ДИНАМИЧЕСКАЯ МЕЖОТРАСЛЕВАЯ БАЛАНСОВАЯ МОДЕЛЬ Е.В. Гаспадарик

(БГТУ, г. Брест)

Статические межотраслевые балансовые модели [1;2], т.е. модели, в которых все зависимости отнесены к одному моменту времени, разрабатываются лишь для отдельно взятых периодов, причем в рамках этих моделей не устанавливается связь с предпествующими или последующими периодами. В таких моделях капиталовложения вынесены из сферы производства в сферу конечного использования вместе с предметами потребления и непроизводственными затратами, т.е. включены в конечный продукт.

В отличие от статических динамические модели призваны отразить не состояние, а процесс развития экономики, установить непосредственную взаимосвязь между предыдущими и последующими этапами развития и тем самым приблизить анализ на основе экономико-математической модели к реальным условиям развития экономической системы.

В рассматриваемой здесь динамической модели, являющейся развитием статической межотраслевой модели, производственные капитальные вложения выделяются из состава конечной продукции, исследуются их структура и влияние на рост объема производства. В основе построения модели в виде динамической системы уравнений лежит математическая зависимость между величиной капитальных вложений и приростом продукции. Решение системы, как и в случае статической модели, приводит к определению уровней производства, но в динамическом варианте в отличие от статического эти искомые уровни зависят от объемов производства в предшествующих периодах.

Принципиальная схема динамического межотраслевого баланса приведена в следующей таблице:

	Потребляющие отрасли									
Произ-	Межотраслевые потоки текущих затрат								Конеч- ный	Валовый продукт
водящие отрасли										
	$_{ij}$ $_{ij}$ $_{ij}$, . 2	r:••.	n .	1, 1,	2		, n	продукт	
1	XII	X12		Xin	ΔФ11	ΔΦ ₁₂		$\Delta\Phi_{1n}$	Y_1	X ₁
			•••	•••	•••			•••	. (3.2	e V nienie je
7/11 i 11 11 11 11 11 11 11 11 11 11 11 11 11	Xii	X _{i2}	7 (4 (4)) ••••[Χiπ	ΔΦιι	$\Delta\Phi_{i2}$		$\Delta\Phi_{in}$	Y_i	\mathbf{X}_{i}
			•••	•••	······		•••			ST STATE
n	X _{n1}	X _{n2}	•••	Xnn	$\Delta\Phi_{n1}$	$\Delta\Phi_{n2}$		$\Delta\Phi_{nn}$	Yn	X _n

Модель содержит две матрицы межотраслевых потоков. Матрица текущих производственных затрат с элементами x_{ij} совпадает с соответствующей матрицей статического баланса. Элемент $\Delta\Phi_{ij}$ второй матрицы $\Delta\Phi=(\Delta\Phi_{ij})$, i,j=1...n, показывает какое количество продукции i-ой отрасли направлено в текущем периоде в j-ю отрасль в качестве производственных капитальных вложений в ее основные фонды. Материально это выражается в приросте в потребляющих отраслях производственного оборудования, сооружений, производственных площадей транспортных средств и др.

В статическом балансе потоки капиталовложений не дифференцируются по отраслям и отражаются общей величиной в составе конечной продукции У_i. В динамической схеме конечный продукт У_i включает продукцию *i*-ой отрасли, идущую на личное и общественное потребление, накопление непроизводственной сферы, прирост оборотных фондов, незавершенного строительства, на экспорт. Таким образом, сумма потоков капиталовложений и конечного продукта динамической модели равна конечной продукции статического баланса:

$$\sum_{j=1}^{n} \Delta \Phi_{ij} + Y_i' = Y_i, \quad i = 1..n.$$

Следовательно, уравнение динамического баланса примет вид:

$$X_{i} = \sum_{j=1}^{n} x_{ij} + \sum_{j=1}^{n} \Delta \Phi_{ij} + Y'_{i}. \tag{1}$$

Межотраслевые потоки текущих затрат можно выразить из равенства Леонтьева

$$x_{ij} = a_{ij} X_j, \tag{2}$$

где a_{ij} - коэффициенты прямых затрат. Межотраслевые потоки капитальных вложений обуславливают прирост продукции, причем в рассматриваемой модели предполагается, что прирост продукции текущего периода обусловлен вложениями, произведенными в этом же периоде. Если текущий период обозначить через t, то прирост продукции ΔX_j ; равен разности абсолютных уровней производства в период t и в предшествующий (t-1)-й период:

$$\Delta X_j = X_j^{(t)} - X_j^{(t-1)}$$
 (3)

С другой стороны, будем считать, что прирост продукции пропорционален приросту производственных фондов:

$$\Delta\Phi_{ij} = \varphi_{ij} \cdot X_j, \quad i, j = 1..n, \tag{4}$$

где φ_{ii} - коэффициент вложений или коэффициент приростной фондоемкости. Их смысл в том, что они показывают, какое количество продукции і-ой отрасли следует вложить в ј-ю отрасль для увеличения производственной мощности і-ой отрасли на единицу продукции.

Окончательно, с учетом (2) и (4) система уравнений (1) представится в виде

$$X_{i} = \sum_{j=1}^{n} a_{ij} X_{j} + \sum_{j=1}^{n} \varphi_{ij} \Delta X_{j} + Y'_{i}, \quad i=1..n$$
 (5) Система (5) есть система линейных разностных уравнений первого по-

рядка. Ее можно привести, используя равенства (2)-(4), к обычной системе

$$X_{i}^{(t)} = \sum_{j=1}^{n} \left(a_{ij} + \varphi_{ij} \right) X_{j}^{(t)} - \sum_{j=1}^{n} \varphi_{ij} X_{j}^{(t-1)} + Y_{i}^{(t+1)}, \qquad i = 1..n$$
 (6)

Пусть известны уровни валовой продукции всех отраслей в предыдущем периоде $X_f^{(t-1)}$ и конечный продукт отраслей в t-м периоде. Тогда соотношения (6) позволяют определить выпуск продукции в последующем периоде в зависимости от уровня, достигнутого в предыдущем периоде.

Если перейти от дискретных величин к непрерывным, то (4) примет вид

$$\frac{d\Phi_{ij}}{dt} = \varphi_{ij} \frac{dX_j}{dt}$$

и, следовательно, соотношения (5) примут вид

$$X_{i} = \sum_{j=1}^{n} a_{ij} X_{j} + \sum_{j=1}^{n} \varphi_{ij} \frac{d X_{j}}{d t} + Y'_{i}, \quad i = 1..n$$
 (7)

Соотношение (7) — это система п линейных дифференциальных уравнений первого порядка с постоянными коэффициентами. Для ее решения помимо матриц (a_{ij}) и (φ_{ij}) нужно знать уровни валового выпуска в начальный момент времени t=0 и закон изменения величины конечного продукта, т.е. вид функций Y'(t). Решая, таким образом, задачу Коши для системы (7), можно найти уровни выпуска теоретически для любого момента времени.

Литература.

1. Федосеев В.В., Гармаіп А.Н. и др Экономико-математические методы и прикладные модели. -М.: ЮНИТИ. -1999. -391с. 2. Красс М.С. Математика для экономических специальностей.-М.:"ИНФРА-М".-1998.-464с.