ОПРЕДЕЛЕНИЕ ПОЛЕЙ НАПРЯЖЕНИЙ ОТ ДЕЙСТВИЯ РАСПРЕДЕЛЕННОЙ НАГРУЗКИ ПРИ НАЛИЧИИ У ПОВЕРХНОСТИ КЛИНОВИДНОГО ДВОЙНИКА

Н. М. Симанович¹, О. М. Остриков², М. П. Кульгейко³

¹ Аспирант кафедры «Механика» учреждения образования «Гомельский государственный технический университет имени П. О. Сухого», Гомель, Беларусь, e-mail: nataliasimoniha1991@gmail.com ²К. физ.-мат. н., доцент, доцент кафедры «Механика» учреждения образования «Гомельский государственный технический университет имени П. О. Сухого», Гомель, Беларусь, e-mail: omostrikov@mail.ru ³ К. т. н., доцент, доцент кафедры «Графика» учреждения образования «Белорусский государственный университет транспорта», Гомель, Беларусь, e-mail: nataliasimoniha1991@gmail.com

Реферат

Установлено влияние внешнего деформационного воздействия распределенной нагрузкой на напряжённое состояние в области клиновидного двойника. Показано изменение полей напряжений в приповерхностной области, содержащей двойник, в зависимости от интенсивности, равномерности и величины зоны внешнего силового нагружения.

Ключевые слова: механическое двойникование, поля напряжений, распределенная нагрузка.

DETERMINATION OF STRESS FIELDS FROM THE ACTION OF A DISTRIBUTED LOAD IN THE PRESENCE OF A WEDGE-SHAPED TWIN AT THE SURFACE

N. M. Simanovich, O. M. Ostrikov, M. P. Kulgeiko

Abstract

The influence of the external deformation effect of the distributed load on the stress state in the region of the wedge-shaped twin has been established. The change in stress fields in the near-surface region containing a twin is shown, depending on the intensity, uniformity and size of the external force loading zone.

Keywords: mechanical twinning, stress fields, distributed load.

Ввеление

Двойникование, наряду со скольжением, является одним из распространенных видов пластической деформации металлов [1-3], а в определенных условиях может быть основным деформационным механизмом [4]. Этот процесс сопровождается концентрацией напряжений в вершинах и на границах двойниковых дефектов. Повышение напряженного состояния в области двойников обуславливает образование микротрещин с возможностью последующего усталостного разрушения материала.

В связи со значительной неопределенностью роли двойникования в деформировании и разрушении металлов и сплавов [3-6] важной задачей является изучение закономерностей и особенностей формирования полей напряжений у границ двойников в условиях воздействия различных факторов деформационного нагружения. Результат влияния двойникования на состояние и поведение материала определяется рядом условий и факторов, в том числе состоянием поверхности твердого тела.

Постановка задачи

Процесс разрушения материала характеризуется стадией постоянного накопления повреждений, в результате которого образуются микротрещины [4]. Активную роль в зарождении и развитии микротрещин играет механическое двойникование, которое создаёт дополнительные внутренние напряжения наряду с напряжениями от действия внешней механической нагрузки на поверхности твёрдого тела. Действие внешней нагрузки при наличии двойника создаёт в материале сложное напряжённое состояние, которое определяется условиями внешнего нагружения [7].

Влияние клиновидных двойников на напряжённое состояние материала, находящегося под действием внешней нагрузки, особенно важно на уровне малых объёмов. В этих условиях решение практических задач механики деформируемого твёрдого тела в значительной степени определяется не только величиной внешнего воздействия, но и характером распределения нагружения на поверхности материала. Аналогичные условия могут иметь место, например, при работе электрических контактов [8]. Так наиболее сложной проблемой при конструировании разъёмных контактов является определение оптимальной величины контактного давления. А надёжность их работы определяется как эксплуатационными факторами (нагрузкой), так и конструктивно-технологическими, в том числе геометрией контактирующей поверхности. То есть работоспособность и надёжность контактов зависит от фактической площади контакта и площади контакта, проводящей ток (рабочей площади). Кроме того, многочисленные удары приводят к пластической деформации и сдвигу поверхностных слоёв. В этих условиях важное значение имеет возможность прогнозирования напряжённого состояния приповерхностной области и поверхностного слоя материала, так как процесс разрушения начинается чаще на поверхности твёрдого тела.

