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Abstract 
Functioning of power transfer by flexible link of frictional type in conditions of a dynamic loading is theoretically described. Small motions of power 

transfer by flexible link of frictional type which allows to forecast unstable transfer operating modes are presented. Experimental research in the  
obtained dependences are given and recommendations as to the choice of rational operational transfer parameters which ensure the rise in stability of 
its movement are offered. 
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ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ПЕРЕДАЧИ МОЩНОСТИ ГИБКИМ ЗВЕНОМ ФРИКЦИОННОГО ТИПА 
 

А. Г. Баханович 
Реферат 
Теоретически описано функционирование передачи мощности гибким звеном фрикционного типа в условиях динамической нагрузки. 

Представлены малые движения передачи мощности гибким звеном фрикционного типа, что позволяет прогнозировать нестабильные режимы 
работы передачи. Приведены экспериментальные исследования полученных зависимостей и предложены рекомендации по выбору рацио-
нальных эксплуатационных параметров передачи, обеспечивающих повышение устойчивости ее движения. 

 

Ключевые слова: передача мощности, фрикционная гибкая муфта, динамическая нагрузка, нестабильная работа, рабочие параметры, 
устойчивость движения. 

 

 

Introduction  
Despite the quasi-constant nature of the transmitted torque, slip os-

cillations are inevitable in a frictional belt drive (FBD), which in some 
cases leads to slipping of the belt relative to the pulleys. and thus affects 
the stability of the gear movement. This phenomenon contributes to the 
occurrence of vibration in the drives on the whole, and the vibrations of 
the belt legs contribute to the intense production of noise. The durability 
of belts in suchlike conditions is also low, however, theoretically, such a 
phenomenon has not been described up to now. 

When analyzing large displacements, it was shown [1] that in certain 
modes the FBD, as a coupling, is nonholonomic. In the work [2], a linear 
equation of nonholonomic coupling was obtained, which is the result of 
considering non-vibrational loading of the transmission. The authors of 
works [3, 4] made an attempt to experimentally substantiate slip zones, in 
which transmission can be represented as a holonomic system. The 
drawback of these works is that the authors do not take into account the 
change in the slip coefficient when the load fluctuates, and that is why 
they could not explain the significant discrepancy between empirical and 
analytical results in the resonant modes of operation. Thus, the issue of 
the criterion for transmission holonomy at small vibrations remains open. 

The aim of this work is to describe small motions of a system with a 
FBD in a nonholonomic setting, which makes it possible to predict unsta-
ble transmission modes. It is known that a nonholonomic dynamical sys-
tem will occur if the generalized coordinates of the system are related to 
the generalized velocities of the system and the kinematic coupling equa-
tion is not integrable. 

 

Main part  
To derive a FBD coupling equation, let’s consider the processes of 

changing the speeds of the driving and driven pulleys over a period of 

time Δt when oscillating relative to stationary motion. Similar processes 
of changing the speeds of the transmission pulleys occur in non-
stationary loading conditions and in the absence of torsional vibrations. 
For the simplicity of analytical conclusions, let’s assume the calculated 

FBD gear ratio equal to one and Δt1 = Δt2 = Δt in accordance with 
Fig. 1. Furthermore, we linearize the sections of speed change over the 

period Δt, corresponding to the drop and increase in the load. At t0, the 
angular velocities of the driving and driven pulleys are respectively equal 

to 10  and 20 . 

 
 

Figure 1 – Change of angular speeds of the leader  
and follower pulleys of power transmission by flexible  

link of frictional type at loading oscillations 
 

During the time Δt, these speeds will change and become equal,  

respectively, 1  and 2 . In this case, the angles of rotation of the pul-

leys during the time Δt will be equal: for the case Δt1 
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where ε1 and ε2 — angular acceleration of the transmission pulleys. 
 

For the case Δt2 
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With uniform rotation, the angular accelerations of the pulleys are 
equal to: 

for the case Δt1 
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for the case Δt2 
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We substitute expressions (3) and (4), respectively, in (1) and (2) and 
express the time from these dependencies. We perform a similar proce-
dure with other formulas. 

Taking into account that the time Δt is the same for the driving and 

driven pulleys, we obtain the FBD coupling equation, both for the case of 

Δt1 and for the case of Δt2 in the form 
 

,
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or 
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Since the type of connections and their properties determine the form 
of the differential equations of motion of the system, it is necessary to find 
out the properties of the obtained kinematic coupling equation. Let’s 
make an integrability analysis with the help of the elements of the Pfaffian 
forms theory [5]. 

