	3	3	1	-3	-4
9	4	2	3	1	3	4	3
10	1	4	1	2	1	~3	4
11	4	1	2	1	2	5	12
12	2	4	3	2	1	5	-12
13	3	2	4	. 1	3	-5	12
14	3	1	2	3	1	-5	-12
15	1	4	2	-2	1	12	5
16	3	1	1	-2	-2	12	-5
17	3	2	. 5	3	1	-12	-5
18	1	2	3	2	I	-12	5
19	3	2	4	1	3	5	12
20	2	1	3	2	2	12	5
21	1	4	2	2	3	8	6
. 22	1	3	2	2	4	-8	6

Вар.	а	b	c	Χø	y_{θ}	1	m
23	4	3. 2	3	4	2	-8	-6
24	3	2	1	4	3	8	-6
25	3	4	2	4	1	6	. 8
26	1	2	1	1	3	-6	8
27	. 1	2	3	3	4	-6	-8
28	3	2	2	1	1	4	3
29	1	4	2	2	2	5	12
30	3	3	1	1	3	6	8

Задание 4. Производится два вида товаров, цены которых соответственно равны p_1 и p_2 . Функция затрат, связанных с производством этих товаров, имеет вид $C = ax^2 + bxy + cy^2$, где x и y соответственно количества товаров первого и второго видов. Требуется:

- 1) составить функцию прибыли и найти ее максимальное значение;
- проверить известное правило экономики: предельная стоимость (цена) товара равна предельным издержкам на производство этого товара.

Вар.	1	2	3	4	5	6	7	8	9	10
a	0,45	0,20	0,25	0,30	0,35	0,40	0,05	0,10	0,15	0,20
ь	0,50	0,20	0,30	0,20	0,10	0,50	0,10	0,20	0,10	0,30
с	0,25	0,10	0,15	0,20	0,15	0,20	0,35	0,15	0,20	0,15
p_I	18	16	70	-24	19	34	28	18	16	31
p_2	12	10	60	11	7	23	58	22	24	29

Bap.	11	12	13	14	15	16	17	18	19	20
а	0,25	0,30	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40
b	0,20	0,30	0,20	0,10	0,10	0,20	0,30	0,40	0,50	0,30
c	0,15	0,20	0,25	0,20	0,04	0,35	0,45	0,15	0,20	0,55
p_I	49	48	17	11	14	24	33	20	37	19
p_2	38	45	41	.9	7	30	45	14	29	17

Вар.	21	22	23	24	25	26	27	28	29	30
а	0,15	0,20	0,25	0,30	0,35	0,40	0,17	0,35	0,10	0,12
Ъ	0,20	0,20	0,10	0,20	0,02	0,20	0,20	0,30	0,20	0,10
с	0,10	0,10	0,06	0,50	0,25	0,10	0,15	0,10	0,35	0,25
p_I	9	14	10	9	18	11	21	31	6	6
p_2	7	10	4	17	13	5	16	14	12	19

Задание 5. Найти величины спроса x и y на два вида товара, цены которых соответственно равны p_1 и p_2 , сели потребитель при ограниченном бюджете K стремится максимизировать функцию полезности (функция Кобба-Дугласа)

$$F(x,y) = x^{\frac{mp_1}{p_1+p_2+1}} \cdot y^{\frac{p_2}{p_1+p_2+1}}$$
, где $m-$ некоторый параметр.

При найденном оптимальном спросе указать наибольшее значение функции F(x, y).

Вар.	1	2	3	4	5	6	7	8	9	10
p_{I}	5	13	. 7	4	5	6	5	8	12	10
p_2	9	7	13	6	15	11	15	11	8	20
K	640	528	600	200	600	832	400	460	800	660
m	3	2	1	3,5	3	2,5	2	1,5	1	0,5

Bap.	11	12	13	14	15	16	17	18	19	20
p_I	7	12	14	10	7	14	11	20	4	15
p_2	8	10	12	8	15	10	9	16	7	9
K	300	448	800	792	720	590	560	1056	540	468
m	1	1,5	2	2,5	3	3,5	3	2,5	2	2

Bap.	21	22	23	24	25	26	27	28	29	30
p_I	11	8	10	21	7	6	13	6	4	6
p_2	10	14	12	18	9	19	12	6	9	18
K	795	988	544	480	954	680	1360	360	1104	918
m	1,5	1,5	2	2	2,5	2,5	3	3	3,5	1,5

Задание 6. Выпуск некоторым предприятием промышленной продукции (Y) по годам (X) характеризуется следующей таблицей:

	X	1	2	3	4	5	6	7	
У (у	сп.ед.)	y_i	y ₂	V3	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	y 7	

По методу наименьших квадратов составить линейную зависимость y = ax + b, отражающую рост объема продукции за семь лет, дать прогноз по объему выпуска на восьмой год. Сделать чертеж.

Вар.	<i>y</i> ₁	y_2	<i>y</i> ₃	. y ₄	<i>y</i> ₅	<i>y</i> 6	y 7
1	6,3	9,5	13,9	16,1	20,2	24,1	25,0
2	6,1	12,5	15,6	21,2	24,3	25,0	27,3
3	6,2	9,8	12,1	16,0	20,0	23,9	25,6
4	5,2	8,1	10,6	13,7	16,7	20,1	21,3
5	5,8	6,4	8,7	7,5	12,3	14,1	15,0
6	5,7	8,3	9,2	9,4	12,8	13,0	14,6
7	7,4	8,1	9,9	10,2	13,6	12,5	14,0
8	5,3	6,2	9,1	10,0	12,7	14,3	16,2
9	10,0	15,6	17,2	18,4	19,4	20,5	22,9
10	16,1	17,4	18,5	19,3	20,2	21,9	23,4
11	14,7	15,4	17,2	16,9	18,3	19,5	20,5
12	12,1	13,6	14,2	15,4	16,8	15,3	17,8
13	13,7	15,3	14,2	16,1	16,4	17,5	17,8
14	12,6	14,5	15,2	17,6	18,8	17,3	19,2
15	15,2	16,6	16,3	17,4	18,8	19,3	20,5
16	18,2	20,7	19,6	23,2	31,4	27,3	32,5
17	19,5	21,4	20,2	24,4	32,1	28,6	34,3
18	16,3	18,6	17,5	21,3	25,2	23,4	29,4
19	17,0	15,9	20,1	22,4	25,2	21,6	24,7
20	19,4	22,7	26,2	24,3	27,7	29,1	26,8
21	18,1	21,0	25,4	23,2	28,4	26,9	30,2
22	20,4	61,6	116,3	168,1	198,9	204,3	253,5
23	10,7	10,6	11,8	12,4	12,2	12,9	14,3
24	10,2	12,3	13,4	14,8	13,9	18,2	19,6
25	10,9	12,4	12,6	13,9	13,0	16,8	15,6
26	13,0	14,1	14,8	16,2	16,8	18,4	17,9
27	14,1	14,9	16,4	17,3	18,2	18,7	20,8
28	11,8	13,2	13,9	14,7	16,2	17,8	19,3
29	12,2	12,8	13,2	14,5	15,1	15,7	17,6
30	10,4	11,6	13,2	14,3	14,8	16,5	19,3

Решение типового варианта контрольной работы № 3

Задание 1.

При нахождении неопределенных интегралов спедует использовать таблицу интегралов основных элементарных функций, свойства интегралов и формулу интегрирования по частям. Приведем некоторые формулы:

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1.$$

$$2. \quad \int \frac{dx}{x} = \ln|x| + C, \quad x \neq 0.$$

3.
$$\int \frac{dx}{ax+b} = \frac{1}{a} \ln |ax+b| + C.$$

4.
$$\int \sin x \, dx = -\cos x + C.$$

$$5. \int \cos x \, dx = \sin x + C.$$

6.
$$\int \sin(ax+b) dx = -\frac{1}{a}\cos(ax+b) + C$$
.

7.
$$\int \cos(ax+b) dx = -\frac{1}{a} \sin(ax+b) + C.$$

$$8. \quad \int e^x dx = e^x + C.$$

9.
$$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C$$
.

Свойства:

1.
$$\int a f(x) dx = a \int f(x) dx, \quad a - \forall const.$$

2.
$$\int (f_1(x) \pm f_2(x)) dx = \int f_1(x) dx \pm f_2(x) dx$$
.

Формула интегрирования по частям

$$\int u(x) dv(x) = u(x) \cdot v(x) - \int v(x) du(x)$$
 или более кратко
$$\int u dv = u \cdot v - \int v du.$$

Найти неопределенные интегралы:

1.
$$\int \left(18x^5 + \frac{10}{x} - \sqrt[5]{x^3} - \frac{12}{x^4}\right) dx = 18 \int x^5 dx + 10 \int \frac{dx}{x} - \int x^{3/5} dx - 12 \int x^{-4} dx = \frac{18}{6} \cdot x^6 + 10 \ln|x| - \frac{x^{3/5+1}}{\frac{3}{5}+1} - 12 \cdot \frac{x^{-4+1}}{-4+1} + C =$$

$$= 3x^6 + 10 \ln|x| - \frac{5}{8}x^{8/5} + \frac{3}{x^3} + C = 3x^6 + 10 \ln|x| - \frac{5}{8}x \cdot \sqrt[5]{x^3} + \frac{3}{x^3} + C.$$

2.
$$\int \frac{\ln x}{x^6} dx = \begin{vmatrix} u = \ln x, & du = (\ln x)' dx = \frac{dx}{x} \\ dv = \frac{dx}{x^6}, & v = \int \frac{dx}{x^6} = \frac{x^{-5}}{-5} = -\frac{1}{5x^5} \end{vmatrix} = -\frac{1}{5x^5} \cdot \ln x -$$

$$- \int \left(-\frac{1}{5x^5} \right) \cdot \frac{dx}{x} = -\frac{\ln x}{5x^5} + \frac{1}{5} \int \frac{dx}{x^6} = -\frac{\ln x}{5x^5} - \frac{1}{25x^5} + C =$$

$$= -\frac{5 \ln x + 1}{25x^5} + C.$$

3.
$$\int (8x+6)\sin 3x \, dx = \begin{vmatrix} u = 8x+6, & du = (8x+6)' \, dx = 8 \, dx \\ dv = \sin 3x \, dx, & v = \int \sin 3x \, dx = -\frac{1}{3}\cos 3x \end{vmatrix} =$$

$$= -\frac{8x+6}{3}\cos 3x - \int \left(-\frac{1}{3}\cos 3x\right) \cdot 8 \, dx = -\frac{8x+6}{3}\cos 3x + \frac{8}{3}\int \cos 3x \, dx =$$

$$= -\frac{8x+6}{3}\cos 3x + \frac{8}{9}\sin 3x + C.$$

4.
$$\int (3x-4)e^{-x/5}dx = \begin{vmatrix} u = 3x - 4, & du = (3x - 4)'dx = 3dx \\ dv = e^{-x/5}dx, & v = \int e^{-\frac{1}{5}x}dx = -5e^{-x/5} \end{vmatrix} =$$

$$= -5e^{-x/5} \cdot (3x - 4) - \int \left(-5e^{-x/5}\right) \cdot 3dx = -5(3x - 4)e^{-x/5} +$$

$$+ 15 \int e^{-x/5}dx = (-15x + 20)e^{-x/5} - 75e^{-x/5} + C = (-15x - 55)e^{-x/5} + C =$$

$$= -5(3x + 11)e^{-x/5} + C.$$

5.
$$\int \ln(x+8) dx = \begin{vmatrix} u = \ln(x+8), & du = \frac{1}{x+8} dx \\ dv = dx, & v = \int dx = x \end{vmatrix} = x \cdot \ln(x+8) - \int \frac{x}{x+8} dx = x \cdot \ln(x+8) - \int \frac{x}{x+8} dx = x \cdot \ln(x+8) - \int (1 - \frac{8}{x+8}) dx = x \cdot \ln(x+8) - \int dx + 8 \int \frac{dx}{x+8} = x \cdot \ln(x+8) - x + 8 \ln(x+8) + C = x \cdot \ln(x+8) - x + C, \qquad x+8 > 0.$$

Замечание 1. При интегрировании неправильных алгебраических дробей вида $\frac{ax+b}{cx+d}$ надо предварительно выделить целую и дробные части.

6.
$$\int \frac{6x+15}{2x+1} dx = \int \frac{(6x+3)+12}{2x+1} dx = \int \frac{3(2x+1)+12}{2x+1} dx = \int \left(3 + \frac{12}{2x+1}\right) dx =$$
$$= \int 3dx + \int \frac{12 dx}{2x+1} = 3x + 6\ln|2x+1| + C.$$

Задание 2. Применение определенного интеграла к решению задач экономического содержания рассмотрим на примерах.

1. Найти среднее значение издержек $K(x) = 24x^2 + 6x + 8$, выраженных в денежных единицах, если объем продукции x меняется от $x_1 = 2$ до $x_2 = 6$ единиц. Указать объем продукции, при котором издержки принимают среднее значение.

$$K_{cp} = \frac{1}{6-2} \int_{2}^{6} K(x) dx = \frac{1}{4} \int_{2}^{6} (24x^{2} + 6x + 8) dx = \frac{1}{4} \left(\frac{24}{3}x^{3} + \frac{6}{2}x^{2} + 8x \right) \Big|_{2}^{6} =$$

$$= \frac{1}{4} (8 \cdot 6^{3} + 3 \cdot 6^{2} + 8 \cdot 6) - \frac{1}{4} (8 \cdot 2^{3} + 3 \cdot 2^{2} + 8 \cdot 2) = 2 \cdot 6^{3} + 3 \cdot 9 +$$

$$+ 2 \cdot 6 - 2 \cdot 2^{3} - 3 - 2 \cdot 2 = 432 + 27 + 12 - 16 - 3 - 4 = 448 (\partial en. ed.)$$

Определим, при каком объеме продукции x > 0 издержки принимают значение 448. Решаем уравнение K(x) = 448.

$$24x^{2} + 6x + 8 = 448, \quad 24x^{2} + 6x + 8 - 448 = 0, \quad 12x^{2} + 3x - 220 = 0.$$

$$D = 3^{2} - 4 \cdot 12 \cdot (-220) = 10569, \quad \sqrt{D} = 102,81,$$

$$x_{1} = \frac{-3 - 102,81}{24} = -\frac{105,81}{24} = -4,41 < 0.$$

Это значение х не подходит по смыслу задачи.

$$x_2 = \frac{-3 + 102,81}{24} = 4,16$$
 (ед. продукции).

Если объем продукции 4,16 усл. единиц, то издержки производства принимают среднее значение 448 ден. ед.

2. Определить запас товаров на складе, образуемый за 7 дней, если поступление товаров характеризуется функцией $f(t) = 12t^2 - 4t + 5$.

