РЕГИОНАЛЬНАЯ БАЗА ДАННЫХ ГИДРОЛОГИЧЕСКОЙ ИНФОРМАЦИИ

В.Е.Валуев, А.А.Волчек, В.Ю.Цилиндь, В.В.Цыганок

Политехнический институт Брест, Республика Беларусь

Дано краткое описание разработанной региональной базы данных гидрологической информации. Дан перечень расчетных задач, данных, необходимых для их решения и хранящихся в базе. Описаны подходы к оценке качества данных и к автоматизации их первичной обработки.

БАЗА, ДАННЫЕ, ГИДРОЛОГИЧЕСКАЯ, ИНФОРМАЦИЯ, СУБД, ОЦЕНКА, КАЧЕСТВО

Успех хозяйственной и природоохранной деятельности, достоверность расчетов и прогнозов во многом зависят от наличия и качества информации о гидрологическом режиме рек. В условиях рыночной экономики информация, наряду с потребляемыми ресурсами и др., является производительной силой общества. Недостаточность информации по составу и объему, срокам представления, ограничения доступа к ней создают трудности по ее оперативному использованию.

В настоящее время в ряде министерств и ведомств Республики Беларусь накоплены значительные информационные ресурсы в области гидрологии. Однако, весь этот материал существенно разобщен и недоступен для широкого потребителя, так как формирование информационных ресурсов и разработка информационных систем на их основе, технология сбора и обработки информации осуществлялись без должной координации, и в первую очередь, в связи с наступившим тяжелым экономическим кризисом и отсутствием финансирования такого рода проектов.

Цель разработки Системы Управления Базами Данных гидрологической информации состоит в том, чтобы, обеспечивая систематизацию сбора и хранения необходимых данных, предоставить возможность оперативного регионального анализа пространственной и временной изменчивости гидрологического режима рек.

Определение круга задач, решаемых СУБД

Система Управления Базами Данных необходима для решения задач сбора, обработки, анализа, хранения и предоставления потенциальным

пользователям гидрологической информации. По функциональному назначению можно выделить следующие подсистемы СУБД "Гидрология":

- подготовки информации к включению в информационную базу (импортирование и преобразование данных, поступающих в форматах, отличных от используемого в СУБД), обеспечение ввода, хранения и контроля вводимой информации;
- упорядочение (сортировку) информации, поиск, выборку и копирование, экспортирование, архивирование данных;
- анализ данных, расчет основных статистических характеристик рядов наблюдений, построение графиков и диаграмм, генерирование стандартных отчетов;
- информационное обслуживание потребителей, функциями которого являются обобщение исходных данных и формирование выходной информации по запросам потребителей;
- защита данных от несанкционированного доступа и субъективного изменения.

Важное значение имеют точность и надежность хранимой информации. Прежде всего, это касается восстановленных данных речного стока, непрерывно меняющихся морфометрических параметров водосборов, подверженных влиянию антропогенной деятельности (площадь мелиорируемых земель, залесенность, заболоченность, распаханность и др.).

Выбор стандартного программного обеспечения

При выборе стандартного программного обеспечения для разработки систем управления базами данных, мы руководствовались следующими требованиями к СУБД:

- должна позволять работать с большими объемами информации;
- быть достаточно простой в освоении и использовании, чтобы облегчить доступ к данным и работу с ними широкому кругу исследователей и специалистов в области гидрологии;
- обладать современными средствами работы с данными, разработки приложений;
 - быть достаточно распространенной в среде пользователей ПЭВМ;
 - иметь возможность работы с распространенными форматами данных.

Важным моментом при выборе программного обеспечения для разработки СУБД является и то, что программный комплекс для обеспечения гидрологических расчетов "Гидролог" разработан нами в среде Visual Basic 5.0.

В результате анализа современных систем управления базами данных мы остановились на Microsoft Access.

Місгозоft Access - это функционально полная реляционная СУБД. В ней предусмотрены все необходимые средства для определения и обработки данных, а также для управления ими при работе с большими объемами информации. Являясь современным приложением Windows, Microsoft Access позволяет использовать все возможности DDE (Dynamic Data Exchange, динамический обмен данными между Access и любым другим поддерживающим DDE приложением Windows) и OLE (Object Linking and Embedding, связь и внедрение объектов).

Місгозоft Ассеss может работать с большим числом самых разнообразных форматов данных, включая файловые структуры других СУБД. Можно осуществлять импорт и экспорт данных из файлов текстовых редакторов или электронных таблиц. С помощью Access можно непосредственно обрабатывать файлы Paradox, dBASE III, dBASE IV, Btrieve, FoxPro и др., а также импортировать данные из этих файлов в таблицу Access. В дополнение к этому, Microsoft Access может работать с наиболее популярными базами данных, поддерживающими стандарт ODBC (Open Database Connectivity — Открытый доступ к данным, включая Microsoft SQL Server, Oracle, DB2 и Rdb).

