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ABSTRACT
The paper presents the deduction o f main relation- 

ships o f back-propagation algorithm on the basis o f 
approximation o f the unknown dependence o f the effi- 
ciency factor on neural net parameters by the linear 
part o f Taylor series. Such an approach for deduction 
of known results is intended to relax the limits o f ap- 
plication o f the back-propagation algorithm and to 
eliminate some o f its shortcomings on the basis o f new 
methods o f approximation o f the before-mentioned 
dependence. As an example, this paper examines the 
possibility o f application of back-propagation algo
rithm in the case o f non-differentiable activation 
functions.

1: Introduction

The back-propagation algorithm is of great impor- 
tance for the theory and practice of neural nets. It is 
the algorithm for leaming of multilayer neural nets. It 
is based on the iterative procedurę of fmding of mini- 
mal mean-square error in the parameters space using 
the method of ąuickest descent [1].

In generał, the problem of determination of new 
values of the adjustable parameters of neural net can 
be considered as the problem of the approximate ex- 
pression of the dependence of the efficiency factor of 
the neural net on before-mentioned parameters, and 
also as a problem of application of some characteris- 
tics of this dependence for parameters correction. We 
shall understand the approximate determination of the 
dependence as one of the forms of its approximations, 
for example, a finite part of series; let's understand the 
characteristics of this dependence as the coefflcients of 
series. From this point of view, the traditional back- 
propagation algorithm can be considered as the appli
cation of coefficients of approximate description of the

before-mentioned dependence in the form of Taylor 
series linear part, because the coefficients of Taylor 
series are the parameter derivatives of the output coor- 
dinate.

We think that many shortcomings of the back- 
propagation algorithm are the results of application of 
activation function derivatives in the observation 
points. Some of these shortcomings can be eliminated 
by application of another approaches for the approxi- 
mation of the unknown dependence of the efficiency 
factor on net parameters. For example, the application 
of statistical linearization method allows to deduct the 
linear approximation of dependence between coordi
nates, without taking into consideration the differenti- 
ability of activation functions [2]. In such conditions, 
it is naturally enough to return to the application of 
sign-functions as activation functions.

However, the attempt not to use the derivatives of 
neural net non-linear characteristics leads the loss of 
theoretical ground of back-propagation algorithm in 
the form of the method of quickest descent. For exam- 
ple, applying the method of statistical linearization for 
approximate description of the dependence of neural 
net output coordinates on any other coordinates, as 
original approach for neural nets analysis, we have not 
found any groung for development of this procedurę 
for net leaming [2]. From the heuristical point of view, 
the non-essential variations in the procedurę of deduc
tion of main relationships for back-propagation algo
rithm (in comparison with Taylor series approxima- 
tion) must not lead to the impossibility to apply the 
linear approximations in such a manner as in back- 
propagation algorithm.

There are no doubts that the application of ap- 
proximation-based considerations for deduction of 
main relationships for back-propagation algorithm 
(using Taylor series as a tool for their deduction) can 
give, as a result, only well-known relationships [1].
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However, it's interesting to obtain these relations in 
just such a way. Such result will allow to generalize 
and adjust the above-mentioned procedurę for specific 
conditions. This is the main goal of the paper pro- 
posed. The additional result is the obtaining of the 
simplified (from the engineering point of view) proce
durę of deducting of main relationships for back- 
propagation algorithm; this procedurę, as we think, 
can be used for training specialists.

2: Matrix description of neural net

Every neuron, neural layer and neural net (NN) as 
a whole can be descripted by sets of States, input coor- 
dinates and output coordinates, which are represented 
by vectors S, U, and Y respectively. There function in 
a steady-state modę can be descripted by two equa- 
tions: transition eąuation S = A(U) and output equa- 
tion Y = F(S).

The formal neuron can be represented as a multi- 
input summator and non-linear converter, which are 
connected serially. Therefore, transition equation can 
be denoted as summator equation, and States can be 
denoted as summator outputs. Let's denote the above- 
introduced coordinates U, S, and Y as summator in- 
puts, summator outputs, and non-linear elements out
puts, respectively. The summator equations are linear 
for the single neuron, as well as for the neural layer.

The summator equations can be represented in 
matrix form: S = В + A U , where 5 is a column of free 
terms. The elements of this column are the threshold 
values of formal neurons, only with the inverse sign. 
The matrix A, in tum, contains the synaptic weights. 
The threshold values and the synaptic weights are the 
parameters of NN. There is one particular feature of 
conversions implemented by NN: the non-linear con- 
version of each State is independent from the conver- 
sions of any other State. It means that the dimensions 
of vectors Y and S are equal, and also, each coordinate 
of Y is functionally dependent on the respective coor
dinate of S. In another words, the vector equation Y = 
F(S) can be considered as a complex of one- 
dimensional fimctions y, = f ( s j .  For homogeneous 
NN, the activation functions for all neurons are the 
same, i .e ./  = f  For simplicity, we shall consider only 
homogeneous NN with serial connections.