Запас товаров на складе обозначим А, тогда

$$A = \int_{0}^{7} f(t)dt = \int_{0}^{7} (12t^2 - 4t + 5) dt = \left(\frac{12}{3}t^3 - \frac{4}{2}t^2 + 5t\right)\Big|_{0}^{7} =$$

$$= 4 \cdot 7^3 - 2 \cdot 7^2 + 5 \cdot 7 = 1372 - 98 + 35 = 1309 \text{ (ед. продукции)}.$$

 Определить объем продукции, произведенной рабочим за п-ый час, если производительность труда задана функцией f(t).

$$n=4$$
, $f(t) = \frac{at+b}{ct+d}$, $a=6$; $b=4$; $c=2$; $d=1$.
 $f(t) = \frac{6t+4}{2t+1} = \frac{(6t+3)+1}{2t+1} = \frac{3(2t+1)}{2t+1} = 3 + \frac{1}{2t+1}$

Продукция, произведенная за четвертый час работы, т.е. за промежуток времени от $t_1 = 3$ до $t_2 = 4$, определяется по формуле

$$V = \int_{t_1}^{t_2} f(t) dt = \int_{3}^{4} \frac{6t + 4}{2t + 1} dt = \int_{3}^{4} \left(3 + \frac{1}{2t + 1}\right) dt = 3t \Big|_{3}^{4} + \frac{1}{2} \int_{3}^{4} \frac{d(2t + 1)}{2t + 1} =$$

$$= 12 - 9 + \frac{1}{2} \ln |2t + 1| \Big|_{3}^{4} = 3 + \frac{1}{2} \ln (2 \cdot 4 + 1) = 3 + \frac{1}{2} \ln \frac{9}{7} = 3 + 0,126 =$$

$$= 3,126 \text{ (усл.ед.)}.$$

4. Зависимость издержек от объема продукции имеет вид $K(x) = x^3 + 9x - 6x$. Найти полные издержки производства, если объем продукции равен a = 72 единицы.

$$P = \int_{0}^{72} K(x) dx = \int_{0}^{72} (x^3 + 9x^2 - 6x) dx = \left(\frac{x^4}{4} + \frac{9}{3}x^3 - \frac{6}{2}x^2\right)\Big|_{0}^{72} =$$

$$= \frac{1}{4} \cdot 72^4 + 3 \cdot 72^3 - 3 \cdot 72^2 = 18 \cdot 72^3 + 3 \cdot 72^2 - 3 \cdot 72^2 = 21 \cdot 72^3 -$$

$$-3 \cdot 72^2 = 3 \cdot 72^2 (7 \cdot 72 - 1) = 15552 \cdot 503 = 7822656 \text{ (ден.ед.)}.$$

Задание 3. Пусть: $a=2;\ b=5;\ c=3;\ x_0=2;\ y_0=1;\ l=2;\ m=3.$ Тогда

$$z = 2x^3 + 5x^2y + 3xy^2 - 4xy + 15y + 3$$
, $A(2;1)$, $\vec{a} = (2;3)$.

1. Находим *частные производные* первого и второго порядка z = f(x, y). При дифференцировании функции z по x переменная y временно считается постоянной; при дифференцировании z по y переменная x считается постоянной.

$$z'_{x} = 6x^{2} + 10xy + 3y^{2} - 4y; \quad z'_{y} = 5x^{2} + 6xy - 4x + 15;$$

$$z''_{xx} = 12x + 10y; \quad z''_{xy} = 10x + 6y - 4; \quad z''_{yy} = 6x.$$

Вычислим значения функции и ее производных в точке А (2;1).

$$\begin{split} z(A) &= 2 \cdot 2^3 + 5 \cdot 2^2 \cdot 1 + 3 \cdot 2 \cdot 1^1 - 4 \cdot 2 \cdot 1 + 15 \cdot 1 + 3 = 16 + 20 + 6 - 8 + 4 + 15 + 3 = 52, \\ z'_x(A) &= (6x^2 + 10xy + 3y^2 - 4y)\Big|_A = 6 \cdot 2^2 + 10 \cdot 2 \cdot 1 + 3 \cdot 1 - 4 \cdot 1 = \\ &= 24 + 20 + 3 - 4 = 43, \\ z'_y(A) &= (5x^2 + 6xy - 4x + 15)\Big|_A = 5 \cdot 4 + 6 \cdot 2 \cdot 1 - 4 \cdot 2 + 15 = 20 + 12 - 8 + 15 = 39, \\ z''_{xx}(A) &= (12x + 10y)\Big|_A = 24 + 10 = 34, \\ z''_{xy}(A) &= (10x + 6y - 4)\Big|_A = 20 + 6 - 4 = 22, \\ z''_{yy}(A) &= (6x)\Big|_A = 12. \end{split}$$

Эластичности функции z по переменным x и y в точке A равны:

$$E_x(z(A)) = \frac{x}{z} \cdot z_x' \bigg|_{A} = \frac{2}{52} \cdot 43 = 1,65;$$

$$E_y(z(A)) = \frac{y}{z} \cdot z_y' \bigg|_{A} = \frac{1}{52} \cdot 39 = 0,75.$$

2. Составим матрицу Гессе функции z в точке A и вычислим ее определитель

$$H(A) = \begin{pmatrix} z''_{xx}(A) & z''_{xy}(A) \\ z''_{xy}(A) & z''_{yy}(A) \end{pmatrix} = \begin{pmatrix} 34 & 22 \\ 22 & 12 \end{pmatrix},$$

$$\det H(A) = \begin{vmatrix} 34 & 22 \\ 22 & 12 \end{vmatrix} = 34 \cdot 12 - 22^2 = 408 - 484 = -76.$$

- 3. Градиент функции z в точке A это вектор $grad\ z = (z_x'(A);\ z_y'(A)) = z_x'(A) \cdot \vec{i} + z_y'(A) \cdot \vec{j}$. В данном случае $grad\ z(A) = 43 \cdot \vec{i} + 39 \cdot \vec{j} = (43;39)$.
- 4. Производная функции z = f(x, y) в точке А по направлению вектора $\vec{a} = (l; m)$ вычисляется по формуле

$$\frac{\partial z(A)}{\partial \bar{a}} = z'_{x}(A) \cdot \cos \alpha + z'_{y}(A) \cdot \cos \beta,$$

где направляющие косинусы $\cos \alpha$ и $\cos \beta$ вектора \bar{a} соответственно равны:

$$\cos \alpha = \frac{l}{\sqrt{l^2 + m^2}}; \quad \cos \beta = \frac{m}{\sqrt{l^2 + m^2}}.$$

Для вектора $\vec{a} = (2;3)$ в силу предыдущих формул получим

$$\cos \alpha = \frac{2}{\sqrt{4+9}} = \frac{2}{\sqrt{13}} = 0,555;$$
 $\cos \beta = \frac{3}{\sqrt{4+9}} = \frac{3}{\sqrt{13}} = 0,832.$

Тогда

$$\frac{\partial z(A)}{\partial \bar{a}} = 43 \cdot \frac{2}{\sqrt{13}} + 39 \cdot \frac{3}{\sqrt{13}} = \frac{86 + 117}{\sqrt{13}} = \frac{203}{\sqrt{13}} = 56,302.$$

Так как производная положительна, то в направлении вектора \vec{a} , при прохождении через точку А функция z возрастает.

3adanue 4. a = 0.25; b = 0.10; c = 0.40; $p_1 = 13$; $p_2 = 26$.

1. Стоимость всего товара равна $P=p_1x+p_2y=13x+26y$, а затраты на производство этих товаров составляют $C=0.25x^2+0.10xy+0.40y^2$. Следовательно, функция прибыли имеет вид $\Pi(x,y)=P-C=13x+26y-(0.25x^2+0.10xy+0.40y^2)$.

Исследуем функцию прибыли на локальный экстремум. Находим частные производные $H'_x(x,y)$ и $H'_y(x,y)$ и приравниваем их нулю. Получаем систему линейных уравнений

$$\begin{cases} \Pi'_x(x, y) = 13 - 0.5x - 0.1y = 0, \\ \Pi'_y(x, y) = 26 - 0.1x - 0.8y = 0. \end{cases}$$

Решаем эту систему

$$\begin{cases} 0.5x + 0.11y = 13, \\ 0.1x + 0.8y = 26. \end{cases} \Rightarrow \begin{cases} 5x + y = 130, \\ x + 8y = 260. \end{cases} \Rightarrow \begin{cases} y = 130 - 5x, \\ x + 8(130 - 5x) = 260. \end{cases}$$

$$-39x = 260 - 8 \cdot 130$$
, $39x = 780$, $x = 20$, $y = 30$.

Точка A (20;30) — *стационарная точка* функции $\Pi(x,y)$. Покажем, что при $x=20,\ y=30$ прибыль будет максимальной.

Находим $\Pi''_{xx} = -0.5$; $\Pi''_{xy} = -0.1$; $\Pi''_{yy} = -0.8$. Составим матрицу Гессе для функции $\Pi(x, y)$ в точке A

$$H(A) = \begin{pmatrix} \Pi''_{xx} & \Pi''_{xy} \\ \Pi''_{xy} & \Pi''_{yy} \end{pmatrix} = \begin{pmatrix} -0.5 & -0.1 \\ -0.1 & -0.8 \end{pmatrix}.$$

Так как $\det H(A) = 0.5 \cdot 0.8 - 0.1^2 = 0.40 - 0.01 = 0.39 > 0$ и элементы матрицы H(A), стоящие на главной диагонали, отрицательны, то точка А является точкой максимума функции $\Pi(x, y)$.

$$\Pi_{\text{max}}(20;30) = 13 \cdot 20 + 26 \cdot 30 - (0,25 \cdot 20^2 + 0,1 \cdot 20 \cdot 30 + 0,4 \cdot 30^2) =$$

= 260 + 780 - (100 + 60 + 360) = 520 (ден. ед.).

Таким образом, чтобы при заданных ценах p_1 и p_2 получить наибольшую прибыль, надо произвести 20 единиц товара первого вида и 30 единиц товара второго вида.

2. Предельная стоимость товара первого вида равна $p_I=13$ (ден. ед.), а предельные издержки на его производство составляют $C_x'(A)=0.5\cdot 20+0.1\cdot 30=10+3=13$ (ден. ед.). Предельная стоимость товара второго вида $p_2=26$, а затраты на производство $C_y'(A)=0.1\cdot 20+0.8\cdot 30=2+24=26$ (ден. ед.).

Таким образом, по двум видам товаров их предельная цена совпадает с предельными затратами на их производство.

Задание 5. Пусть: $p_1 = 6$; $p_2 = 9$; K = 780, m = 5.

Считаем, что величины x, y, p_1 , p_2 , K выражены в определенных единицах.

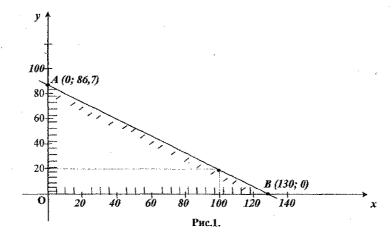
$$\frac{mp_1}{p_1+p_2+1} = \frac{5\cdot 6}{6+9+1} = \frac{30}{16} = \frac{15}{8}, \quad \frac{p_2}{p_1+p_2+1} = \frac{9}{16}.$$

Функция полезности в этом случае имеет вид

$$F(x,y) = x^{15/8} \cdot y^{9/16}.$$

По условию x и y соответственно — количества товаров первого и второго видов, в которых нуждается потребитель ($x \ge 0$ и $y \ge 0$). Общая стоимость этих товаров $p_2x + p_2y = 6x + 9y$. В силу ограниченности бюджета потребителя величиной K = 780 должно выполняться неравенство

$$6x + 9y \le 780$$
 при $x \ge 0$ и $y \ge 0$.


Итак, требуется найти наибольшее значение функции полезности F(x,y) в замкнутой области, определяемой системой ограниченийнеравенств

$$\max F(x, y) = x^{15/8} \cdot y^{9/16},$$

$$\begin{cases} 6x + 9y \le 780, \\ x \ge 0, \\ y \ge 0. \end{cases}$$

Эти ограничения задают на плоскости xOy ΔOAB , внутри которого и на его границе будем искать точку наибольшего значения функции F(x,y).

$$6x + 9y = 780$$
 unu $2x + 3y = 260$,
 $x = 0$, $y = 86,7$; $x = 130$, $y = 0$.

Находим cmayuonaphue точки функции F(x,y) из системы

$$\begin{cases} F'_x(x, y) = 0, \\ F'_y(x, y) = 0. \end{cases}$$

$$F'_x = \frac{15}{8}x^{7/8}y^{9/16}, \quad F'_y = \frac{9}{16}x^{15/8}y^{-7/16}.$$

Очевидно, что частные производные F_x' и F_y' одновременно не могут равняться нулю, т.е. F(x,y) не имеет *стационарных точек* внутри ΔOAB и наибольшее значение функция F(x,y) может принять только на отрезке AB

$$2x + 3y = 260$$
, $y = \frac{260 - 2x}{3}$, $ecnu$ $0 \le x \le 130$.

На отрезке AB функция полезности будет функцией одной переменной

$$F(x) = x^{15/8} \left(\frac{260 - 2x}{3} \right)^{9/16} = \left(\frac{2}{3} \right)^{9/16} x^{15/8} (130 - x)^{9/16}.$$

$$F'(x) = \left(\frac{2}{3}\right)^{9/16} \left(\frac{15}{8}x^{7/8}(130 - x)^{9/16} - \frac{9}{16}x^{15/8}(130 - x)^{-7/16}\right) =$$

$$= \left(\frac{2}{3}\right)^{9/16} \cdot \frac{3}{16}x^{7/8}(130 - x)^{-7/16}\left(10(130 - x) - 3x\right) =$$

$$= \left(\frac{2}{3}\right)^{9/16} \cdot \frac{3}{16}x^{7/8}(130 - x)^{-7/16}(1300 - 13x) = 0 \implies 1300 = 13x,$$

$$x = 100, \quad y = \frac{260 - 2 \cdot 100}{3} = 20.$$

В данной задаче оптимальный спрос на оба товара определяется значениями x = 100, y = 20 (рис. 1).

При этих значениях функция полезности имеет наибольшее значение, равное

$$\max_{(x,y)\in\Delta OAB} F(x,y) = F(100,20) = 100^{15/8} \cdot 20^{9/16} = (x,y)\in\Delta OAB$$
$$= 100^{1,8750} \cdot 20^{0,5625} = 5623,413 \cdot 5,393 = 30327,066.$$

Задание 6. Дана таблица значений x и y. Пользуясь методом наименьших квадратов, составить линейную зависимость y = ax + b. Найти y (8). Сделать чертеж.