We write the equation (6) in the following form 
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It follows (7) 
 

Adx Bdy Cdz ,   0   (8) 
 

where 
 A ;   B ;   C ;   

dx d ;   dy d ;   dz dt.

         

    

1 2 1 20 2 10

2 1

 

 

An integrating factor for the differential equation (8) exists if the con-
dition is fulfilled 
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We calculate particular derivatives entering the condition (9) 
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Substituting these values of the derivatives into the condition (5),  
after a number of transformations we find 
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This condition means that the increment of the rotation angles per 
unit of speed change for the driving and driven pulleys of the transmission 
must remain equal during torque fluctuation. 

However, in real conditions, because of the presence of an irreparable 
lag of the driven pulley due to elastic sliding, we have 

 

φ1 > φ2; Δ1  ≠ Δ2 ; или .
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Consequently, the equation of the kinematic connection of the FBD 
(6) is non-integrable, that is, a kinematic connection carried out by a belt 
in a friction-type transmission — flat-belt, V-belt is nonholonomic. Its 
equation in general form [5] 
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j j
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where υ = 1, 2, 3, …, ρ; ρ – the number of linear nonholonomic connec-

tions, for our case ρ = 1; n – the number of the system generalized 

coordinates (n = 2); 
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In differentials an equation general form can be presented in the  
following way: 
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As is known from analytical mechanics, a coupling type (11) meets 
basic Hertz-Hölder principle for the analytical mechanics of nonholonomic 
systems. It follows from this principle that the relations for coordinates 

δφj variations in the presence of nonholonomic coupling are obtained 

from the equations of differential connections by discarding the term 

which, in the equation, contains value dt (54) and replacing dφj by δφj. 

Thus, the coordinate variations δφj are bound by the relation 
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For the case under consideration, this allows to obtain 
 

j j

j

A ,


  
2

1

0  или A A ,   12 2 11 1 0  

.    1 2 2 1 0  
 

Considering small oscillations with respect to stationary motion and 

assuming that the possible displacements dφj meet a number of coordi-

nate variation values δφj, we write, for small oscillations, a coupling 

equation without a free term in differential form d d .    1 2 2 1 0  

Dividing this equation by dt we obtain the constraint equation for 

small oscillations 
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Thus, a free term a1 does not have a significant effect on dynamic 

processes during vibrations of friction belt drives and actually determines 
only the initial state of the system. In the further analysis, we use equa-
tions with indefinite Lagrange multipliers and a coupling equation (12). 
Such an equation has the form 
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l j
j j j j

d T T
A ... A e,

dt x x x x
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where j = 1, 2, …, n – the number of generalized coordinates; l – the 

number of linear nonholonomic links; Т – the kinetic energy of the sys-

tem; П – potential energy of the system; Ф – dissipation function. 
 
In addition, a linear nonholonomic coupling is laid on FBD system in 

the form 
 

R R SR RA x A x ... A x ;   R 1, 2, ..., l.   1 1 2 2  (14) 
 

To use these equations in the study of small oscillations with respect 
to stationary motion, it is necessary to pass from the original equations to 

the equations in variations, replacing the coordinates хj with qi j  
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For the PBd, the generalized coordinates are φ1 и φ2 (n = 2). 
That's why 
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Thus, a dynamic FBD system has one degree of freedom of move-

ment, since n = 1. 
The transition to equations in variations is carried out as follows.  

We perform the calculations of the terms 

j j j
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and 

then, in the obtained equations, we expand all the terms in the degrees of 
variation and restrict ourselves to only terms of the lowest orders. 

Generalized forces are calculated taking into account the selected 
new variables. These forces can be calculated as coefficients for possible 
displacements in the expression of virtual work. The transition from the 

coordinates хj to their variations qj must also be performed for the non-
holonomic coupling equation (14). For the considered movement of the 
belt drive, we will have a nonholonomic coupling equation in the form 
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Expanding A1 = A1(φ1; φ2) и A2 = A2(φ1; φ2) in the degrees 
of variation and restricting ourselves to terms of the lowest orders, we 
obtain 
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When decomposing, we use a usual method: we assume all coeffi-
cients to be constant. In the equations (13), the terms with the index "0" 
correspond to stationary motion. 