Let's suppose that all neurons are numbered in such 
a way that when the output of /-th neuron is calculated, 
all inputs of this neuron are already calculated. Such a 
condition determines the separation of neurons into 
layers. The collating of neurons in the net allows to 
collate net coordinates, and the separation of neurons

into layers allows to represent the vectors in a form of 
blocks. Let's denote

Г  = (Т0, Y)\ Y = (Yh Y2,..„ Y J \
S° = (S0, S)\ S  = (Sh S2, .... S J \

where Y]t and S, are the vector of input coordinates and 
the vector of States for y-th layer, respectively. Some 
uncertainty in separation of coordinates and neurons 
into layers is introduced by sensor elements. Let's con
sider them as neurons of zero layer. In NN, the inputs 
of any neuron are the outputs of some other neurons; 
therefore, the coordinates of vector U can be excluded 
from the set of equations representing the NN. Such an 
exclusion is especially simple after the separation of 
neurons into layers and collation of output coordinates 
into ranks. The vector of States for any layer of NN 
with serial connections can be determined through the 
vector of outputs of the preceding layer:

Sl = Bi + AiY,l ,( i  = l,2 ,...,m ). (1)

If, as a result of the linearization, the connection 
between coordinates y, and s, is expressed as

У i = q>+ k,s,, (2)

then the set of such equations can be represented in a 
matrix form for NN, as well as for any particular layer:

Y, = Q, + K,S,, (i = 1,2,..., m), (3)

where Q, is a column of free terms, K, is a diagonal 
matrix of linearization coefficients for activation func
tions.

In accordance with our goal, we shall apply the ex- 
pansion into Taylor series for linearization. Assume 
that there is a signal Y0 = Y*0 on the input of NN. Let's 
denote by asterisk (*) the values of all NN coordinates 
determined by this input signal. From (1), we shall 
obtain:

5‘, = B, + A,Y’,_h S, - S', = A, (Y,.r  Y'ht). (4)

Let's represent deviation equations in the following 
form:

0$ = А , Х , ,  (5)

where

°S,=S, - S \ , °Yi.i = Yj.r  Y" . t
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Now we shall start the linearization of non-linear 
eąuation y, = f(s f  Assuming that the functions f  are 
differentiable everywhere in their domains, let's apply 
for them the expansion into Taylor series in the vicin- 
ity of s, = s \  . Then, instead of the generał expression 
(2), we can use morę specific and convenient expres- 
sion:

У, - У i = k*, (s, - s ')  or °y, = k*, °s,, (6)

where

У/ =yi -У i , Si = Si - s  i, к t^ fi '(s i),

i.e. k*i= fi '(s'j) is a derivative of z'-th activation func- 
tion in a "point" of the corresponding value of input 
coordinate. Therefore, the vector of output coordinates 
of z-th layer also can be expressed in matrix form:

°Yi = K',°S„ (7)

where K \ is a diagonal matrix of linearization coeffi- 
cients, i.e. the derivatives in the "point" under analysis.

From (5) and (7), we can obtain:

°Yi = К \ Ai °Y,.i (i = 1, 2 .....m). (8)

This relationship is an approximate expression of de- 
pendence of z-th layer output vector on the output 
vector of preceding layer or (the same) the dependence 
on the input vector of the z-th layer. However, this ap- 
proximate relationship allows to obtain the exact ex- 
pression for the derivation of one coordinate with re- 
spect to another. This possibility is guaranteed by the 
application of just Taylor series for function approxi- 
mation.

3: Determination of linearized relation- 
ships between net coordinates

It's not difficult to obtain the linearized expression 
of dependence of States or outputs vector of z-th layer 
on the States or outputs vector of (z'-2)-th layer, etc. For 
this investigation, the output vector of the last layer is 
of special interest. For obtaining the derivative in the 
particular point of NN output coordinates (or, the 
same, in the particular point of output coordinate of 
last m-th layer) °Ym with respect to the output coordi
nate ofy-th layer (0 <j < m ) we need to apply the ex- 
pression (8) к times, where к = m-j:

°Ym = ГС-Пт-Ат-*-/. (9)

The parentheses in this expression are set for better 
readability only, because the operations of multiplica- 
tion may be performed in any order. However, such a 
form of expression facilitates the correction of error in 
the case of missing some intermediate term.