ŕ								
	х	1	2	3	4	5	6	7
	y	12,7	15,2	16,4	16,9	19,4	21,3	22,6

Параметры a и b определим, решив систему уравнений

$$\begin{cases} a \cdot \sum_{i=1}^{7} x_i^2 + b \cdot \sum_{i=1}^{7} x_i = \sum_{i=1}^{7} x_i y_i, \\ a \cdot \sum_{i=1}^{7} x_i + 7 \cdot b = \sum_{i=1}^{7} y_i. \end{cases}$$
 (*)

Составим вспомогательную таблицу

1	127		
	12,7	12,7	1
2	15,2	30,4	4
3	16,4	49,2	9
4	16,9	67,6	16
5	19,4	97,0	25
6	21,3	127,8	36
7	22,6	158,2	49
28,0	124,5	542,9	140,0
	5 6 7 28,0	5 19,4 6 21,3 7 22,6	5 19,4 97,0 6 21,3 127,8 7 22,6 158,2

Составляем и решаем систему уравнений (*)

$$\begin{cases} 140a + 28b = 542,9, \\ 28a + 7b = 124,5. \end{cases} \Rightarrow \begin{cases} 140a + 28b = 542,9 \\ -112a - 28b = -498,0. \end{cases} \Rightarrow$$

$$\begin{cases} 28a = 44.9, \\ b = \frac{124.5 - 28a}{7}. \implies a = 1.6; \quad b = 11.4. \end{cases}$$


$$y = 1.6x + 11.4.$$

Таким образом, рост продукции за семь лет характеризуется линейной зависимостью y = 1.6x + 11.4.

Объем выпуска продукции за восьмой год

$$y_8 = y(8) = 1,6 \cdot 8 + 11,4 = 24,2.$$

В системе координат xOy изображаем точки $M_i(x_i, y_i)$ таблицы и проводим прямую y = 1.6x + 11.4 (рис. 2).

Таким образом, выпуск продукции за 1 год ϵ среднем возрастает на 1,6 усл. ед.

КОНТРОЛЬНАЯ РАБОТА № 4

Задание 1. Найти общее или частное (если указано начальное условие) решение следующих дифференциальных уравнений *первого* порядка:

Вар.	
1.	a) $(x - e^{-2x}) dx + (y + e^{2y}) dy = 0$; 6) $y' - ytg x = \frac{1}{\cos^2 x}$, $y(0) = 2$.
2.	a) $xyy' - y^2 = 4$; 6) $y' + \frac{2y}{x} = x^3$, $y(1) = \frac{7}{6}$.
3.	a) $x dy - (y+1) dx = 0$, $y(2) = 5$; 6) $y' + \frac{y}{x} = 2 \ln x + 1$.
4.	a) $y' = 2\sqrt{y} \ln x$, $y(e) = 1$; 6) $y' - \frac{2y}{x+1} = e^x(x+1)^2$.
5.	(a) $y'tgx - y = 4$; (b) $xy' - 2y = x$, $y(1) = 1$.
6.	a) $4(yx^2 + y) dy + \sqrt{5 + y^2} dx = 0$; 6) $y' - \frac{2y}{x} = x^3$, $y(1) = \frac{3}{2}$.
7.	a) $yy'\sqrt{\frac{1-x^2}{1-y^2}}+1=0$; 6) $x^2y'-2xy=1$, $y(1)=5$.
8.	a) $(x^2 + x)y' = 2y + 1$; 6) $xy' - 3y = x^3 + x$, $y(1) = 3$.
9.	a) $(\sin 2x + x) dx + (\cos 2y + y) dy = 0$;
	6) $xy' + 3y = x^3 - 2x$, $y(1) = 2$.
10.	a) $(3 + e^x)yy' = e^x$; 6) $xy' - 3y = 3 - 4x - x^2$, $y(1) = 3$.
11.	a) $y' = \frac{y+1}{x}$; 6) $xy' + 2y = 2 + 3x + x^2$, $y(1) = 3$.
12.	a) $x\sqrt{1+y^2}dx + y\sqrt{1+x^2}dy = 0$; 6) $xy' - 2y = x^3 + x$; $y(1) = 4$.
13.	a) $(2x - \sin 4x) dx + (4y - e^{2y}) dy = 0;$
	6) $y' - \frac{4y}{x} = x^2 - 2x + 3$, $y(1) = -5$.
14.	a) $y'\cos^2 x = y \ln y$, $y\left(\frac{\pi}{4}\right) = e$; 6) $xy' + 2y = x^3 + x^2$.
15.	a) $xyy' - y^2 = 9$; 6) $y' - \frac{4y}{x} = -x^2 + 2x - 3$, $y(1) = 4$.

16. a)
$$(x+1) dy - (y+2) dx = 0$$
; 6) $y' + \frac{2y}{x+1} = (x+1)^2$, $y(0) = \frac{6}{5}$.

17. a) $(e^{3x} - 3x^2) dx - (\sin 2y - 4y^3) dy = 0$; 6) $xy' - 4y = x^3 + 2x^2 - 3x$, $y(1) = 2$.

18. a) $xy' + 4y = 8x - 2$, $y(1) = 0,1$; 6) $(4 + e^x) yy' = e^x$.

19. a) $y' = \frac{y+1}{x+3}$; 6) $xy' - 3y = x^3 - 2x^2 + 5x$, $y(1) = -3$.

20. a) $x\sqrt{4+y^2} dx + y\sqrt{9+x^2} dy = 0$; 6) $xy' + 3y = 5x + 4$, $y(1) = 6$.

21. a) $(x^2 - e^{-4x}) dx - (3y^5 + \sin 3y) dy = 0$; 6) $y' - \frac{2y}{x+2} = e^{3x} (x+2)^2$, $y(0) = 4$.

22. a) $xyy' - y^2 = 16$; 6) $xy' - 3y = x^4 - 2x^3 + 5x$, $y(1) = 5$.

23. a) $x dy - (y+3) dx = 0$, $y(2) = 13$; 6) $y' + \frac{3y}{x} = \frac{4x - 5}{x^2}$.

24. a) $6(x^2y + y) dy - \sqrt{4+y^2} dx = 0$; 6) $xy' - 3y = 4x^3 + 2x^2 + x$, $y(1) = 6$.

25. a) $yy'\sqrt{1-x^2} - \sqrt{1-y^2} = 0$; 6) $xy' - 3y = 4x^3 + 2x^2 + x$, $y(1) = 6$.

26. a) $(x+3)y' = y - 4$, $y(2) = 14$; 6) $xy' + 2y = \frac{2+3x+x^2}{x^2}$.

27. a) $x\sqrt{4+y^2} dx - y\sqrt{1+x^2} dy = 0$; 6) $xy' - 4y = x^3 - 2x^2 + 3x$, $y(1) = -5$.

28. a) $y'\cos^2 x = y \ln y$, $y(\frac{\pi}{4}) = e$; 6) $y' + \frac{4y}{x} = \frac{x^2 - 3x + 1}{x^4}$.

29. a) $(x+1) dy = (y+6) dx$; 6) $y' + \frac{3y}{x+1} = (x+1)^2$, $y(2) = \frac{3}{2}$.

30. a) $(4x^3 - e^{-2x}) dx - (e^{2y} - \sin 3y) dy = 0$; 6) $xy' + 5y = 10x - 4$, $y(1) = 1$.

Задание 2. Найти общее или частное (если указаны начальные условия) решение следующих дифференциальных уравнений второго порядка:

Bap.	
1.	a) $y'' + 4y = 0$; 6) $y'' - 10y' + 25y = 0$, $y(0) = 3$, $y'(0) = -4$;
	B) $y'' + 3y' + 2y = 0$; r) $y'' + y' = (2x - 1)e^x$.
2.	a) $y'' - y' - 2y = 0$, $y(0) = -1$, $y'(0) = 7$; 6) $y'' + 25y = 0$;
	B) $y'' + 4y' + 4y = 0$; r) $y'' - 2y' + 5y = 10\cos 2x$.
	a) $y'' - 3y' = 0$; 6) $y'' - 3y' + 2y = 0$, $y(0) = 2$, $y'(0) = 5$;
	B) $y'' - 4y' + 13y = 0$; r) $y'' - 2y' - 8y = 12\sin 2x - 36\cos 2x$.
	a) $y'' + 7y' = 0$; 6) $y'' - 6y' + 5y = 0$, $y(0) = 3$, $y'(0) = -2$;
	B) $y'' + 2y' + 5y = 0$; r) $y'' - 12y' + 36y = 5\sin 3x$.
5.	a) $y'' - 10y' + 25y = 0$; 6) $y'' + y' - 2y = 0$, $y(0) = 4$, $y'(0) = -2$;
	B) $y'' - 2y' + 10y = 0$; r) $y'' - 3y' + 2y = (34 - 12x)e^{-x}$.
6.	a) $y'' + 9y = 0$, $y(0) = 2$, $y'(0) = 3$; 6) $y'' + 2y' + 17y = 0$;
	B) $y'' - y' - 12y = 0$; r) $y'' - 6y' + 10y = 51e^{-x}$.
	a) $y'' + y' - 6y = 0$, $y(0) = 6$, $y'(0) = -1$; 6) $y'' + 8y' + 16y = 0$;
	B) $y'' - 4y' + 20y = 0$; r) $y'' + 49y = 2\cos 3x - 5\sin 3x$.
8.	a) $y'' - 12y' + 36y = 0$; 6) $y'' - 4y' + 5y = 0$, $y(0) = 2$, $y'(0) = 1$;
	B) $y'' + 2y' - 3y = 0$; r) $y'' + 6y' + 10y = 74e^{3x}$.
	a) $y'' + 3y' = 0;$ 6) $y'' - 5y' + 4y = 0$, $y(0) = 4$, $y'(0) = -2$;
	B) $y'' + 16y = 0$; r) $y'' - 3y' + 2y = 3\cos x + 7\sin x$.
10.	a) $y'' - 6y' + 8y = 0$; 6) $y'' - 6y' + 9y = 0$, $y(0) = -3$, $y'(0) = 2$;
	B) $y'' + 4y' + 5y = 0$; F) $y'' + 100y = 72e^{2x}$.
11.	a) $y'' - 2y' + 10y = 0$; 6) $y'' - 6y' + 9y = (48x + 8)e^{2x}$
	B) $4y'' - 8y' + 3y = 0$, $y(0) = 4$, $y'(0) = 3$; r) $y'' + 8y' + 16y = 0$;
: 1	a) $y'' - 3y' - 10y = 0$, $y(0) = 7$, $y'(0) = -3$; 6) $y'' + 16y = 0$;
	B) $y'' + 10y' + 25y = 0$; r) $y'' - 5y' + 6y = 3\cos x + 19\sin x$.
13.	a) $9y'' + 6y' + y = 0$; 6) $y'' - 4y' - 21y = 0$, $y(0) = -4$, $y'(0) = 6$;
	B) $y'' + y = 0$; $r) y'' + 36y = 2 + 3x - x^2$;
14.	a) $y'' - 6y' + 9y = 0$, $y(0) = 5$, $y'(0) = 2$; 6) $y'' + 4y' + 8y = 0$;
	B) $y'' + 6y' - 7y = 0$; $r) y'' - y = -4\cos x - 2\sin x$.

```
a) y'' - 10y' + 21y = 0, y(0) = 2, y'(0) = 3; 6) y'' - 2y' + 2y = 0;
15.
      B) y'' + 4y' + 4y = 0; r) y'' + 2y' - 24y = 6\cos 3x - 33\sin 3x.
      a) y'' + 6y' + 9y = 0; 6) y'' + 10y' + 29y = 0, y(0) = 6, y'(0) = -3;
16.
      B) y'' - 8y' + 7y = 0; r) y'' + 6y' + 13y = -5\sin 2x.
      a) y'' + 2y' + 26y = 0; 6) y'' + 4y = 3\sin 3x - 2\cos 3x.
17.
      B) y'' + y' - 12y = 0, y(0) = 6, y'(0) = -5; r) y'' - 14y' + 49y = 0;
      a) y'' - 7y' - 8y = 0; 6) y'' + 4y' + 4y = 0, y(0) = 2, y'(0) = -4;
18.
      B) y'' + 4y' + 13y = 0; r) y'' - 4y' + 29y = 7\sin 5x.
      a) y'' - 3y' - 4y = 0, y(0) = -1, y'(0) = 3; 6) y'' + 6y' + 13y = 0;
19.
      B) y'' + 14y' + 49y = 0; r) y'' - 4y' + 5y = 2e^{-3x}.
      a) y'' - 8y' + 16y = 0; 6) y'' - 10y' + 16y = 0, y(0) = -7, y'(0) = 3;
20.
      B) y' + 25y = 0; r) y'' + 16y = 8\cos 4x.

a) y'' - 3y' - 18y = 0; 6) y'' + 2y' + 5y = 0, y(0) = -3, y'(0) = 6;
21.
      B) y'' - 16y' + 64y = 0; r) y'' + 9y = (2x - 5)e^{3x}.
      a) v'' - 2v' - 15v = 0, v(0) = 4, v'(0) = -5; 6) v'' - 6v' + 34v = 0;
22.
      B) y'' - 18y' + 81y = 0; r) y'' - 12y' + 40y = 3e^{6x}.
      a) y'' + 6y' + 25y = 0; 6) y'' + 2y' + y = 0, v(0) = 5. v'(0) = -4:
23.
      B) y'' + 4y' - 12y = 0; r) y'' + 4y = 2\sin 2x + 3\cos 2x.
      a) v'' - 6v' + 8v = 0, v(0) = -4, v'(0) = 3; 6) 4v'' + 4v' + v = 0;
24.
      B) y'' + 10y' + 26y = 0; y'' + 2y' + y = 4e^{2x}.
      a) y'' + 81y = 0, y(0) = 9, y'(0) = -8; 6) y'' - 81y = 0;
25.
      B) y'' + 18y' + 81y = 0; r) y'' - 8y' + 12y = 3x^2 + 5x - 1.
      a) v'' - 18v' + 82v = 0; 6) v'' - 5v' + 4v = 0, v(0) = 4, v'(0) = -5;
26.
      B) y'' - 4y' + 4y = 0; r) y'' + 8y' + 25y = 13e^{5x}.
      a) y'' - 3y' - 4y = 0, y(0) = -3, y'(0) = -4; 6) y'' - 6y' + 10y = 0;
27.
      B) y'' - 20y' + 100y = 0; r) y'' - 9y' + 20y = 3e^{-2x}.
      a) y'' + 8y' + 25y = 0, y(0) = -10, y'(0) = 13; 6) 9y'' + 3y' - 2y = 0;
28.
      B) y'' - 18y' + 81y = 0; r) y'' + 2y' + 37y = 5x^2 - 1.
      a) 6v'' + 7v' - 3v = 0, v(0) = 7, v'(0) = -6; 6) 4v'' - 4v' + v = 0;
29.
      a) y'' + 12y' + 36y = 0, y(0) = 8, y'(0) = -10; 6) y'' - 36y = 0;
30.
      B) y'' - 12y' + 40y = 0; F) 2y'' + 7y' + 3y = 4\cos 3x.
```

Задание 3. Модель роста выпуска продукции в условиях конкуренции. Производится некоторая однородная продукция. Пусть y(t) - количество продукции, реализованной на момент времени t по дене p(y), где p(y) - убывающая функция, т.е. с увеличением объема продукции на рынке цена на нее падает: $\frac{dp}{dy} < 0$. Полученный на этот момент времени доход составит $p(y) \cdot y(t)$ (усл. единиц). Часть дохода, равная $I(t) = m \cdot p(y) \cdot y(t)$, где m — норма инвестиций, 0 < m < 1, расходуется на инвестиции в производство реализуемой продукции.