Целью настоящей работы является оценка напряжённого состояния при деформировании поверхности рассредоточенной нагрузкой с наличием в материале клиновидного двойника.

Методика решения задачи

На рис. 1 схематично представлен клиновидный двойник длиной L и шириной у устья H с формой границ, описываемой функциями $f_1(y_0)$ и $f_2(y_0)$. На поверхности ($-m \le x \le n$) в области двойника действует распределённая нагрузка в виде нормального давления p(x). При эквивалентном суммарном давлении P рассмотрим несколько вариантов нагружения: на рис. 1,а – равномерно распределённая нагрузка соответствует условиям плотного равномерного контакта; на рис. 1,б – условиям неплотного (частичного) контакта с неравномерно распределённой нагрузкой. При этом неравномерная нагрузка распределяется в соответствии с выражением

$$p(s) = \frac{c}{m}s + c$$
 или $p(s) = c(\frac{s}{m} + 1),$ (1)

с – постоянная, численно равная усилию в точке О;

m – начальная граница действия нагрузки.

Рисунок 1 – Схематичное изображение двойника у поверхности с действующей на неё распределённой нагрузкой

Результирующие напряжения у поверхности, деформированной внешней нагрузкой при наличии двойника, могут быть найдены по формуле [3,7]:

$$\sigma_{ij}(x,y) = \sigma_{ij}^{\partial e}(x,y) + \sigma_{ij}^{\rho}(x,y), \qquad (2)$$

где $\sigma_{ij}^{\partial s}(x,y)$ – напряжения, создаваемые двойником; $\sigma_{ii}^{p}(x,y)$ – напряжения от внешней нагрузки.

Напряжения, создаваемые рассматриваемым клиновидным двойником, могут быть определены из выражений, представленных в [3,7,9]:

$$\sigma_{ij}^{\partial e}(x,y) = \sigma_{ij}^{(1)}(x,y) + \sigma_{ij}^{(2)}(x,y), \qquad (3)$$

где $\sigma_{ij}^{(1)}(x,y)$ и $\sigma_{ij}^{(2)}(x,y)$ – напряжения, которые создаются границами двойника.

Как показано в расчетах [3,7,9]:

$$\sigma_{ij}^{(1)}(x,y) = \int_{0}^{L} \sqrt{1 + (\dot{f_{1}}(y_{0}))^{2}} \rho_{1}(y_{0}) \sigma_{ij}^{(1,0)}(x,y,y_{0}) dy_{0},$$
(4)
$$\sigma_{ij}^{(2)}(x,y) = \int_{0}^{L} \sqrt{1 + (\dot{f_{1}}(y_{0}))^{2}} \rho_{2}(y_{0}) \sigma_{ij}^{(2,0)}(x,y,y_{0}) dy_{0},$$
(5)

где L – длина двойника;

 $\rho_1(y_0)$ и $\rho_2(y_0)$ – плотность двойникующих дислокаций на границах клиновидного двойника; $\sigma_{ij}^{(1,0)}$ и $\sigma_{ij}^{(2,0)}$ – напряжения, создаваемые на двойниковых

границах отдельными дислокациями.

Компоненты напряжений, создаваемых единичной двойникующей дислокацией, находящейся на двойниковой границе при нахождении двойника вблизи поверхности, определяются из соотношений, представленных в [10] по методике [3]. В данной работе, принимая во внимание выводы [11] о том, что наиболее существенное влияние поверхности на конфигурацию полей напряжений оказывается в случае скалывающих напряжений, расчеты выполняются на примере распределения величины сдвиговой компоненты σ_{xy} тензора напряжений, то есть определяются напряжения $\sigma_{xy}^{(1,0)}$ $u \sigma_{xy}^{(2,0)}$. Принимая также допущение, что двойник имеет форму равно-