Анализ расчетных задач и требуемой для этого информации

При создании СУБД, важно правильно определить круг решаемых задач и набор предоставляемых функций. В связи с тем, что база данных ориентирована на работу с гидрологической информацией, при оценке круга решаемых задач мы ориентировались, в первую очередь, на рекомендации СНиП [1, 5] и следующие справочники по ресурсам поверхностных вод:

- "Гилпологическая изученность" том 4 "Прибантийский район" том 5, "Белоруссия и Верхнее Поднепровье";
- "Основные гидрологические характеристики", том 5, "Белоруссия и Верхнее Поднепровье";
- "Многолетние данные о режиме и ресурсах поверхностных вод суши", том III, Белорусская ССР;
- "Ресурсы поверхностных вод СССР", том 5, "Белоруссия и Верхнее Поднепровье";
- "Гидрологические ежегодники", том 1, выпуски 4, 5, 6; том 2, выпуски 2, 3;
- "Ежегодные данные о режиме и ресурсах поверхностных вод суши", том III, Беларусь.

Основываясь на вышеуказанных материалах, мы определили следующий перечень решаемых задач (таблица 1).

Таблица 1 Перечень расчетных задач и данных, необходимых для их решения

Sia sila	Расчехная задача	Необходимые данные
1	2	3
Опр	еделение расчетных гидроло	огических характеристик при наличии данных наблюдений
1	Годовой сток и его внутри- годовое распределение	Месячные расходы воды
2	Максимальный сток воды весеннего половодья и дождевых паводков	Максимальный сток воды весеннего полово- дья и дождевых паводков
3	Предпосевной сток	Среднесуточные расходы воды на дату начала предпосевного периода
4	Среднемеженный сток	Среднесуточные расходы воды за летне- осенний период
5	Минимальный сток	Среднесуточные расходы
On		огических характеристик при недостаточно- рометрических наблюдений
6	Оценка репрезентативно- сти и однородности гидро- логического ряда	Месячные расходы воды Максимальный сток воды весеннего полово- дья и дождевых паводков Среднесуточные расходы воды на дату на- чала предпосевного периода Среднесуточные расходы воды за летне- осенний период Среднесуточные расходы
7	Продление коротких рядов наблюдений	Месячные расходы воды Максимальный сток воды весеннего половодья и дождевых паводков Среднесуточные расходы воды на дату начала предпосевного периода Среднесуточные расходы воды за летнеосенний период Среднесуточные расходы
Опр		огических характеристик при отсутствии дан- етрических наблюдений
9	Годовой сток воды рек	Среднемноголетний годовой сток Норма поверхностного стока Коэффициент дренированности водосбора Площадь водосбора Густота гидрографической сети Длина русла основного тальвега Уклон русла основного тальвега Коэффициенты вариации
10	Внутригодовое распреде- ление стока	Расчетное распределение месячного и се- зонного стока рек по гидрологическим рай- онам

Продолжение таблицы 1

1	2	3
11	Максимальный сток воды весеннего половодья	Параметр дружности весеннего половодья Расчетный слой суммарного стока ежегодной вероятностью превышения Р% Площадь водосбора Средневзвешенная озерность Запесенность водосбора Заболоченность водосбора
12	Максимальный сток воды дождевых паводков	Площадь водосбора Средневзвешенная озерность Залесенность водосбора Заболоченность водосбора Средний уклон водосбора Густота речной сети
13	Предпосевной сток	Модуль предпосевного стока Площадь водосбора Средневзвешенная озерность Залесенность водосбора Заболоченность водосбора Дата схода снежного покрова
14	Среднемеженный сток	Средний многолетний модуль среднемежен- ного стока Площадь водосбора
15	Минимальный сток	Элементарный модуль стока Площадь водосбора
	Расчетные гидрографы вес	сеннего половодья и дождевых паводков
16	При наличии данных гид- рометрических наблюде- ний	Суточные расходы воды
17	При недостаточности данных гидрометрических наблюдений	Формы моделей расчетного гидрографа сто- ка
18	При отсутствии данных гидрометрических наблюдений	Площадь водосбора Слой стока за период подъема реки аналога Слой стока за период за период половодья

Анализ исходных данных для решения расчетных задач позволил наметить перечень хранимой в СУБД информации и характер предоставляемых услуг. На рисунке 1 показана структурная схема системы, которая состоит из блока набора данных и подключаемых независимых модулей - блоков. В зависимости от решаемой задачи, часть этих блоков может отсутствовать, либо заменяться другим набором блоков, тем самым, обеспечивается универсальность и гибкость системы, облегчается ее перенос под другие платформы.

Рисунок 1 Структурная схема Системы Управления Базами Данных.