В результате расширения производства будет получен прирост дохода, часть которого опять инвестируется для расширения выпуска продукции. Это приведет к росту скорости выпуска (акселерации), причем скорость выпуска пропорциональна увеличению инвестиций: $y'(t) = l \cdot I(t)$, где $\frac{1}{l}$ - норма акселерации.

Требуется:

- 1. Составить дифференциальное уравнение, являющееся математической моделью роста выпуска продукции в условиях конкуренции, если p(y) = a by, a > 0, b > 0;
- **2.** Найти решение полученного уравнения, удовлетворяющее начальному условию: $y = y_0$ при t = 0;
- 3. Указать временные границы прогрессирующего роста выпуска продукции (эластичность спроса) и границы замедления (насыщения) роста выпуска (неэластичность спроса);
- 4. Построить найденную интегральную (логистическую) кривую, указав ее точку перегиба;
 - 5. Указать предельный объем производства.

Bap.	1	2	3	4	5	6	7	8	9	10
a	60	15	30	20	45	42	24	18	40	30
b	6	3	3	5	5	3	4	3	5	2
m	0,1	0,4	0,1	0,05	0,2	0,1	0,5	0,5	0,5	0,5
l	0,1	0,5	0,3	0,4	0,1	0,25	0,1	0,1	0,5	0,04
	2	l	2	1	3	2	1	1	2	3

Bap.	11	12	13	14	15	16	17	18	19	20
a	50	60	16	100	48	72	56	50	25	56
b	5	10	2	5	6	6	4	5	5	8
m	0,4	0,2	0,5	0,02	0,05	0,1	0,02	0,1	0,4	0,05
1	0,05	0,05	0,1	0,05	0,2	0,05	0,2	0,4	0,1	0,1
	2	2	1	4	1	2	3	3	2	2

Вар.	21	22	23	24	25	26	27	28	29	30
a	36	75	39	100	27	33	42	36	56	72
b	4	3	3	4	3	3	6	2	7	8
m	0,1	0,1	0,2	0,1	0,02	0,1	0,2	0,2	0,1	0,1
l	0,5	0,04	0,1	0,1	0,5	0,02	0,05	0,1	0,04	0,05
Yo	2	5	4	5	2	4	1	2	2.	3

Задание 4. Модель рынка с прогнозируемыми ценами. Даны зависимости спроса D = D(t) и предложения S = S(t) от цены p = p(t) на однородный продукт рынка:

$$D(t) = \alpha_1 p'' - \beta p' + a_1 p + b_1, \tag{1}$$

$$S(t) = \alpha_2 p'' + \beta p' + a_2 p + b_2, \qquad (2)$$

где $\alpha_1,\,\alpha_2,\beta,\,a_1,\,a_2,\,b_1,\,b_2$ - заданные действительные числа.

Требуется:

- 1. При равновесном состоянии рынка составить его математическую модель;
- 2. Найти частное решение полученного дифференциального уравнения, выступающего в качестве модели рынка, удовлетворяющего определенным начальным условиям;
 - 3. Запрогнозировать цену продукта на рынке для момента времени t_{I}

Вар.	α_1	α_2	β	a_i	a_2	b_{I}	b_2	p(0)	p'(0)	t_1
1.	1	2	3	-2	8	25	-5	4	1	1,2
2	3	4	4	-16	25	80	-43	6	2	0,6
3.	2	3	2	10	15	12	-3	-4	-1	1,3
4	4	5	1	9	19	20	-10	5	-3	1,5
5	1	2	5	6	40	70	2	3	_1	0,4
6	2	. 3	6	-20	25	86	-4	5	2	0,7
7	3	4	3	-4	9	15	-11	4	-2	0,8
8	4	5	5	-13	16	30	-28	3	3	0,4
9	1	2	6	-13	27	120	40	4	-1	0,2
10	2	3	1	3	8	25	-5	5	-2	1,5

Bap.	α_1	α_2	β	a_I	a_2	b_1	b_2	p(0)	D(0)	t_1
11	3	4	2	-13	16	56	-31	4	20	1,5
12	4	5	4	3	20	18	-16	4	18	0,8
13	1	2	3	-2	16	13	-5	4	38	0,9
14	2	3	5	-17	24	55	-27	3	10	0,3
15	3	4	6	-9	28	101	-10	6	20	0,25
16	4	5	j	16	18	17	1	10	24	1,5
17	1	2	2	10	18	28	4	6	32	1,5
18	2	3	4	-6	14	29	-11	4	26	0,7
19	3	4	2	10	23	20	-19	4	12	1,2

Вар.	α_1	α_2	β	a_{I}	_ a ₂	b_1	<i>b</i> ₂	p(0)	S(0)	t_1
20	4	5	5	10	36	31	-21	7	16	0,4
21	1	2	6	-20	32	40	-12	4	15	0,3
22	2	3	1	7	24	36	2	3	10	1,5
23	3	4	3	1	26	30	-70	6	28	0,4
24	4	5	4	-8	17	60	10	3	40	0,5
25	2	3	4	3	35	56	-40	4	36	0,6
26	3	4	6	-14	47	60	-62	4	16	.0,3
27	4	5	5	-19	31	70	-30	3	30	0,25
28	6	7	3	-14	20	100	32	4	8	1,2
29	1	2	2	5	25	45	5	3	12	1,4
30	4	5	1	12	38	80	-24	5	26	1,2

Задание 5. Исследовать сходимость числовых рядов $\sum_{n=1}^{\infty} u_n$:

Bap.	a) u _n	б) u _n	Bap.	a) u _n	б) u _n
1.	$\frac{2^n \cdot n!}{n^3}$	$\frac{1}{n\sqrt{n}}$	5.	$\frac{3n^2+4}{2^n}$	$\frac{n}{n^4+1}$
2.	$\frac{3^n \cdot \sqrt{n}}{n!}$	$\frac{1}{(n+1)\ln(n+1)}$	6.	$\frac{7n+1}{5^n}$	$\frac{n}{5n^3+2}$
3.	$\frac{4^n}{(n+2)!}$	$\frac{2n+1}{n^4+3}$	7.	$\frac{3n+2}{(n+1)!}$	$\frac{1}{n^2\sqrt{n}}$
4.	$\frac{n^3+1}{4^n}$	$\frac{1}{(n+4)\sqrt{n}}$	8.	$\frac{(n+2)^4}{6^n}$	$\frac{n}{n^3+3}$

Bap.	a) u _n	б) u _n	Вар.	a) u _n	б) u _n
9.	n(n+2)	$n^2 + n$	20.	3^{n+1}	4n+1
	4 ⁿ	n^4+1		$7^n \cdot n^4$	n^3+2
10.	5 ⁿ	. 1	21.	3 ⁿ⁻¹	1
	$\sqrt[n]{n \cdot n!}$	$\sqrt{n^3+2n}$		$5^n \cdot n^2$	$(n+2)\ln(n+2)$
11.	$4^n \cdot n^4$	3n + 2	22.	$3^n\sqrt{n+1}$	2n + 7
	${n!}$	$n^{3} + 6$		(n+2)!	$\sqrt{n^5+3}$
12.	2 ⁿ	n^2	23.	n^3+3	1
	$\overline{5^n(2n+1)}$	$\overline{n^3+5}$		5 ⁿ	$4n + \sqrt{n}$
13,	4n + 3	1	24.	5 ⁿ	n+2
	6 ⁿ	$(n+1)\ln^2(n+1)$		$\overline{4^n(6n+5)}$	n^3+3
14.	3 ⁿ⁺¹	n_	25.	2^{n+t}	1
•	$\overline{(n+2)!}$	$\frac{n}{n^3+2}$		$\overline{n\cdot (n+2)!}$	$(n+1)\ln^3(n+1)$
15.	3n + 7	5n+1	26.	$n^2 + 7n$	3n+2
	8 ⁿ	$\overline{n^4 \sqrt{n}}$		6 ⁿ	$n\sqrt{n}+1$
16.	n + 7	2n + 1	27.	$\sqrt[3]{n} \cdot 6^n$	n
	(n+1)!	$n\sqrt{n}+3$		$\overline{(n+1)!}$	(2n+1)(3n+2)
17.	4 ⁿ	n+1	28.	$n^3 + 4$	1
	$7^n(3n+1)$	$\sqrt{n^6+5}$		2 ⁿ	$\sqrt[3]{n^6 + 8}$
18.	$n^2 + 3n + 1$	1	29.	$n^2 + 3n + 2$	n+5
	4 ⁿ	$6n + \sqrt{n}$		7 ⁿ	$(n+3)^3$
19.	5n + 3	n+6	30.	$2^n\sqrt{n}$	1
	6 ⁿ	n^4+1		(n+3)!	$n^6 \sqrt{n}$

Задание 6. Исследовать знакочередующийся ряд $\sum_{n=1}^{\infty} (-1)^{n-1}u_n$ на абсолютную и условную сходимости. Вычисдить приближенную сумму S этого ряда, заменив ее n-ой частичной суммой S_n . Оценить абсолютную погрешность $|r_n|$ такой замены.

Bap.	1	2	3	4	5
u_n	n	n+1	n+7	3n + 2	6n + 3
	$6n^2+7$	$n^2 + 4$	6 ⁿ	$n\sqrt{n+1}$	4 ⁿ
n	4	5	3	4	3

Bap.	6	7	8	9	. 10 ,
u_n	n+6	2n + 3	$n\sqrt{n}$	n	$n^2 + 2n + 3$
	$n^4 + 8$	$n^4 + 5$	5 ⁿ	$5n^3 + 2$	4 ⁿ
n	5	3	4	5	4

Вар.	~ 11	12	13	14	15
u_n	$\frac{n}{n^2+4}$	$\frac{3n+2}{n!}$	$\frac{4n+1}{6^n}$	$\frac{n^2}{n^4+3}$	$\frac{1}{\sqrt{n^3 + 2n}}$
n	5	3	4	5	3

Bap.	16	17	18	19	20
u_n	2n + 7	5n+3	5n + 1	2 ⁿ	2n+1
	$\sqrt{n^5}$	$n^{3} + 4$	$n^4 \sqrt{n}$	(n+2)!	$n^6 + 2$
n	6	5	3	4	3

Bap.	21	22	23	24	25
u_n	4n + 3	n+5	n+3	3n + 2	$n^3 + 3$
	2 ⁿ	$(n+1)^3$	$\sqrt{n^3+2}$	$\sqrt{n^4+n}$	7 ⁿ
n	4	5	3	6	4

Bap.	26	27	28	29	30
u_n	n(n+2)	$n^2 + 5n$	3n+1	$n^2 + 3n$	n + 6
	3 ⁿ	$n^6 + 8$	$n^5 + 4$	5 ⁿ	n!
n	3	4	3	3	4

 $3 a danue \ \ 7.$ Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} a_n (x-x_0)^n$:

Bap.	1	2	3	4	5
a_n	n	2n+1	$2^n \cdot n$	n	n+1
	3 ⁿ	$n^{3} + 4$	4 ⁿ	$(2n-1)^2$	4 ⁿ
x_0	1	-4	2	5	-1

Bap.	6	7	8	9	10
an	$\frac{n+5}{n^3+3}$	$\frac{3n+4}{(n+6)^3}$	$\frac{n}{(3n+1)\cdot 4^n}$	$\frac{2n-1}{3^n \cdot (n+1)}$	$\frac{n+3}{2^n}$
x_0	3	-3	-4	3	-6

Bap.	11	12	13	14	15
a_n	4n + 1	n	$n^2 + 3$	8n + 5	n
	$n^3 + 5$.	$(n+2)\cdot 3^n$	$3^n \sqrt{n}$	$n \cdot 4^n$	$4n^2 - 3$
x_0	-2	-4	. 1	-5	2

Bap.	16	17	18	19	20
a_n	n	2n-1	2n+1	n	n
	$(3n+1)\cdot 5^n$	4 ⁿ	$n^2 + 4$	$(6n+1)^2$	$n^2 + \sqrt{n}$
x_0	4	-3	5	3	-1

Bap.	21	22	23	24	25
a_n	3n + 2	n+4	5n + 3	2n + 5	n
	$n \cdot 5^n$	$\overline{n\cdot(n^3+1)}$	$n \cdot 4^n$	$(n+1)\cdot 4^n$	n^3-2
x_0	-4	2	5	. 1	-5

Bap.	26	27	28	29	30
a_n	$3n^2 - 2$	3n + 2	5n+1	n	2n + 7
	n^4+1	$6^n \sqrt{n}$	3 ⁿ	$7^n(3n-1)$	$3^n\sqrt{n}$
x_0	-2	-4	3	4	-3

Решение типового варианта контрольной работы № 4.

Задание 1. Дифференциальное уравнение (ДУ) первого порядка имеет вид y' = f(x, y) или P(x, y) dx + Q(x, y) dy = 0, где $y' = \frac{dy}{dx}$, y – искомая функция от переменной x, y = y(x).

Процесс решения ДУ называется его интегрированием.