бедренного треугольника с прямолинейными границами и плотностью двойникующих дислокаций на них $\rho_1 = \rho_2 = \rho = const$ в соответствии с [9], уравнения (4) и (5) примут вид:

$$\sigma_{xy}^{(1)} = \rho \sqrt{1 + \left(\frac{H}{2L}\right)^2} \int_0^L \sigma_{xy}^{(1,0)} \left(x, y, y_0\right) dy_0;$$
(6)

$$\sigma_{xy}^{(2)} = \rho \sqrt{1 + \left(\frac{H}{2L}\right)^2} \int_0^L \sigma_{xy}^{(2,0)} \left(x, y, y_0\right) dy_0.$$
(7)

Сдвиговые напряжения от действия нормальной распределенной нагрузки $\rho(x)$ определяются в соответствии с рекомендациями [3,12] по формуле:

$$\sigma_{xy}^{p} = -\frac{2y^{2}}{\pi} \int_{-m}^{n} \frac{p(s)(x-s)ds}{[(x-s)^{2}+y^{2}]},$$
 (10)

где *т*и *n* – границы действия внешней нагрузки;

S – параметр интегрирования (см. рис.1).

Результаты и их обсуждение

Графическая интерпретация результатов представлена на рис. 2-6. В расчётах для H = 10 мкм и L = 80 мкм принято [3]:

$$b_{\kappa\rho}$$
 = 0,2·10⁻⁹ μ [13]; μ = 12,4·10⁹ Πa [1]; ν = 0,33 [13].

Линейная плотность двойникующих дислокаций на двойниковых границах р = 0,189 определена из [3] при межатомном расстоянии a = 3,3·10⁻¹⁰м [14].

Для проведения дальнейшего сравнительного анализа по оценке влияния внешнего силового воздействия на напряженное состояние поверхности и в приповерхностной области, содержащей двойник, на рис. 2 представлено распределение сдвиговых напряжений у клиновидного двойника при отсутствии внешней нагрузки.

Рисунок 2 – Напряжения у клиновидного двойника при отсутствии внешней нагрузки

В целом конфигурация полей напряжений симметричная относительно плоскости двойникования. Отмечается концентрация напряжений у двойниковых границ и, прежде всего, у вершины двойника. Вдоль двойника от устья к вершине напряжения уменьшаются и приблизительно на расстоянии двух третей длины двойника от поверхности меняют знак, а затем увеличиваются и достигают максимума у вершины двойника. При удалении от устья двойника вдоль поверхности (ось ОХ) напряжения также меняют знак и интенсивно убывают. При этом максимальные отрицательные напряжения наблюдаются внутри двойника на расстоянии 10-15 мкм от поверхности. Это относится и к зонам концентрации положительных напряжений вдали от двойника вдоль оси ОХ, т. е. на поверхности напряжения минимальные, а большие значения имеют место в приповерхностной области.

На рис. З представлена картина распределения напряжений *σ_{xv}* при действии на поверхности равномерно распределенной нагрузки p(s) = 3 Н/м в пределах ширины двойника, т. е. при m = n = H/2 (см. рис. 1,а). Здесь имеем несимметричную конфигурацию полей напряжений, особенно у поверхности. На одной границе у устья двойника вблизи поверхности наблюдаются положительные напряжения, у другой - отрицательные, причем численное отношение напряжений по абсолютной величине около трех. Далее по направлению к вершине двойника напряжения вдоль обеих двойниковых границ постепенно выравниваются. И у вершины двойника концентрация напряжений практически соответствует величине напряжений при отсутствии внешнего воздействия (см. рис. 2). Таким образом, небольшая внешняя нагрузка приводит к существенному изменению полей напряжений у поверхности в области приложения усилия и незначительному изменению напряжений вдали от двойника. Происходит перераспределение напряжений с локализацией их на двойниковых границах у устья двойника. Действие внешней нагрузки ограничивается приповерхностной областью и практически не распространяется на глубину длины двойника.