The equations with indefinite factors for the FBD then take the form 
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where Q1, и Q2 – generalizing forces. 
 

An indefinite factor   is the function of coordinates and velocities.  

Expanding it into a Taylor series after the transformations, we obtain 
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For simplicity, we denote all lower-order terms by  . Then 
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Kinetic energy is expressed as a quadratic form of generalized veloc-

ities with coefficients aij, which are determined by the coordinates of the 

system 
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After the differentiation operations with respect to generalized coor-
dinates, we have 
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We obtain the equation of disturbed motion. Using (15), limiting our-
selves to terms of lower orders and omitting transformations, we have the 
following equations: 
− for stationary movement 
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− for oscillations (in variations) 
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We divide the generalized forces into two categories. To the first, we 
refer the forces that have potential (П), to the second – all dissipative 
ones (Ф) 
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If we introduce a double notation, then the equations of small oscilla-
tions of the system under consideration with respect to stationary motion 
can be written in the form: 
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11 11 0 12 12 0 22 22 0 0 0

1 2

1 2 11 11
0 0 0 1 0 2

2 1 1 2

22 11 11 12 2
0 2 0 1 0 1 0 2

2 1 2 2

2 I ;


2
0 1

1

 

2 12

11 22 11 12

21 22

a a a Q Q
I I I ;   b I I ;

Q Q A A
b I ;   b I ;   b I ;   b I ;

A A
b I ;   b I .

    
         

    

   
        

   

 
    

 

11 22 22 1 2
0 2 0 1 0 2 0 0

2 1 1 2 1

1 2 1 1
0 0 0 0 0 0

1 2 1 2

2 2
0 0 0 0

1 2

2

 

 

In this case, the terms l11 1q , l12 2q , l22 2q  have the form of dissipa-

tive forces, although they are not connected with the dissipative function. 

The terms γ1̃ 2q  и γ̃2 q1 are "gyroscopic" forces силы 

1 2 .      

Then, after a series of transformations, the equations in variations 
can be written in the form 

 

   
   

a q a q l l q l l q

q b b q b b q A I ,

     

        

11 1 12 2 11 11 1 12 12 2

2 11 11 1 12 12 2 1 0

  (24) 

 

   
   

a q a q l l q l l q

q b b q b b q A I .

     

         

12 1 22 2 12 22 1 22 22 2

1 12 21 1 22 22 2 2 0

 (25) 

 

We obtain the value 0  using equations (21) or (22) and assume it to 

be known. Since in the above two equations (24) and (25) there are three 

unknown values − q1, q2 и  , it is necessary to add the nonholonomic 

coupling equation to them (16), replacing the variables in it with their variations 
 

A A A
I q I q I q

A
I q A I q A I q .

  
     

  


    



1 1 2
1 0 1 1 0 2 2 0 1

1 2 1

2
2 0 2 1 0 1 2 0 2

2

0

 (26) 

 

To determine the expansion terms of the lowest orders  , which are 

equal to 

n n

j
j jj j

I q I q ,
 

 
  

 
 0 0 0

1 1

, it is necessary to find 

an indefinite factor λ as the function of the coordinates and velocities of the 

system  j j;  .      To do this, it is necessary to differentiate the 

nonholonomic coupling equation (6)  

n

j j

j

d
A q a

dt
 



 
  
 
 


1

0.  

Transforming (19) and (20) to the form 

Q A Q A
,  ,

a a

   
   1 1 2 2

1 2
11 22

and substituting them in (10), 

we express  j j;       , which expands into a Taylor series with 

the definition of the expansion terms of the lowest orders. 
To draw up the equations of motion of the belt contour as an auton-

omous drive system, it is necessary to determine the kinetic and potential 
energy of the system. 

Kinetic energy: 
− for the drive pulley 

T J , 2
1 1 1

1

2
 

− for driven pulley 

T J , 2
2 2 2

1

2
 

where J1 и J2 are respectively the reduced moments of inertia of the 
driving and driven pulleys. 

 
On the other hand, in the accepted notation 
 

T a ; 2
1 11 1

1

2
 

2
2 22 2

1
.

2
T a   

 

We define potential energy as 
 

 С   
 

2

1 2
,

2
 

 

where Сφ is the torsional stiffness of the transmission. 

 
Since the influence of elastic slip on the relative rotation of the  

pulleys is several times higher than the deformations of the belt legs, the 

value Сφ will be set as depending on the value of resilient slip ξ 
 

M I
С . 