а) ДУ с разделяющимися переменными имеет вид

$$f_1(x) \cdot g_1(y) dx + f_2(x) \cdot g_2(y) dy = 0,$$

$$f_1(x) \cdot g_1(y) dx = -f_2(x) \cdot g_2(y) dy.$$
(1)

Пусть $g_1(y) \neq 0$ и $f_2(x) \neq 0$. Разделим обе части уравнения (1) на произведение $f_2(x) \cdot g_1(y)$, получим ДУ с разделенными переменными

$$\frac{f_1(x)}{f_2(x)}dx = -\frac{g_2(y)}{g_1(y)}dy.$$
 (2)

Равенство (2) означает, что дифференциалы двух функций равны,, значит сами функции отличаются лищь на постоянное слагаемое. Интегрируя равенство (2), получим общее решение или общий интеграл ДУ (1)

$$\int \frac{f_1(x)}{f_2(x)} dx = -\int \frac{g_2(y)}{g_1(y)} dy + C, \ C - \forall const.$$

Пример 1. Проинтегрировать ДУ

$$y' \cdot \sin^2 x = y \ln y \iff \sin^2 x \cdot \frac{dy}{dx} = y \ln y \iff \sin^2 x \cdot dy = y \ln y \, dx.$$

Разделим переменные и проинтегрируем обе части равенства

$$\frac{dx}{\sin^2 x} = \frac{dy}{y \ln y} \Leftrightarrow \int \frac{dx}{\sin^2 x} = \int \frac{dy}{y \ln y} \Leftrightarrow \int \frac{d(\ln y)}{\ln y} = \int \frac{dx}{\sin^2 x} \Leftrightarrow$$

 \Leftrightarrow $\ln |\ln y| = -ctgx + C$ - общий интеграл исходного ДУ, где $C - \forall const.$

Пример 2. Найти *частное решение* ДУ (2x+1) dy - (y+4) dx = 0, удовлетворяющее условию y(4) = 11.

Разделяем переменные

$$(2x+1) dy = (y+4) dx \Rightarrow \frac{dy}{y+4} = \frac{dx}{2x+1} \Rightarrow \int \frac{d(y+4)}{y+4} = \frac{1}{2} \int \frac{d(2x+1)}{2x+1} \Rightarrow$$

$$\Rightarrow \ln|y+4| = \frac{1}{2} \ln|2x+1| + \ln|C|, \quad 0 \neq C - \forall const \Rightarrow \ln|y+4| =$$

$$= \ln|C \cdot \sqrt{2x+1}| \Rightarrow y+4 = C\sqrt{2x+1} \Rightarrow y = C\sqrt{2x+1} - 4 \quad - \text{ общее решение}$$
данного уравнения.

Определим постоянную C так, чтобы выполнялось начальное условие y(4) = 11.

 $11 = C\sqrt{2 \cdot 4 + 1} - 4$, 11 = 3C - 4, 3C = 15, C = 5. Получаем *частное* решение данного уравнения в виде $y = 5\sqrt{2x + 1} - 4$.

б) Линейное ДУ 1 порядка относительно функции y = y(x) и ее производной y' имеет вид

$$y' + p(x) \cdot y = q(x), \tag{3}$$

где p(x) и q(x) - заданные непрерывные функции.

Заменой $y = u(x) \cdot v(x)$ решение ДУ (3) сводится к решению двух ДУ с разделяющимися переменными.

Пример 3. Найти *частное решение* ДУ
$$y' + \frac{3y}{x} = \frac{2}{x} - 4x$$
, (4) удовлетворяющее начальному условию $y(1) = 4$.

Находим общее решение уравнения (4) с помощью замены $y = u(x) \cdot v(x)$, $y' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$. Подставляем эту замену в уравнение (4)

$$u' \cdot v + u \cdot v' + \frac{3u \cdot v}{x} = \frac{2}{x} - 4x,$$

$$u' \cdot v + u \left(v' + \frac{3v}{x}\right) = \frac{2}{x} - 4x.$$

Функции v(x) и u(x) определяем из условий

$$\begin{cases} v' + \frac{3v}{x} = 0, \\ u'v = \frac{2}{x} - 4x. \end{cases}$$

$$v' + \frac{3v}{x} = 0 \implies \frac{dv}{dx} = -\frac{3v}{x} \implies \frac{dv}{v} = -\frac{3}{x} \implies \ln|v| = -3\ln|x| \implies$$

$$= \ln|v| = \ln\left|\frac{1}{x^3}\right| \implies v = \frac{1}{x^3}.$$

$$u' \cdot v = \frac{2}{x} - 4x, \ u' \cdot \frac{1}{x^3} = \frac{2}{x} - 4x, \ u' = 2x^2 - 4x^4, \ du = (2x^2 - 4x^4) dx,$$
$$u = \int (2x^2 - 4x^4) dx = \frac{2}{3}x^3 - \frac{4}{5}x^5 + C.$$

Общее решение ДУ (4) имеет вид

$$y = u \cdot v, \ \ y = \frac{1}{x^3} \left(\frac{2}{3} x^3 - \frac{4}{5} x^5 + C \right),$$
$$y = \frac{C}{x^3} + \frac{2}{3} - \frac{4}{5} x^2, \ C - \forall const.$$

Определим C из начального условия v(1) = 4.

$$4 = C + \frac{2}{3} - \frac{4}{5}$$
, $C = 4 - \frac{2}{3} + \frac{4}{5} = \frac{60 - 10 + 12}{15} = \frac{62}{15}$.

Искомое частное решение имеет вид $y = \frac{62}{15x^3} + \frac{2}{3} - \frac{4}{5}x^2$.

Задание 2. Общее решение линейного однородного дифференциального уравнения (ЛОДУ) второго порядка с постоянными коэффициентами

$$y'' + py' + q \cdot y = 0, \ p, q = const \in R,$$
 (5)

имеет вид $y = C_1 \cdot y_1(x) + C_2 \cdot y_2(x)$, где $y_{1,2}(x)$ - два частных линейно независимых решения уравнения (5). Если сделать замену $y = e^{kx}$, k - const, получим характеристическое уравнение для ДУ (5)

$$k^2 + p \cdot k + q = 0. \tag{6}$$

Решаем уравнение (6). Возможны три случая: $D = p^2 - 4q > 0$, D = 0 и D < 0. Общее решение ЛОДУ (5) в каждом случае имеет вид:

1.
$$D > 0$$
, $k_1 \neq k_2$, $y = C_1 e^{k_1 x} + C_2 e^{k_2 x}$, $C_1, C_2 - \forall const.$

2.
$$D = 0$$
, $k_1 = k_2$, $y = C_1 e^{k_1 x} + C_2 x e^{k_1 x}$,

3.
$$D < 0$$
, $k = \alpha \pm i\beta$, $y = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x$.

Пример 4. Найти общее решение следующих ЛОДУ:

a)
$$y'' + y' - 56y = 0$$
; 6) $y'' - 16y' + 68y = 0$; B) $y'' + 16y' + 64y = 0$.

a)
$$y'' + y' - 56y = 0$$
.

С помощью замены $y = e^{kx}$ приходим к характеристическому уравнению

$$k^2 + k - 56 = 0$$
, $D = 1 - 4 \cdot (-56) = 1 + 224 = 225$,
 $k_{1,2} = \frac{-1 \pm 15}{2}$, $k_1 = \frac{-1 - 15}{2} = -8$, $k_2 = \frac{-1 + 15}{2} = 7$.

Общее решение ДУ есть:

$$y = C_1 e^{-8x} + C_2 e^{7x}$$
, где C_1 , $C_2 - \forall const.$

Если надо выделить *частное решение*, удовлетворяющее начальным условиям, например, y(0) = 5; y'(0) = -10, то находим y'(x),

$$y'(x) = -8C_1e^{-8x} + 7C_2e^{7x}$$
.

Далее составляем систему уравнений для нахождения C_1 и C_2 .

$$\begin{cases} y(0) = 5, \\ y'(0) = -10. \end{cases} \Rightarrow \begin{cases} C_1 + C_2 = 5, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_2 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_2 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_1 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_2 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_2 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_2 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 35 - 7C_1 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5 - C_1, \\ -8C_1 + 7C_2 = -10. \end{cases} \Rightarrow \begin{cases} C_3 = 5$$

Частное решение имеет вид $y = 3e^{-8x} + 2e^{7x}$. б) v'' - 16v' + 68v = 0.

$$k^2 - 16k + 68 = 0$$
, $(k - 8)^2 + 4 = 0$, $(k - 8)^2 = -4$, $k - 8 = \pm \sqrt{-4} = \pm 2i$, $k_{1,2} = 8 \pm 2i$, $\alpha = 8$, $\beta = 2$.

Общее решение данного уравнения запищется в виде: $y = C_1 e^{8x} \cos 2x + C_2 e^{8x} \sin 2x$, где $C_1, C_2 - \forall const.$

B)
$$y'' + 16y' + 64y = 0$$

$$k^2 + 16k + 64 = 0$$
, $(k+8)^2 = 0$, $k_{1,2} = -8$. Общее решение

$$y = C_1 e^{-8x} + C_2 x e^{-8x}$$
, где $C_1, C_2 - \forall const.$

 $\frac{y'' + py' + qy = f(x)}{y(x)}$, где p и q — $const \in R$, состоит из общего решения $\frac{y'' + py' + qy = 0}{y(x)}$ и некоторого частного решения $y_*(x)$ данного ЛНДУ, т.е. $y = y(x) + y_*(x)$.

Частное решение ЛНДУ в случае, когда $f(x) = P_n(x)e^{\alpha x}$, где $P_n(x) = M$ ногочлен степени $\leq n$ и $\alpha = const$ или $f(x) = A\cos\beta x + B\sin\beta x$, A, B и β - известные $const \in R$, будем искать методом неопределенных коэффициентов.

Пример 5. Найти общее решение ЛНДУ

$$y'' - 4y' + 3y = 5x e^{-x}.$$

$$y = y(x) + y_*(x).$$

$$y(x) = ? \quad y'' - 4y' + 3y = 0, \quad k^2 - 4k + 3 = 0,$$

$$k_{1,2} = \frac{4 \pm \sqrt{16 - 12}}{2} = \frac{4 \pm 2}{2}, \quad k_1 = 1; \quad k_2 = 3.$$

$$y(x) = C_1 e^x + C_2 e^{3x}, \quad C_1, C_2 - \forall const.$$

$$y_*(x) = ?, \quad f(x) = 5x e^{-x}, \quad P_1(x) = 5x, \quad \alpha = -1, \quad \alpha \neq k_1, \quad \alpha \neq k_2.$$

Будем искать $y_*(x)$ в виде $y_*(x) = (ax+b)e^{-x}$, где a и b — неопределенные пока коэффициенты, подлежащие вычислению. Найдем $y_*(x) = ae^{-x} + (ax+b)e^{-x} \cdot (-1) = e^{-x}(a-ax-b)$, $y_*''(x) = -e^{-x}(a-ax-b) + e^{-x}(-a) = -e^{-x}(a-ax-b+a) = = -e^{-x}(2a-ax-b)$.

Подставим y_* , y_*' , y_*'' в исходное уравнение

$$y_*'' - 4y_*' + 3y_* = 5xe^{-x}$$
.

Получим

$$-e^{-x}(2a-ax-b)-4e^{-x}(a-ax-b)+3e^{-x}(ax+b)=5xe^{-x}.$$

Сокращаем на e^{-x} и приводим подобные

$$-2a + ax + b - 4a + 4ax + 4b + 3ax + 3b = 5x$$
,
 $8ax - 6a + 8b = 5x$.

Приравниваем коэффициенты при одинаковых степенях х

$$\begin{vmatrix} x \\ x^{\circ} \end{vmatrix} - 6a + 8b = 0. \} \Rightarrow \begin{cases} a = \frac{5}{8}, \\ b = \frac{6}{8}a = \frac{3}{4}a = \frac{3}{4} \cdot \frac{5}{8} = \frac{15}{32}. \end{cases}$$

Частное решение имеет вид $y_*(x) = \left(\frac{5}{8}x + \frac{15}{32}\right)e^{-x}$.

Общее решение исходного ДУ есть

$$y(x) = C_1 e^x + C_2 e^{3x} + \left(\frac{5}{8}x + \frac{15}{32}\right)e^{-x}, \quad C_1, C_2 - \forall const.$$

Пример 6. Найти общее решение ЛНДУ.

$$y'' - 4y' + 3y = (8x - 4)e^{x}$$
.

$$y = y(x) + y_*(x).$$

 $y(x) = C_1 e^x + C_2 e^{3x}$, т.к. соответствующее однородное ДУ осталось тем же

Ищем частное решение $y_*(x)$; $f(x) = (8x - 4)e^x$, $P_1(x) = 8x - 4$, $\alpha = 1 = k_1$, поэтому

$$y_*(x) = x(ax + b)e^x = (ax^2 + bx)e^x$$
,

$$y_*'(x) = (2ax + b)e^x + (ax^2 + bx)e^x = e^x(ax^2 + 2ax + bx + b),$$

$$y_*''(x) = e^x(ax^2 + 2ax + bx + b + 2ax + 2a + b) = e^x(ax^2 + 4ax + bx + 2a + 2b).$$

Подставим выражения для y_* , y_* , y_* в левую часть исходного уравнения

$$e^{x}(ax^{2} + 4ax + bx + 2a + 2b) - 4e^{x}(ax^{2} + 2ax + bx + b) + 3(ax^{2} + bx) =$$

$$= (8x - 4)e^{x}.$$

Сокращая на e^x и приводя подобные, будем иметь -2x + a - b = 4x - 2.

Приравниваем коэффициенты при одинаковых степенях х

$$\begin{vmatrix} x \\ x^{\circ} | a-b=-2. \end{vmatrix} \Rightarrow \begin{cases} a=-2, \\ b=a+2=0. \end{cases}$$

Частное решение $y_*(x) = -2x^2 e^x$.

Общее решение исходного уравнения имеет вид

$$y(x) = C_1 e^x + C_2 e^{3x} - 2x^2 e^x$$
, $C_1, C_2 - \forall const.$

Пример 7. Найти общее решение ЛНДУ
$$y'' - 6y' + 9y = 4e^{3x}$$
. $y = y(x) + y_*(x)$. $y(x) = ?$ $y'' - 6y' + 9y = 0$, $k^2 - 6k + 9 = 0$, $(k-3)^2 = 0$, $k_{1,2} = 3 \Rightarrow y(x) = C_1 e^{3x} + C_2 x e^{3x}$. $y_* = ?$ $f(x) = 4 \cdot e^{3x}$, $P_0(x) = 4$, $\alpha = 3 = k_1 = k_2 \Rightarrow y_*(x) = x^2 \cdot a \cdot e^{3x}$. $y_*' = 2xae^{3x} + 3ax^2e^{3x} = ae^{3x} = ae^{3x}(2x + 3x^2)$, $y_*'' = ae^{3x}(6x + 9x^2 + 2 + 6x) = ae^{3x}(9x^2 + 12x + 2)$, $y_*'' - 6y_*' + 9y_* = 4e^{3x}$, $ae^{3x}(9x^2 + 12x + 2) - 6ae^{3x}(2x + 3x^2) + 9ae^{3x} \cdot x^2 = 4e^{3x}$. Сокращая на e^{3x} и приводя подобные, получим $2a = 4$, $a = 2$. Следовательно, $y_*(x) = 2x^2e^{3x}$, $y(x) = e^{3x}(C_1 + C_2x + 2x^2)$, $C_1, C_2 - \forall const$.