Оценка качества данных

Важными задач при обработке гидрологической информации являются оценка ее достоверности, исключение случайных ошибок на уровне ввода и корректировки данных. Используемые методы статистической обработки, в частности, анализ рядов гидрометрических наблюдений, предполагают случайный характер и однородность исходных данных. В связи с этим, в СУБД включена подсистема первичной статистической обработки данных (рисунок 2) в составе блоков анализа однородности и репрезентативности временных рядов, которые предполагают использование графоаналитического и статистического методов, в т.ч. и на стадии восстановления гидрологических рядов.

Первичный анализ однородности рядов гидрометрических данных проводился с использованием суммарных кривых связей $\sum Q = f(t)$, где $\sum Q$ нарастающие во времени (t) значения расходов реки. В случае значительных отклонений суммарной кривой от прямой линии, проводился совместный анализ суммарных кривых стока исследуемой реки и реки-аналога, имеющей статистически однородный ряд наблюдений. При наличии изменения водности реки, в соответствии с рекомендациями [2], определялась точка перегиба, по которой ряд разбивается на две независимые выборки и анализируется на статистическую однородность с помощью непараметри-

ческих критериев Уилкоксона и Колмогорова - Смирнова [3, 4]. При объеме выборки N<60, используется метод Гнеденко-Королюка.

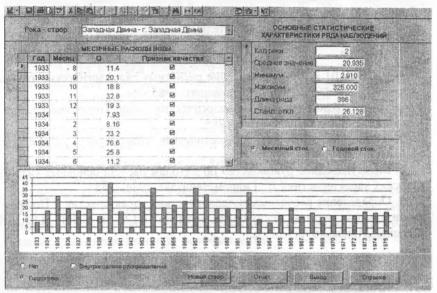


Рисунок 2 Подсистема ввода и первичной обработки месячных и годовых расходов воды.

При расчетах квантилей годового стока возникает необходимость оценки репрезентативности используемого периода наблюдений для нормы стока, коэффициентов вариации и асимметрии, что значительно увеличивает объем вычислений. Продлевая короткие ряды, необходимо иметь ввиду, что число рассчитанных величин в них должно составлять не более 10...15%. Поэтому, важно четко устанавливать границы циклов проявления стока. Оценка репрезентативности расчетных периодов нами осуществляется на основе разработанных с помощью ЭВМ специальных таблиц величин ошибок в вычислении основных гидрологических параметров, связанных как с продолжительностью, так и с хронологической приуроченностью этих периодов. Использование таблиц позволяет минимизировать расчеты по продлению коротких рядов, максимально использовать эмпирическим путем полученные величины стока.

Описанная система использована в разработанном комплексе программ "Гидролог", и прошла успешную апробацию в проектных институтах водо-

хозяйственного профиля. Тем не менее, бурное развитие сетевых технологий, заставляет авторов системы разрабатывать её сетевой вариант, который позволит оперативно пополнять базу данных, оповещать пользователей об изменениях гидрологической информации и осуществлять обмен данными между различными пользователями базы.

Литература

- 1. СНИП 2.01.14-83. Определение расчетных гидрологических характеристик / ГосстройСССР. М.: Стройиздат, 1985.-36с.
- 2. Анализ однородности гидрологических рядов (методические рекомендации), Минск, ЦНИИКИВР, 1985.
- 3. Картвелишвили Н.А. Стахостическая гидрология.- Л.: Гидрометеоиздат, 1981.- 167с.
- 4. Международное руководство по методам расчета основных гидрологических характеристик / Л.: Гидрометеоиздат, 1984 248 с.
- 5. Определение расчетных гидрологических характеристик // Пособие к строительным нормам республики Беларусь П1-98 к СНиП 2.01.14-83 (проект); Минск, 1998. 219 с.

МЕТОДЫ ОЦЕНКИ РАССРЕДОТОЧЕННЫХ ИСТОЧНИКОВ ЗАГРЯЗНЕНИЯ ВОДНЫХ ОБЪЕКТОВ БИОГЕННЫМИ ВЕЩЕСТВАМИ С ИСПОЛЬЗОВАНИЕМ ГИС - ТЕХНОЛОГИЙ

Г.А. Щербаков А.В. Пахомов

Центральный научно-исследовательский институт комплексного использования водных ресурсов Минск, Республика Беларусь

Рассматриваются возможности использования современных компьютерных ГИС-технологий при решении гидрологических и экологических задач.

ВОДНЫЕ, ОБЪЕКТЫ, ЗАГРЯЗНЕНИЕ, БИОГЕННЫЕ, ВЕЩЕСТВА, РЕШЕНИЕ, ИНЖЕНЕРНО-ЭКОЛОГИЧЕСКИЕ, ЗАДАЧИ

По оценочным данным более 60 процентов от общего объема загрязнений в Республике Беларусь формируется за счет рассредоточенных источников, связанных с сельскохозяйственной деятельностью (для сравнения в США - 65%, по данным EPA, 1995г.).