2 0

2
 

 

The angle of rotation of the driven pulley can be determined from the 
coupling equation (12), setting the angle of rotation of the driving pulley 
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I I .


 


2
2 0 0

1

 

Since J1 и J2 do not depend on the angles of rotation of the FBD 

shafts, the equations of stationary motion (21) and (22) will take the form 
 

Q I A I ,  1 0 1 0 0 0  

Q I A I .  2 0 2 0 0 0   (27) 
 

From the equation (27) we find λ0 

 

Q I I C A I I ,

  
            

2
2 1

1 0 0 1 2 1 0 2 02
1 1

 

Q
I C I .

A


  
     

  

1 1 2
0 0 0

1 2 1

1  

 

The equations in variations (24) and (25) for the belt drive at  

J1 = const и J2 = const will assume the form 
 

 

 

a q l q l q q b b q

b b q A I ,

      

    

11 1 11 1 12 2 2 11 11 1

12 12 2 1 0

 (28) 

 

 

 

a q l q l q b b q

b b q A I .

    

    

22 2 12 1 22 2 12 21 1

22 22 2 2 0

 (29) 

 

We reveal the values of the terms on the left-hand sides of the equa-
tions (28) and (29) 

 

l C I C N I ,

l C I C N I ,

b C I C N I .

 

 

 

    
        

   
        

  
       

2
2 2 2 1

11 0 1 04
2 1 1

1 1 2
12 0 2 02

1 12

2
2 2

11 0 3 02
1 1

2

1

 

b ;   b C I C N I ,

b ;   l C I C N I ,

 b C I C N I ,  

b ,  b .  

 

 

 

  
      

  

    
           

  
       

   

1 2
11 12 0 4 0

2 1

1 1 1 1
12 0 22 0 5 03

2 12

2
1 1

22 0 6 02
22

21 0 22

0 1

1

0

 
(30)

 

 

In what follows, for simplicity of notation, the index "0" will be omitted, 

i.e.   0 . 

Differentiating the nonholonomic coupling equation (17), we obtain 
 

.
        

 


2 1 1 20 2 10
2

1

  (31) 

 

From the equations of stationary motion (21), we express φ1 и φ2, 

respectively 
 

C
,

J J

    
         

 

2 2 2
1 1 2

1 1 1

 (32) 

 

C
.

J J

    
         

 

1 1 1
2 1 2

2 2 2

  (33) 

 

Substituting (32) and (33) into (31), we obtain 
 

k q k q k q k q .    1 1 2 2 3 1 4 2  
 

Expanding (18) in a Taylor series and discarding higher-order terms, 
we obtain 

 

C C

J J
,

J J

           
             

       
 

 




2 1 20 2 101 1 2 2
1 2 1 2

2 2 1 1 1 1 1

2
2 1

1 1 2

(34) 

 

where 

C C

J J
k ,

J J

C C

J J
k ,

J J

C

J
k

 

 



          
                  







          
                  


 


 

 





2
2 1 20 2 101 2 2 2

2 2
2 2 1 1 1 1 11 1

1 2
2

2
2 1 1

2
2 20 1 101 1 1 2

2 2 2
2 2 1 1 2 12 2 1

2
2 1

1 1 2 2

1

2 2

3

1 1

1

1 1

2

C

J
,

J J

             
                    

  


 

2 20 2 102 2 1 2 2 1 2 2
2 2 2 2 2

2 2 11 1 1 1 1 1

2 2 2
2

2 2 1 1

 

C C

J J
k .

J J

              
                     


   


 

20 101 1 2 1 1 2 1 1 2
2

2 2 2 1 1 1 1 1 2 12
4 2

1 2 2 1
2 2

1 2 2 1

2

 

After substituting the obtained coefficients (30) into the equations 
(28) and (29), taking into account (34), we will obtain 

 

 
 

J q C N q C N q C N q C N q

A k q k q k q k q ,

         

   

1 1 1 1 2 2 3 1 4 0 2

1 1 1 2 2 3 1 4 2

 (35) 

 

 
 

J q C N q C N q C N q C N q

A k q k q k q k q .