Пример 8. Найти общее решение ЛНДУ

$$y'' - 6y' + 10y = 3\cos x - 4\sin x.$$
 $y = y(x) + y_*(x).$
 $y(x) = ?$ $y'' - 6y' + 10y = 0$, $k^2 - 6k + 10 = 0$,
 $y'' - 6y' + 10y = 0$, $y'' - 6y' + 10y = 0$, $y'' - 6y' + 10y = 0$, $y'' - 6y' + 10y = 0$, $y'' - 6y' + 10y = 0$, $y'' - 6y' + 10y = 0$, $y'' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$, $y''' - 6y' + 10y = 3\cos x - 4\sin x$.

Приравниваем коэффициенты при $\cos x$ и $\sin x$.

$$\begin{vmatrix} \cos x & -a - 6b + 10a = 3, \\ \sin x & -b + 6a + 10b = -4. \end{vmatrix} \Rightarrow \begin{cases} 9a - 6b = 3, \\ 6a + 9b = -4. \end{vmatrix} \Rightarrow \begin{cases} 3a - 2b = 1, \\ 6a + 9b = -4. \end{vmatrix}$$

$$\Rightarrow \begin{cases} a = \frac{1+2b}{3}, \\ 6 \cdot \frac{1+2b}{3} + 9b = -4. \end{cases} \Rightarrow \begin{cases} a = \frac{1+2b}{3}, \\ 2+4b+9b = -4. \end{cases} \Rightarrow \begin{cases} a = \frac{1+2b}{3}, \\ 13b = -6. \end{cases}$$

$$\Rightarrow \begin{cases} a = \frac{1}{3} \left(1 - \frac{12}{13} \right) = \frac{1}{39}, \\ b = -\frac{6}{13}. \end{cases}$$

Частное решение $y_*(x) = \frac{1}{39} \cos x - \frac{6}{13} \sin x$.

Общее решение данного уравнения имеет вид

$$y = C_1 e^{3x} \cos x + C_2 e^{3x} \sin x + \frac{1}{39} \cos x - \frac{6}{13} \sin x$$
, $C_1, C_2 - \forall const.$

Пример 9. Найти общее решение ЛНДУ

$$y'' + 25y = \cos 5x.$$

$$y = y(x) + y_*(x).$$

$$y(x) = ? y'' + 25y = 0, k^2 + 25 = 0, k^2 = -25,$$

$$k_{1,2} = \pm \sqrt{-25} = \pm 5i; \alpha = 0, \beta = 5.$$

$$y(x) = C_1 \cos 5x + C_2 \sin 5x, C_1, C_2 - \forall const.$$

$$y_*(x) = ? f(x) = 1 \cdot \cos 5x + 0 \cdot \sin 5x \Rightarrow y_* = x(a \cos 5x + b \sin 5x),$$

$$a u b - const$$

$$y_*' = (a \cos 5x + b \sin x) + 5x(-a \sin 5x + b \cos 5x),$$

$$y_*'' = 5(-a \sin 5x + b \cos 5x) + 5(-a \sin 5x + b \cos 5x) + 25x(-a \cos 5x - b \sin 5x).$$

Выражения для y_* , y_* подставляем в исходное уравнение $y_*'' + 25y_* = \cos 5x$. $10(-a\sin 5x + b\cos 5x) - 25x(a\cos 5x + b\sin 5x) + 25x(a\cos 5x + b\sin 5x) = \cos 5x$.

 $10(-a\sin 5x + b\cos 5x) = \cos 5x.$

Приравниваем коэффициенты при $\sin 5x$ и $\cos 5x$.

$$\cos 5x \begin{vmatrix} 10b = 1, \\ \sin 5x \end{vmatrix} - 10a = 0.$$
 \Longrightarrow
$$\begin{cases} b = 0,1, \\ a = 0. \end{cases}$$

Частное решение $y_*(x) = 0.1x \sin 5x$.

Общее решение

 $y(x) = C_1 \cos 5x + C_2 \sin 5x + 0.1x \sin 5x$, $C_1, C_2 - \forall const$.

Задание 3.

1. Искомое дифференциальное уравнение в общем виде есть

$$y'(t) = l \cdot m \cdot p(y) \cdot y(t), \quad p(y) = a - by,$$

$$y'(t) = lm(a - by) \cdot y.$$
 (7)

Все величины в правой части уравнения (7) положительны y'(t) > 0, а значит, функция y(t) > 0 - возрастающая.

Пусть a=76; b=19; m=0,4; l=0,05; $y_0=1$. Подставим данные в ДУ (7)

$$y'(t) = 0.05 \cdot 0.4(76 - 19y) \cdot y,$$

$$\frac{dy}{dt} = 0.38(4 - y)y.$$
(8)

2. Уравнение (8) — ДУ с разделяющимися переменными. Разделяем переменные и почленно интегрируем

$$\frac{dy}{(4-y)y} = 0.38 dt; \quad \frac{dy}{y^2 - 4y} = -0.38 dt; \quad \int \frac{d(y-2)}{(y-2)^2 - 4} = -\int 0.38 dt$$

Так как $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$, $\int dt = t + C$, то общий интеграл ЛУ (8) имеет вид

$$\frac{1}{4} \ln \left| \frac{y - 2 - 2}{y - 2 + 2} \right| = -0.38 t + C_1, \quad \ln \left| \frac{y - 4}{y} \right| = -1.52 t + 4 C_1,$$

Обозначим произвольную постоянную по-другому: $4C_1 = \ln |C|, \quad C \neq 0, \quad C \in R.$

Выпишем общее решение ДУ (8) в виде
$$\ln \left| \frac{y-4}{y} \right| = -1,52 t \cdot \ln e + \ln |C|$$

$$\frac{y-4}{y} = C \cdot e^{-1,52t}; \ 1 - \frac{4}{y} = C e^{-1,52t}; \ \frac{4}{y} = 1 - C e^{-1,52t}.$$

Функция
$$y = \frac{4}{1 - C e^{-1,52t}}$$
 - общее решение ДУ (8), называется [15]

функцией снабжения (логистики).

Из начального условия $y_0 = 1$ или y(0) = 1 определим С

$$1 = \frac{4}{1 - C}$$
, $1 - C = 4$, $C = -3$.

Получим искомое частное решение ДУ (8)

$$y = \frac{4}{1 + 3e^{-1.52t}} \tag{9}$$

Кривая, заданная уравнением (9), называется логистической кривой. Очевидно, что при $t \to +\infty$ $y \to 4$. Это значит, что прямая y = 4 горизонтальная асимптота логистической кривой.

3.-5. Найдем точку перегиба кривой (9), т.е. точку, в которой y'' = 0, а при переходе через нее y'' меняет знак.

Из уравнения (8) $y' = 0.38(4y - y^2)$, $y'' = 0.38(4 - 2y) \cdot y'$, y'' = 0, значит $4 - 2y = 0 \Rightarrow y_2 = 2$, т.к. $y' \neq 0$ (y' > 0).

Находим соответствующее значение аргумента t (время) из уравнения (9)

$$2 = \frac{4}{1 + 3 \cdot e^{-1.52t}}, \quad 1 + 3 \cdot e^{-1.52t} = 2, \quad e^{-1.52t} = \frac{1}{3}, \quad -1.52t = \ln \frac{1}{3} \Rightarrow t_1 = 0.72.$$

Исследуем знак второй производной в окрестности точки $t_1 = 0.72$.

$$y(0,6) = \frac{4}{1+3e^{-1,52\cdot0,6}} = 1,81; \quad y'(0,6) = 0,38(4-1,81)\cdot1,81 = 1,51;$$

$$y''(0,6) = 0,38(4-2\cdot1,81)\cdot1,51 = 0,22 > 0;$$

$$y(0,8) = \frac{4}{1+3e^{-1,52\cdot0,8}} = 2,12; \quad y'(0,8) = 0,38(4-2,12)\cdot2,12 = 1,52;$$

$$y''(0,8) = 0,38(4-2\cdot2,12)\cdot1,52 = -0,14 < 0.$$

Отсюда следует, что на интервале $t \in (0;t_1)$ кривая (9) вогнута, а на интервале $(t_1;+\infty)$ она выпукла.

Эластичность спроса y относительно цены p определяется по формуле

$$\begin{split} E_p(y) &= p \cdot \frac{y'}{y}. \text{ В данном случае } p(y) = a - by, \ \ y = \frac{a - p}{b}, \\ y'(p) &= -\frac{1}{b} \Longrightarrow E_p(y) = p \cdot \left(-\frac{1}{b}\right) \cdot \frac{b}{a - p} = -\frac{p}{a - p} = \frac{p}{p - a} \text{ или} \\ E_p(y) &= -\frac{a - by}{by} = 1 - \frac{a}{by}. \end{split}$$

Спрос эластичен, если $\left|E_p(y)\right|>1$ и неэластичен, если $\left|E_p(y)\right|<1$.

Возьмем
$$t = 0.6 \in (0; 0.72) \Rightarrow y = 1.81, a = 76, b = 19.$$

$$|E_p(y)| = |1 - \frac{76}{19 \cdot 1.81}| = |1 - \frac{4}{1.81}| = 1,21 > 1 \Rightarrow$$
 Спрос эластичен.

Значит, на данном интервале наблюдается прогрессирующий рост выпуска продукции.

При
$$t = 0.8 \in (0.72; +\infty) \Rightarrow y = 2.12.$$

$$|E_p(y)| = \left|1 - \frac{76}{19 \cdot 2,12}\right| = \left|1 - \frac{4}{2,12}\right| = \left|1 - \frac{1}{0,53}\right| = 0,89 < 1.$$

На этом интервале происходит замедление роста, насыщение рынка данной продукцией.

Строим график логистической кривой. Точка (0,72; 2) является точкой перегиба этой кривой (рис. 3).

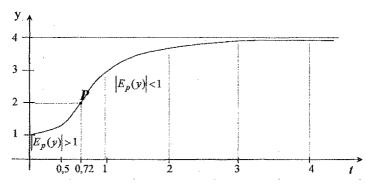


Рис.3.

$$y = \frac{4}{1 + 3e^{-1.52i}}$$

$$t \quad 0 \quad 0.5 \quad 0.72 \quad 2 \quad 4 \quad +\infty$$

$$v \quad 1 \quad 1.66 \quad 2 \quad 3.50 \quad 3.97 \quad 4$$

Из графика видно, что предельный объем производства равен 4 усл. единицам.

Задание 4. Пусть
$$\alpha_1 = 5$$
, $\alpha_2 = 6$, $\beta = 2$, $\alpha_1 = 9$, $\alpha_2 = 62$, $b_1 = 70$, $b_2 = -36$.

a)
$$p(0) = 4$$
, $p'(0) = 3$, $t_1 = 1.6$; 6) $p(0) = 4$, $D(0) = 126$, $t_1 = 0.7$;

B)
$$p(0) = 4$$
, $S(0) = 49$, $t_1 = 2$.

Тогда зависимость спроса D(t) и предложения S(t) от цены p(t) имеют вил:

$$D(t) = 5p'' - 2p' + 9p + 70$$
; $S(t) = 6p'' + 2p' + 62p - 36$.

В данной модели рынка спрос и предложение зависят не только от цены p(t) на товар, но и от *роста цены* p'(t), а также от *темпа роста* p''(t), что отражает реальную ситуацию ценообразования на данном рынке.

1. Составим ДУ равновесного состояния рынка D(t) = S(t).

$$5p'' - 2p' + 9p + 70 = 6p'' + 2p' + 62p - 36.$$

$$p'' + 4p' + 53p = 106$$
 (10)

Находим общее решение этого уравнения

$$\underbrace{p(t)=p+p_*}_{-}.$$

$$\overline{p}=?$$
 $p''+4p'+53p=0$, его характеристическое уравнение $k^2+4k+53=0$, $(k+2)^2+49=0$, $k=-2\pm\sqrt{-49}=-2\pm7i$, тогда $\overline{p}=C_1e^{-2t}\cos7t+C_2e^{-2t}\sin7t$; $C_1,C_2-\forall const.$

 $p_* = ?$ $p_* = A$, $p_*' = 0$, $p_*'' = 0$. Из уравнения (10) получим $53 \cdot A = 106$, A = 2.

Общее решение уравнения (10)

$$p = 2 + e^{-2t} (C_1 \cos 7t + C_2 \sin 7t); \quad C_1, C_2 - \forall const.$$
 (11)

Находим *частное решение* уравнения (10) при заданных начальных условиях:

а) в вариантах 1-10 даны p(0) и p'(0).

$$p(0) = 4$$
, $p'(0) = 3$.

Найдем

$$p'(t) = -2e^{-2t} (C_1 \cos 7t + C_2 \sin 7t) + e^{2t} (-7C_1 \sin 7t + 7C_2 \cos 7t) =$$

$$= e^{-2t} ((7C_2 - 2C_1) \cos 7t - (2C_2 + 7C_1) \sin 7t).$$

Составим систему для определения C_1 и C_2

$$\begin{cases} p(0) = 4, \Rightarrow \begin{cases} 2 + C_1 = 4, \\ p'(0) = 3. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 7C_2 = 3 + 4. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ C_2 = 1. \end{cases} \Rightarrow C_1 = 2, C_2 = 1.$$

Искомое частное решение имеет вид

$$p(t) = 2 + e^{-2t} (2\cos 7t + \sin 7t). \tag{12}$$

Легко убедиться, что

$$\lim_{t \to \infty} p(t) = 2 + \lim_{t \to \infty} \frac{2\cos 7t + \sin 7t}{e^{2t}} = 2 + 0 = 2.$$

Это означает, что с течением времени цены на рынке стабилизируются, приближаясь с незначительными колебаниями к установившейся цене p(t) = 2 (усл. ед.).

Зададим некоторое значение для $t=t_{\rm I}=1,6$ и найдем соответствующую цену

$$p(1,6) = 2 + e^{-21.6} \left(2 \cdot \cos(7 \cdot 1,6) + \sin(7 \cdot 1,6) \right) = 2 - 0.573 \cdot e^{-3.2} \approx 1.98 \text{ (ycled.)}$$

б) В вариантах 11-20 даны p(0) и D(0).

Пусть
$$p(0)=4$$
, $D(0)=126$, $t_1=0,7$. Составим функцию спроса $D(t)=5p''(t)-2p'(t)+9p(t)+70$, $p(t)=2+e^{-2t}(C_1\cos 7t+C_2\sin 7t)$, $p'(t)=-2e^{-2t}(C_1\cos 7t+C_2\sin 7t)+e^{-2t}\cdot 7(-C_1\sin 7t+C_2\cos 7t)=$ $=e^{-2t}((7C_2-2C_1)\cos 7t-(2C_2+7C_1)\sin 7t)$. $p''(t)=e^{-2t}((28C_1-45C_2)\sin 7t-(28C_2+45C_1)\cos 7t)$. $p(0)=2+C_1$; $p'(0)=7C_2-2C_1$; $p''(0)=-(28C_2+45C_1)$. $D(0)=-5(28C_2+45C_1)-2(7C_2-2C_1)+9(2+C_1)+70=$ $=88-154C_2-212C_1$.