Вестник Брестского государственного технического университета. 2021

Целесообразно рассмотреть распределение напряжений у клиновидного двойника при той же эквивалентной внешней нагрузке в условиях неполного (частичного) контакта поверхностей. Силовое воздействие, распространяющееся, как и в предыдущем случае в пределах ширины двойника, т. е. m = n = H / 2, подчиняется закономерности (1) при c = 6 (см. рис. 1, б). Безусловно имеем существенно несимметричную конфигурацию полей напряжений как на поверхности, так и вдоль двойниковых границ (рис. 4), причем с большей разницей численных значений вдоль границ по сравнению с равномерным нагружением. Так, на двойниковой границе у поверхности в зоне действия p(s) = max напряжения увеличились практически в три раза, а на противоположной границе, где p(s) = 0, уменьшились в два раза. И только в близлежащей к вершине двойника области наблюдается практически симметричное поле напряжений с такими же численными значениями, как и при равномерно распределенной внешней нагрузке. При этом следует также отметить соответствие полей в отношении знаков напряжений при плотном и частичном контакте поверхностей.

Рисунок 4 – Напряжения у клиновидного двойника при действии неравномерно распределенной нагрузки p(x) на поверхности в пределах ширины двойника

Представляет теоретический интерес и практическую целесообразность анализ распределения полей напряжений при увеличении площади контакта. На рис. 5 представлено поле напряжений у клиновидного двойника при действии равномерно распределенной нагрузки. Принимались границы силового воздействия m = n = 5H, тогда эквивалентная нагрузка составит p(s) = 0,3 H/m.

Рисунок 5 – Напряжения у клиновидного двойника при действии распределенной нагрузки p(x) на поверхности в интервале 10Н

Общая конфигурация поля напряжений в целом подобна расположению линий равных напряжений в материале без нагрузки (см. рис. 2). Это относится также и к численным значениям и последовательности изменения знаков напряжений. И только на граничных участках действия внешней нагрузки в приповерхностных областях наблюдается незначительная концентрация напряжений.

Аналогичную картину можно наблюдать при действии в том же интервале m = n = 5H неравномерно распределенной эквивалентной (c = 0,6) нагрузки (рис. 6). Отмечается только несколько большая несимметричность полей напряжений относительно плоскости двойникования, а также концентрация напряжений на границе p(s) = max и некоторое увеличение в приповерхностной области на границе p(s) = 0. Следовательно, при увеличении площади контакта действие внешней нагрузки незначительно влияет на напряженное состояние в области двойника и более значимо ее влияние на распределение напряжений в приповерхностной области материала.

Рисунок 6 – Напряжения у клиновидного двойника при действии равномерно распределенной нагрузки p(x) на поверхности в интервале 10Н

Заключение

Таким образом установлено, что внешнее силовое воздействие заданной интенсивности незначительно влияет на концентрацию напряжений у вершины двойника. Более значимо его влияние на распределение полей напряжений в приповерхностной области материала. Аналогичное влияние наблюдается при увеличении зоны действия соответствующего поверхностного нагружения. Приложение неравномерной нагрузки увеличивает несимметричность полей напряжений относительно плоскости двойникования.

Список цитированных источников

- Классен-Неклюдова, М. В. Механическое двойникование кристаллов / М. В. Классен-Неклюдова. – М. : Изд-во АН СССР, 1960. – 261 с.
- Полухин, П. И. Физические основы пластической деформации / П. И. Полухин, С. С. Горелик, В. К. Воронцов. – М. : Металлургия, 1982. – 586 с.
- Остриков, О. М. Механика двойникования твердых тел: монография / О. М. Остриков. – Гомель : ГГТУ им. П. О. Сухого, 2008. – 301 с.
- Федоров, В. А. Дислокационные механизмы разрушения двойникующихся металлов / В. А. Федоров, Ю. И. Тялин, В. А. Тялина. – М.: Издательство Машиностроение-1, 2004. – 336 с.
- Трефилов, В. И. Физические основы прочности тугоплавких металлов / В. И. Трефилов, Ю. В. Мильман, Ф. А. Фирстов. – К. : Наук. думка, 1976. – 315 с.
- Финкель, В. М. Физические основы торможения разрушения / В. М. Финкель. – М. : Металлургия, 1977. – 360 с.
- Остриков, О. М. Напряженное состояние у поверхности кристалла, деформируемой сосредоточенной нагрузкой, при наличии клиновидного двойника / О. М. Остриков // Журнал технической физики. – 2009. – Т. 79, № 5. – С.137–139.
- Мышкин, М. К. Электрические контакты / Н. К. Мышкин, В. В. Кончиц, М. Браунович. Долгопрудный: Издательский Дом «Интеллект», 2008. 560 с.
- Остриков, О. М. Дислокационная макроскопическая модель клиновидного двойника / О. М. Остриков // Вестник ГГТУ им. П. О. Сухого. – 2006, № 2. – С. 10–18.
- Косевич, А. М. О дислокационной модели двойникования / А. М. Косевич, А. А. Пастур // Физика твердого тела. – 1961. – Т.3, № 4. – С. 1291–1297.
- Остриков, О. М. Роль поверхности в формировании напряженного состояния у клиновидного нанодвойника / О. М. Остриков // Вестник ГГТУ им. П. О. Сухого. – 2012. – № 3. – С. 49–18.
- Джонсон, К. Механика контактного взаимодействия / К. Джонсон. М.: Мир, 1989. – 510 с.
- Лившиц, Б. Г. Физические свойства металлов и сплавов / Б. Г. Лившиц. М.: ГНТИ, 1959. 386 с.