         

   

2 2 3 1 5 2 4 0 1 6 2

2 1 1 2 2 3 1 4 2

(36) 

 

To the obtained equations of motion (35) and (36), it is necessary to 
add a nonholonomic coupling equation in variations, which, taking into 
account (26), will have the form 

 

q q q q .    1 2 2 1 2 1 1 2 0  
 

For the joint solution of (35) and (36), it is necessary to determine 
from the coupling equation in variations the variation of the coordinate 

q1, equal to
q q q

q
    




1 2 2 1 1 2
1

2

 and substitute it into the 

equation of motion of the driven pulley (36). 
 
Similarly, the deduced coordinate variation must be substituted into 

the equation of motion of the driving pulley (35). 
Omitting the transformations, having performed these operations and 

made the adduction of similar terms, we obtain an FBD analytical model 
for torsional vibrations, i.e. equation of small oscillations regarding  
stationary movement 
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J q z q z q z q
,

J q z q z q z q

    


    

1 1 11 1 12 1 13 2

2 2 21 2 22 2 23 1

0

0
  (37) 

 

where 

 

 

k
z C N C N A k ,

k
z C N C N A k ,

 

 

  
     

 

  
     

 

2 1 2 2
11 1 4 0 2 3

1 1

2 1 2 2
12 3 4 0 2 1

1 1

 

 

 

 

 

k
z C N C N A k ,

k
z C N C N A k ,

k
z C N C N A k ,

k
z C N C N A k .

 

 

 

 

 
     

 

 
     

 

  
     

 

  
     

 

2
1 1 2

13 2 4 0 2 4
1 1

2
1 1 1

21 5 4 0 2 4
2 2

1 1 1 1
22 6 4 0 2 2

2 2

2 1 2 1
23 2 4 0 2 3

2 2

 

 

To study the stability of the FBD motion, it is required to solve a sys-
tem of motion equations (37) or obtain a characteristic equation and solve 
its roots. We use the operator notation. The system (12) is transformed to 
the form 

 

 

 

J p z p z q z pq ,
.

z pq J p z p z q

   



    


2
1 11 12 1 13 2

2
23 1 2 21 22 2

0

0
 

 

As a result, a homogeneous system of linear algebraic equations 
was obtained. For its solution to be non-trivial, the determinant of this 
system must be equal to zero. Expanding the determinant, we obtain  
a characteristic equation of the system in operator form: 

 

 

 

 

pD J J p J z J z p

z z J z z z p

J z z z z z p z z .

   

   

    

4 3
1 2 2 11 1 21

2
11 21 1 22 13 23

2 12 12 21 11 22 12 22 0

 (38) 

 

In view of a significant complexity of calculating the roots of the 
characteristic equation of high orders, we will use the method of ap-
proximate calculation with the help of stability criteria. We use  
Mikhailov stability criterion [6]. This criterion envisages the use of a 

frequency hodograph D (j υ), which can be obtained from the char-

acteristic equation at р = j υ. 

We replace р by jυ in polynomial (23) and select substantial and im-

aginary parts 
 

     D j U jV .       (39) 

 

Taking into account (116), the expression (117) is transformed to the 
form 

 

   

     

U J J p z z J z z z z z ,

V J z J z J z z z z z .

      

        

4 2
1 2 11 21 1 22 13 23 12 22

3
2 11 1 21 2 12 12 21 11 22

 

 

The curve described by the end of the vector D (j υ) when the fre-

quency changes from zero to infinity, is shown in accordance with Figure 2. 
It was obtained for the FBD of the RUVI kitchen machine with the 

parameters: J1 = 0,009 Нмс2; J2 = 0,004 Нмс2; D1 = 18,5 мм;  

D2 = 82,5 мм. 

 
 

 

 
 

Figure 2 – Mihajlov Frequency hodograph for the  
transmission of power by friction type flexible link 

 
Conclusions 
The frequency hodograph begins on the positive part of the real axis 

and traverses four quadrants sequentially in the positive direction. There-
fore, in accordance with Mikhailov’s criterion, the dynamic system of the 
transmission under consideration is stable. The boundaries of the stability 
regions of the stationary motion of the FBD can be estimated by the  
decrease (loss) in the angular velocity of the driven pulley from the load. 
If, as is customary in the theory of belt drives [7-10], the loss of angular 
velocity is estimated by the value of the resilient slip coefficient, then a 

stable operation of the considered FBD under the condition  ξ ≤ 5% will 

be observed at 2F0 ≥ 53,5 N. Thus, for increasing the stability of move-

ment, the value of the belt pre-tension should not be less than the per-
missible values. 
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