Составляем систему

$$\begin{cases} p(0) = 4, \\ D(0) = 126. \end{cases} \Rightarrow \begin{cases} 2 + C_1 = 4, \\ 88 - 154C_2 - 212C_1 = 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 424 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = 88 - 126. \end{cases} \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 =$$

Частное решение в этом случае $p(t) = 2 + e^{-2t} (2\cos 7t - 3\sin 7t)$.

При
$$t_1 = 0.7$$
 $p(0.7) = 2 + e^{-1.4}(2\cos 4.9 - 3\sin 4.9) = 2 + 3.32 \cdot 0.25 = 2.82$ (усл. единиц).

в) В вариантах 21-30 даны p(0) и S(0).

Пусть
$$p(0)=4$$
, $S(0)=49$, $t_1=2,0$. Составляем функцию предложения
$$S(0)=6\,p''(0)+2\,p'(0)+62\,p\,(0)-36.$$

$$S(0)=6\,(-28\,C_2-45\,C_1)+2\,(7C_2-2C_1)+62\,(2+C_1)-36=$$

$$=-154\,C_2-212\,C_1+88.$$

$$\begin{cases} p(0) = 4, \\ -154C_2 - 212C_1 + 88 = 49. \end{cases} \Rightarrow \begin{cases} 2 + C_1 = 4, \\ 154C_2 = -424 + 88 - 49. \end{cases} \Rightarrow \\ \Rightarrow \begin{cases} C_1 = 2, \\ 154C_2 = -385. \end{cases} \Rightarrow C_1 = 2, \quad C_2 = -2,5. \end{cases}$$

$$p(t) = 2 + e^{-2t} (2\cos 7t - 2,5\sin 7t); \quad p(2) = 2 + e^{-4} (2\cos 14 - 2,5\sin 14) = \\ = 2 + 0.0183 \cdot (-2.20) \approx 1.96 \text{ (усл. единиц.)}.$$

Задания 5.-7. Числовые и функциональные ряды.

Числовым (функциональным) рядом называется бесконечная сумма чисел (функций), образующих последовательность $u_1+u_2+...+u_n+...=\sum_{n=1}^\infty u_n$ числовой ряд,

$$u_1(x) + u_2(x) + ... + u_n(x) + ... = \sum_{n=1}^{\infty} u_n(x)$$
 - функциональный ряд.

Ряд задан, если известна формула его общего члена $u_n = f(n), \ n \in N.$

Сумма $u_1 + u_2 + ... + u_n = S_n$ называется л-ой частичной суммой ряда.

Суммой ряда называется конечный или бесконечный $\lim_{n\to\infty} S_n = S$.

Ряд, имеющий конечную сумму, называется *сходящимся*; в противном случае – расходящимся.

Бесконечная геометрическая прогрессия

$$a + aq + aq^2 + aq^3 + ... + aq^{n-1} + ... = \sum_{n=1}^{\infty} aq^{n-1}$$
 еходится при $|q| < 1$ и расходится при $|q| \ge 1$.

Если
$$|q| < 1$$
, то $S = a + aq + aq^2 + ... + aq^{n-1} + ... = \frac{a}{1-a}$.

Гармонический ряд pacxodumcs $1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} + ... = \infty$.

Обобщенный гармонический ряд (ряд Дирихле)

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \begin{cases} cxodumcs, ecлu \ p > 1, \\ pacxodumcs, ecлu \ 0$$

Необходимый признак сходимости.

Если ряд $\sum_{n=1}^\infty u_n$ еходится, то его общий член стремится к нулю при $n\to\infty$, т.е. $\lim_{n\to\infty}u_n=0$.

Если $\lim_{n\to\infty}u_n\neq 0$, то ряд $\sum_{n=1}^\infty u_n$ - расходящийся.

Если $\lim_{n\to\infty}u_n=0$, то ряд может сходиться, а может и расходиться.

Достаточные признаки сходимости рядов с положительными членами.

- 1. *Признак сравнения*. Если $\lim_{n\to\infty}\frac{u_n}{v_n}=A\ (\neq 0\,;\, \neq \infty)$, то ряды $\sum_{n=1}^\infty u_n$ и $\sum_{n=1}^\infty v_n$ ведут себя одинаково, т.е. сходятся или расходятся одновременно.
- **2.** *Признак Д'Аламбера.* Есян существует $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=l$, то при l<1 ряд $\sum_{n=1}^{\infty}u_n$ -сходится; при l>1 расходится; при l=1 признак не дает ответа.
 - 3. Интегральный признак Коши. Ряд $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} f(n)$ и

несобственный интеграл $\int\limits_{1}^{\infty} f(x) dx$ ведут себя одинаково, т.е. сходятся или расходятся одновременно.

Знакопеременные ряды.

Знакопеременный числовой ряд содержит как положительные, так и отрицательные члены. Знакопеременный ряд $\sum_{n=1}^{\infty}u_n$ сходится, если сходится ряд, составленный из модулей его членов, т.е. $\sum_{n=1}^{\infty}|u_n|$. Сходимость знакопеременного ряда в этом случае называется абсолютной. Сходимость знакопеременного ряда называется условной, если $\sum_{n=1}^{\infty}u_n$ еходится, а $\sum_{n=1}^{\infty}|u_n|$ расходится.

Ряд, у которого любые два соседних члена имеют разные знаки, называется *знакочередующимся*.

Признак Лейбница. Знакочередующийся ряд

$$u_1 \sim u_2 + u_3 - u_4 + \ldots + (-1)^{n-1}u_n + \ldots = \sum_{n=1}^{\infty} (-1)^{n-1}u_n, \ u_n > 0,$$
 сходится, если: 1) его члены по абсолютной величине убывают $u_1 > u_2 > u_3 > \ldots > u_n > \ldots;$ 2) $\lim_{n \to \infty} u_n = 0$. Сумма ряда положительна и не превосходит его первого члена, т.е. $0 < S < u_1$.

При замене суммы S сходящегося знакочередующегося числового ряда n-ой частичной суммой S_n ощибка не превышает по абсолютной величине первого из отброшенных членов этого ряда $|S-S_n|=|r_n|\leq u_{n+1}$.

Степенные ряды.

Степенными рядами называются функциональные ряды вида

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots,$$
 (13)

или

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots + a_n (x - x_0)^n + \dots, (14)$$

где a_0 , a_1 , ..., a_n ,... - известные действительные числа – коэффициенты степенных рядов (13) и (14).

Множество значений *х*, при которых ряды (13) или (14)сходятся, называется областью сходимости ряда. Для определения интервала абсолютной сходимости степенного ряда можно воспользоваться признаком Д'Аламбера.

Задание 5.

Примеры. Исследовать сходимость числовых рядов $\sum_{n=1}^{\infty} u_n$:

a)
$$u_n = \frac{3^n}{(n^2+1) \cdot n!}$$
; 6) $u_n = \frac{1}{(n+3) \ln^4(n+3)}$; B) $u_n = \frac{7_n+1}{(n+3)\sqrt{n+3}}$;

$$\Gamma) u_n = \frac{3n^2 + 4n + 7}{n^5 + 6}.$$

a)
$$\sum_{n=1}^{\infty} \frac{3^n}{(n^2+1) \cdot n!} = \frac{3}{2 \cdot 1} + \frac{3^2}{5 \cdot 2} + \frac{3^3}{10 \cdot 6} + \frac{3^4}{17 \cdot 24} + \dots$$

Здесь

$$u_n = \frac{3^n}{(n^2+1)\cdot n!};$$

$$u_{n+1} = \frac{3^{n+1}}{((n+1)^2 + 1) \cdot (n+1)!} = \frac{3^{n+1}}{(n^2 + 2n + 2) \cdot (n+1)!},$$

n! = (эн-факториал $) = 1 \cdot 2 \cdot 3 \cdot ... \cdot n; (n+1)! = n!(n+1).$ Здесь удобно применить признак Д'Аламбера.

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{3^{n+1} \cdot (n^2 + 1) \cdot n!}{(n^2 + 2n + 2) \cdot n!(n+1) \cdot 3^n} = \lim_{n \to \infty} \frac{3 \cdot (n^2 + 1)}{(n^2 + 2n + 2)(n+1)} = \frac{1}{1 + \frac{1}$$

$$= 3 \cdot \lim_{n \to \infty} \frac{\frac{1}{n} + \frac{1}{n^3}}{\left(1 + \frac{2}{n} + \frac{1}{n^2}\right)\left(1 + \frac{1}{n}\right)} = 3 \cdot 0 = 0 < 1,$$

значит данный ряд сходится.

6)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1) \ln^4(n+1)} = \frac{1}{2 \ln^4 2} + \frac{1}{3 \ln^4 3} + \frac{1}{4 \ln^4 4} + \dots$$

Нетрудно проверить, что в примерах б)-г) признак Д'Аламбера ответа не дает, поскольку $u_n = \frac{1}{(n+1)\ln^4(n+1)}$, $u_{n+1} = \frac{1}{(n+2)\ln^4(n+2)}$,

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{(n+1)\ln^4(n+1)}{(n+2)\ln^4(n+2)} = 1.$$

В данном случае применим интегральный признак Коши. Составим несобственный интеграл, соответствующий ряду

$$f(n) = \frac{1}{(n+1)\ln^4(n+1)}, \ 1 \le n < +\infty; \quad f(x) = \frac{1}{(x+1)\ln^4(x+1)}, \ 1 \le x < +\infty.$$

$$\int_1^{\infty} f(x) dx = \int_1^{\infty} \frac{dx}{(x+1)\ln^4(x+1)} dx = \int_1^{\infty} \frac{d(\ln(x+1))}{\ln^4(x+1)} dx = \begin{vmatrix} \ln(x+1) = t \\ d(\ln(x+1)) = dt \\ x = 1 \Rightarrow t = \ln 2 \\ x = \infty \Rightarrow t = \infty \end{vmatrix} =$$

$$= \int_{\ln 2}^{+\infty} \frac{dt}{t^4} = \lim_{N \to \infty} \int_{\ln 2}^{N} t^{-4} dt = \lim_{N \to \infty} \left(\frac{t^{-3}}{-3}\right) \Big|_{\ln 2}^{N} = \lim_{N \to \infty} \left(-\frac{1}{3N^3} + \frac{1}{3\ln^3 2}\right) =$$

$$= 0 + \frac{1}{3\ln^3 2} = \frac{1}{3\ln^3 2} = 1,001 \text{ (равен конечному числу)}.$$

Так как несобственный интеграл сходится, то сходится и числовой ряд.

B)
$$\sum_{n=1}^{\infty} \frac{7n+1}{(n+3)\sqrt{n+3}}$$
.

Признак Д'Аламбера ответа не дает, т.к.

$$u_n = \frac{7n+1}{(n+3)^{3/2}},$$
 $u_{n+1} = \frac{7(n+1)+1}{(n+4)^{3/2}} = \frac{7n+8}{(n+4)^{3/2}},$

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{(7n+8)(n+3)^{\frac{3}{2}}}{(n+4)^{\frac{3}{2}}(7n+1)} = \lim_{n\to\infty} \frac{(7n+8)}{(7n+1)} \cdot \left(\frac{n+3}{n+4}\right)^{\frac{3}{2}} = 1.$$

Несложно составить соответствующий несобственный интеграл

$$\int_{1}^{\infty} \frac{7x+1}{\sqrt{(x+3)^3}} dx.$$

Сложнее вычислить этот интеграл или доказать его расходимость. Поэтому воспользуемся признаком сравнения.

Выпишем общий член u_n данного ряда и найдем общий член v_n нового ряда из условия их эквивалентности

$$u_n \sim v_n$$
 при $n \to \infty$, r.e. $\lim_{n \to \infty} \frac{u_n}{v_n} = 1$.

$$u_n = \frac{7n+1}{\sqrt{(n+3)^3}}$$
 $v_n = \frac{7n}{\sqrt{n^3}} = \frac{7}{\sqrt{n}},$

$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{7}{\sqrt{n}} = 7 \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}},$$

$$\int\limits_{1}^{\infty}\frac{dx}{\sqrt{x}}=\lim_{N\to\infty}\int\limits_{1}^{N}\frac{dx}{\sqrt{x}}=\lim_{N\to\infty}2\sqrt{x}\bigg|_{1}^{N}=2\lim_{N\to\infty}(\sqrt{N}-1)=\infty\Rightarrow\qquad \text{несобственный}$$

интеграл расходится, значит расходятся и сравниваемые ряды.

r)
$$\sum_{n=1}^{\infty} \frac{3n^2 + 4n + 7}{n^5 + 6}$$
.

Сравним его с рядом $\sum_{n=1}^{\infty} \frac{1}{n^3}$, который сходится как обобщенный гармонический ряд с p=3>1.

$$u_n = \frac{3n^2 + 4n + 7}{n^5 + 6}$$
, $v_n = \frac{1}{n^3}$, $\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{(3n^2 + 4n + 7)n^3}{n^5 + 6} =$

$$= \lim_{n \to \infty} \frac{3 + \frac{4}{n^2} + \frac{7}{n^3}}{1 + \frac{6}{n^5}} = 3.$$

Отсюда следует, что оба ряда ведут себя одинаково, т.е. сходятся.

Задание 6.

a)
$$u_n = \frac{3n+5}{n^2+2n+4}$$
, $n=6$.

6)
$$u_n = \frac{n^2 \sqrt{n+2}}{6^n}$$
, $n=4$.