- Klassen-Neklyudova, M. V. Mekhanicheskoe dvojnikovanie kristallov / M.V. Klassen-Neklyudova. – M.: Izd-vo AN SSSR, 1960. – 261 s.
- Poluhin, P. I. Fizicheskie osnovy plasticheskoj deformacii / P. I. Poluhin, S. S. Gorelik, V. K. Voroncov. – M.: Metallur-giya,1982.– 586s.
- Ostrikov, O. M. Mekhanika dvojnikovaniya tverdyh tel: mono-grafiya / O. M. Ostrikov. – Gomel': GGTU im. P. O. Suhogo, 2008. – 301 s.
- Fedorov, V. A. Dislokacionnye mekhanizmy razrusheniya dvojnikuyushchihsya metallov / V. A. Fedorov, YU. I. Tyalin, V. A. Tyalina. – M. : Izdatel'stvo Mashinostroenie-1, 2004. – 336 s.
- Trefilov, V. I. Fizicheskie osnovy prochnosti tugoplavkih metallov / V. I. Trefilov, YU. V. Mil'man, F. A. Firstov. – K. : Nauk. dumka, 1976. – 315 s.
- Finkel', V. M. Fizicheskie osnovy tormozheniya razrusheniya / V. M. Finkel'. – M.: Metallurgiya, 1977. – 360 s.
- Ostrikov, O. M. Napryazhennoe sostoyanie u poverhnosti kristalla, deformiruemoj sosredotochennoj nagruzkoj, pri nalichii klinovidnogo dvojnika/ O. M. Ostrikov // ZHurnal tekhnicheskoj fiziki. – 2009. – T.79, №5. – S. 137–139.
- Myshkin, M. K. Elektricheskie kontakty/ N. K. Myshkin, V. V. Konchic, M. Braunovich. – Dolgoprudnyj: Izdatel'skij Dom «Intellekt», 2008. – 560 s.
- Ostrikov, O. M. Dislokacionnaya makroskopicheskaya model' klinovidnogo dvojnika / O. M. Ostrikov // Vestnik GGTU im. P. O. Suhogo. – 2006, № 2. – S.10–18.
- Kosevich, A. M. O dislokacionnoj modeli dvojnikovaniya / A. M. Kosevich, A. A. Pastur // Fizika tverdogo tela. – 1961. – T.3, №4. – S. 1291–1297.
- Ostrikov, O. M. Rol' poverhnosti v formirovanii napryazhennogo sostoyaniya u klinovidnogo nanodvojnika / O. M. Ostrikov // Vestnik GGTU im. P.O. Suhogo. – 2012.– № 3.– S.49-18.
- Dzhonson, K. Mekhanika kontaktnogo vzaimodejstviya / K. Dzhonson. – M.: Mir, 1989.– 510s.
- Livshic, B. G. Fizicheskie svojstva metallov i splavov / B. G. Livshic. M.: GNTI, 1959. – 386s.

Материал поступил в редакцию 03.05.2021