а) Знакочередующийся ряд $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3n+5}{n^2+2n+4}$ может сходиться абсолютно и условно. Исследуем его на условную сходимость по признаку Лейбница. Проверяем условия:

1.
$$u_n \ge u_{n+1}$$
, $n \in \mathbb{N}$; 2. $\lim_{n \to \infty} u_n = 0$.

$$u_1 = \frac{3+5}{1+2+1} = \frac{8}{4} = 2$$
; $u_2 = \frac{6+5}{4+4+4} = \frac{11}{12}$; $u_3 = \frac{9+5}{9+6+4} = \frac{14}{19}$;

$$u_4 = \frac{12+5}{16+8+4} = \frac{17}{28}; \ u_5 = \frac{15+5}{25+10+4} = \frac{20}{39}; \ u_6 = \frac{18+5}{36+12+4} = \frac{23}{52}; \ \dots$$

 $u_1=2$; $u_2=0.9167$; $u_3=0.7368$; $u_4=0.6071$; $u_5=0.5128$; $u_6=0.4423$;... Очевидно, что $u_1>u_2>u_3>u_4>u_5>u_6>...$ Чтобы убедиться, что последовательность u_n убывающая для любого n, составим непрерывную

функцию
$$f(x) = \frac{3x+5}{x^2+2x+4}$$
 и найдем $f'(x)$

$$f'(x) = \frac{3(x^2 + 2x + 4) - (3x + 5)(2x + 2)}{(x^2 + 2x + 4)^2} = \frac{3x^2 + 6x + 12 - 6x^2 - 16x - 10}{(x^2 + 2x + 4)^2} =$$

$$= \frac{-3x^2 - 16x + 2}{(x^2 + 2x + 4)^2} = \frac{-3x^2 + 16x - 2}{(x^2 + 2x + 4)^2} < 0 \quad npu \quad x \ge 1.$$

Значит, функция f(x) - убывающая для $x \ge 1$, а последовательность $u_n = f(n)$ - убывающая для любого $n \in N$. Первое условие выполнено. Второе условие признака Лейбница

 $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{3n+5}{n^2+2n+4} = \lim_{n\to\infty} \frac{3n}{n^2} = 0$ также выполнено. Значит, данный ряд *сходится условио*.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3n+5}{n^2+2n+4} = 2 - \frac{11}{12} + \frac{14}{19} - \frac{17}{28} + \frac{20}{39} - \frac{23}{52} + \dots = S.$$

Его сумма положительна и $S \le 2$.

Если $S \approx S_6$, то $|S - S_6| = |r_6| < u_7$.

$$u_7 = \frac{3 \cdot 7 + 5}{7^2 + 2 \cdot 7 + 4} = \frac{21 + 5}{49 + 14 + 4} = \frac{26}{67} = 0,388 < 0,4;$$

$$S \approx 2 - \frac{11}{12} + \frac{14}{19} - \frac{17}{28} + \frac{20}{39} - \frac{23}{52} = 2 - 0.92 + 0.74 - 0.61 + 0.51 - 0.44 = 1.28 \approx 1.3;$$

 $S = 1.3 \pm 0.4$.

Исследуем знакочередующийся ряд на абсолютную сходимость. Составим ряд из модулей

$$\sum_{n=1}^{\infty} \left| (-1)^{n-1} \frac{3n+5}{n^2+2n+4} \right| = \sum_{n=1}^{\infty} \frac{3n+5}{n^2+2n+4} = \sum_{n=1}^{\infty} u_n$$

Сравним поведение этого ряда с рядом $\sum_{n=1}^{\infty} \nu_n = \sum_{n=1}^{\infty} \frac{1}{n}$

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{(3n+5) \cdot n}{(n^2 + 2n+4) \cdot 1} = \lim_{n \to \infty} \frac{3 + \frac{5}{n}}{1 + \frac{2}{n} + \frac{4}{n^2}} = 3.$$

Отсюда следует, что ряды ведут себя одинаково, т.е. расходятся, поскольку гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ - расходится.

6)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2 \sqrt{n} + 2}{6^n}, \quad n = 4.$$

Исследуем ряд на абсолютную сходимость. Составим ряд из модулей

$$\sum_{n=1}^{\infty} \frac{n^2 \sqrt{n+2}}{6^n}.$$

Применим признак Д'Аламбера

$$u_n = \frac{n^2 \sqrt{n+2}}{6^n}$$
; $u_{n+1} = \frac{(n+1)^2 \sqrt{n+1} + 2}{6^{n+1}}$,

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{((n+1)^2 \sqrt{n+1} + 2) \cdot 6^n}{6^{n+1} (n^2 \sqrt{n} + 2)} = \frac{1}{6} \lim_{n \to \infty} \frac{(n+1)^2 \sqrt{n+1} + 2}{n^2 \sqrt{n} + 2} = \frac{1}{6} \lim_{n \to \infty} \frac{n^2 \sqrt{n}}{n^2 \sqrt{n}} = \frac{1}{6} < 1,$$

значит, ряд
$$\sum_{n=1}^{\infty} u_n$$
 сходится, а ряд $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ сходится абсолютно.

Всякий абсолютно сходящийся ряд сходится и условно. Вычислим его сумму приближенно, взяв первых четыре члена ряда и оценим допускаемую при этом погрешность.

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 \sqrt{n} + 2}{6^n} = \frac{1+2}{6} - \frac{4\sqrt{2} + 2}{6^2} + \frac{9\sqrt{3} + 2}{6^3} - \frac{16\sqrt{4} + 2}{6^4} + \frac{25\sqrt{5} + 2}{6^5} - \dots = S,$$

$$|S - S_4| = |r_4| < u_5; \ u_5 = \frac{25\sqrt{5} + 2}{6^5} = \frac{57,9017}{7776} = 0,0074; \ u_5 < 0,01.$$

Заменяем сумму ряда четвертой частичной суммой, вычисления ведем до трех знаков после запятой, а затем округляем результат до сотых долей.

$$S \approx S_4 = \frac{3}{6} - \frac{4\sqrt{2} + 2}{36} + \frac{9\sqrt{3} + 2}{6^3} - \frac{16\sqrt{4} + 2}{64} = 0,500 - 0,213 + 0,081 - 0,026 = 0,342 = 0,34.$$

$$S = 0,34 \pm 0,01.$$

Задание 7.

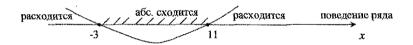
a)
$$a_n = \frac{5n+2}{(n+3)\cdot 7^n}$$
, $x_0 = 4$.

6)
$$a_n = \frac{4n^2 - 1}{n^4 + 3}$$
, $x_0 = -6$.

а) Дан степенной ряд

$$\sum_{n=1}^{\infty} a_n (x - x_0)^n = \sum_{n=1}^{\infty} \frac{5n + 2}{(n+3) \cdot 7^n} \cdot (x-4)^n.$$
 (15)

Найдем интервал его *абсолютной сходимости*. Для этого применим к ряду из модулей признак Д'Аламбера


$$\begin{aligned} |u_{n}(x)| &= \frac{5n+2}{(n+3)\cdot 7^{n}} \cdot |x-4|^{n}, \quad |u_{n+1}(x)| &= \frac{5n+7}{(n+4)\cdot 7^{n+1}} \cdot |x-4|^{n+1}, \\ &\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_{n}(x)} \right| &= \lim_{n \to \infty} \frac{(5n+7)\cdot |x-4|^{n+1} \cdot (n+3)\cdot 7^{n}}{(n+4)\cdot 7^{n+1}\cdot (5n+2)\cdot |x-4|^{n}} = \frac{|x-4|}{7} \times \\ &\times \lim_{n \to \infty} \frac{(5n+7)(n+3)}{(n+4)(5n+2)} &= \frac{|x-4|}{7} \lim_{n \to \infty} \frac{5n^{2}}{5n^{2}} = \frac{|x-4|}{7}. \end{aligned}$$

Если $\frac{|x-4|}{7} < 1 \Leftrightarrow |x-4| < 7 \Leftrightarrow -7 < x - 4 < 7 \Leftrightarrow -3 < x < 11$, то ряд (15) *сходится абсолютно.*

Если
$$\frac{|x-4|}{7} > 1 \iff |x-4| > 7$$
 т.е. $\begin{vmatrix} x-4 > 7, \\ x-4 < -7. \end{vmatrix} \Leftrightarrow \begin{vmatrix} x > 11, \\ x < -3, \end{vmatrix}$

т.е. $x \in (-\infty; -3) \cup (11; +\infty)$, то ряд (15) расходится.

Если $\frac{|x-4|}{7} = 1 \Leftrightarrow |x-4| = 7 \Leftrightarrow x = 4 \pm 7$, то признак Д'Аламбера ответа не дает.

Исследуем поведение ряда (15) на концах интервала сходимости, т.е. при x = -3 и x = 11.

1)
$$x = -3$$
.
$$\sum_{n=1}^{\infty} (-1)^n \frac{5n+2}{n+3} = \sum_{n=1}^{\infty} (-1)^n \cdot u_n, \quad u_n = \frac{5n+2}{n+3}.$$

Так как $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{5n+2}{n+3} = 5 \neq 0$, то ряд расходится.

2)
$$x = 11$$
. $\sum_{n=1}^{\infty} \frac{5n+2}{(n+3)\cdot 7^n} (11-4)^n = \sum_{n=1}^{\infty} \frac{(5n+2)\cdot 7^n}{(n+3)\cdot 7^n} = \sum_{n=1}^{\infty} \frac{5n+2}{n+3}$

ряд расходящийся, т.к. его общий член не стремится к нулю при $n \to \infty$ (не выполняется необходимый признак сходимости ряда).

Таким образом, *областью сходимости* степенного ряда (15) является интервал -3 < x < 11.

б) Рассматриваем степенной ряд вида
$$\sum_{n=1}^{\infty} \frac{4n^2 - 1}{n^4 + 3} (x + 6)^n$$
. (16)

Составляем ряд из модулей и применяем признак Д'Аламбера

$$\sum_{n=1}^{\infty} \frac{4n^2 - 1}{n^4 + 3} \cdot |x + 6|^n,$$

$$\lim_{n \to \infty} \left| \frac{u_n + 1}{u_n} \right| = \lim_{n \to \infty} \frac{(4(n+1)^2 - 1) \cdot |x + 6|^{n+1} \cdot (n^4 + 3)}{((n+1)^4 + 3) \cdot (n^4 - 1) \cdot |x + 6|^n} = |x + 6| \times \lim_{n \to \infty} \frac{4n^2 \cdot n^4}{n^4 \cdot 4n^2} = |x + 6|.$$

Если $|x+6| < 1 \Leftrightarrow -1 < x+6 < 1 \Leftrightarrow -7 < x < -5$, то ряд (16) *сходится* абсолютно.

Есни |x+6| > 1, т.е. $x \in (-\infty; -7) \cup (-5; +\infty)$, то ряд (16) расходится.

При x = -7 и x = -5 нужно дополнительное исследование.

1)
$$x = -7$$
.
$$\sum_{n=1}^{\infty} (-1)^n \frac{4n^2 - 1}{n^4 + 3},$$
 (17)

2)
$$x = -5$$
.
$$\sum_{n=1}^{\infty} \frac{4n^2 - 1}{n^4 + 3}$$
. (18)

Очевидно, что ряд (18) сходится по признаку сравнения с рядом $\sum_{n=1}^{\infty} \frac{1}{n^2}$,

T.K.
$$\lim_{n\to\infty} \frac{4n^2 - 1}{n^4 + 3} : \frac{1}{n^2} = \lim_{n\to\infty} \frac{(4n^2 - 1)n^2}{n^4 + 3} = 4.$$

Значит, ряд (17) *сходится абсолютно*. Следовательно, *областью сходимости* степенного ряда (16) является отрезок $x \in [-7; -5]$.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Ведина О.И., Десницкая В.Н. и др. Математика. Математический анализ для экономистов.-М.: «Филинъ», 2000.-356 с.
- 2. Высшая математика для экономистов / Под ред. Н.Ш.Кремера. 3-е изд. М.: ЮНИТИ ДАНА, 2007.-479 с.
- 3. Высшая математика: Общий курс / Под ред. С.А.Самаля. 2-е изд. Мн.: Вынц. шк., 2000.-352 с.
- 4. Гусак А.А., Гусак Г.М., Бричикова Е.А. Справочник по высшей математике.- 6-е изд. Мн.: ТетраСистемс, 2005.-640 с.
- 5. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах .- 5-е изд. М.: Высш.шк., 1997. Ч.1. 304 с.; Ч.2. 416с.
- 6. Жевняк Р.М., Карпук А.А. и др. Общий курс высшей математики. Орша: АРФА, 1996.-318 с.
- 7. Индивидуальные задания по высшей математике: Комплексные числа. Неопределенные и определенные интегралы. Функции нескольких переменных. Обыкновенные дифференциальные уравнения / Под ред. А.П.Рябушко. 2-е изд. Мн.: Выш. шк., 2000.- 396 с.
- 8. Колесников А.Н. Краткий курс математики для экономистов.- М.: ИНФРА-М, 1997.-208 с.
- 9. Красс М.С. Математика для экономических специальностей.- 3-е изд. М.: Дело. 2002.-704 с.
 - 10. Малыхин В.И. Математика в экономике.- М.: ИНФРА-М, 1999.- 356 с.
- 11. Минюк С.А., Ровба Е.А. Высшая математика. - 3-е изд. - Гродно: ГрГУ, 2004.-408 с.
- 12. Минюк С.А., Самаль С.А., Шевченко Л.И. Высшая математика для экономистов. Т. 1. Мн.: «Элайда», 2003. 526 с.
- 13.Общий курс высшей математики для экономистов / Под ред. В.И.Ермакова.-М.: ИНФРА-М, 2000.-656 с.
- 14. Руководство к решению задач по высшей математике. / Под ред. Е.И. Гурского.-Мн.: Выш. шк., 1989. Ч.1.-350с.; Ч.2.-1990. -400 с.
- 15. Сборник задач по высшей математике для экономистов / Под ред. В.И. Ермакова.-М.: ИНФРА-М, 2001.-575 с.
- 16. Солодовников А.С., Бабайцев В.А. и др. Математика в экономике. Ч. 2.-М.: Финансы и статистика, 1999.-376 с.
- 17. Справочник по математике для экономистов / Под. ред. В.И.Ермакова,-М.: Выслп. шк., 1997.-384 с.
- 18. Тузик А.И. Высшая математика. Интегрирование функций одной и нескольких переменных.-Брест: БГТУ, 2000.-129 с.
 - 19. Тузик А.И. Высціая математика. Ряды. Брест: БГТУ, 2003. 123 с.

СОДЕРЖАНИЕ

1.	Общие методические указания	3
	Вопросы учебной программы	
3.	Контрольная работи № 3	5
	Решение типового варилита контрольной работы № 3	
	Контрольная работа № 4	
	Решение типового варианта контрольной работы № 4	
	Рекомендуемая литература	

Учебное излание

Тузик Татьяна Александровна Тузик Альфред Иванович

ВЫСШАЯ МАТЕМАТИКА ОБЩИЙ КУРС

Контрольные работы №3, №4

Методические указания и варианты заданий для студентовзаочников экономических специальностей

Второе издание, переработанное

Ответственный за выпуск А.И.Тузик Редактор Т.В.Строкач Компьютерный набор Д.Н.Мищирук Компьютерная графика И.И.Гладкий

Подписано в печать 21.02.2007 г. Формат 60х84 ¹/₁₆. Бумага «Снегурочка». Усл. п. л. 3,5. Уч.-изд. л. 3,75. Тираж 150 экз. Заказ № 247. Отпечатано на ризографе учреждения образования «Брестский государственный технический университет». 224017, г. Брест, ул. Московская, 267.