Applying the expression (5) with z = m-k

°S„-it ~ Am.k °Y„.jt.i

w e can obtain  the expression of linear dependence of 
NN output coord inate o n  the State ofy-th  layer:

°Y =1 m
-  (К тАщ)(К m_iAm.i)...(K m-ki lAm-k+l)K m.* X t.(10) 

From (5) and (7) we can obtain that

Ъ - А Х и Х , .  (11)

From here, we can deduct the following expressions:

°S„ = Am(K'm.,Am.,)... (K'm_k AmJ  °Ym.k.h (12)

°Sm = Am(K'm.IAm.1)...(K\-k+iAm.l<,)Ktm.k °Sm.k. (13)

Thus, we can obtain the derivative of any coordinate 
(output or State) for z-th layer with respect to any co
ordinate of the preceding layer. The derivatives are 
required for determination of efficiency factor gradi
ent; therefore, it's necessary to determine the expres- 
sions of output vector derivatives with respect to in- 
puts of summators of all Iayers. Thus, the most inter- 
esting result for this investigation is the expression 
( 10).

If the determination of output coordinates deriva- 
tives was the only goal of NN analysis, the expression 
(10) would be the finał result making the following 
discussions unnecessary. However, it seems unreason- 
able to calculate derivatives for every particular layer 
in order to determine the derivatives for all Iayers, be
cause the same set of calculations must be repeated for 
each layer. In such conditions, it seems naturally 
enough to use the results of derivatives calculation for 
z-th layer for calculation of derivatives for (z-l)-th 
layer. Of course, such a method gives real benefit only 
when the number of Iayers and/or neurons is great 
enough. Possibly, under smali number of Iayers and 
neurons, it is morę reasonable to perform morę calcu
lations using simple algorithm, than to reduce the
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number of arithmetic operations at the expense of 
complicating the algorithm. Even if we shall not take 
into consideration the difficulty of understanding the 
back-propagation algorithm in the recurrent form, just 
the possibility to eliminate the recurrence seems espe- 
cially important for the following generalizations.

Thus, in conditions when the number of neurons is 
not very great, the recurrent implementation of back- 
propagation algorithm is not of great importance. 
However, we shall consider this ąuestion, first of all, 
in order to prove that the proposed scheme of investi- 
gation leads (from a particular point of view), as a fi
nał result, to the back-propagation algorithm.

4: The recurrent form of dependencies

Let's present the expression (10) for two specific 
cases (k = 0, k = m-I)

°Ym = K'm°Sm, (14)

°Ym = (К' 2A2) К'i %  . (15)

Let's present the NN output vector °Ym as a function of 
State vector °Sj in matrix fonn:

0Ym = A j % .  (16)

Thus, we can consider the matrix A} as the matrix of 
output vector derivatives with respect to the States of i- 
th layer. It's obvious that

Am=K'„. (17)

From (10) under k= 1, taking into consideration (16)

°Ym = ( О Х * /  X - >  = 4» AmK\-> Х - /  =
= Am.j X ;

Now we can deduce the generalized expression

An-k-l •* Дт-k Am-kK (20)

which can be considered as recurrent eąuation with 
initial conditions (17).

This recurrent expression coincides with the main 
relationship of back-propagation algorithm (up to the 
designations). The deduction of this expression seems 
natural if we use matrix terms. In accordance with this 
algorithm, the calculations are performed in two "di- 
rections". The forward-direction calculations include 
calculation of all NN coordinates in the order of layer 
number increment, starting from the values of input 
coordinates. After the determination of output coordi
nates for the last layer, the reverse-direction calcula
tions are performed, which include calculations of 
"generalized" errors for the last layer (i.e. the compo- 
nents of vector zlm, and vectors A, for all preceding 
layers, in the order of layer number decrement.

It must be noted that if we use the direct expres- 
sions of linear equations of connection between NN 
coordinates, then the division of calculations into two 
stages (forward-direction and reverse-direction) will 
be unnatural. Indeed, the forward-direction calculation 
of NN coordinates, from layer to layer, consist in se- 
ąuential calculation of coordinates (i.e. output and 
State) for each layer, starting from the first layer, i.e. in 
calculation of Y„, S,, Y,, S2, Y2, .... Sm, Ym.

After the calculation o f  the column Yh it's possible 
to determine analytical expressions o f  dependence o f  
output Y, on  all columns o f  States Sj under j  < i. It's 
o b v io u s that under j=l, i.e. on  the first step  o f  the se- 
ąuentia l processing o f  layers, we can obtain  only one  
dep en d en ce:

aY ,~ K ',°Sh (21)

we can obtain:

Am. , - A mAmK'm-j- (18)

In tum, under k=2, taking (15) and (18) into consid
eration

0Ym -  (K mAfn) (K m-lAm.i)K m.2 US„,.2 
Am-i Afft./IC m.2 Sm.2 Am 2 Sm_2 

we can obtain

However, on he second step we can obtain two de
pendencies:

%  = К \% ,
°Y2 = K*2A2 K*i°Si, (22)

and on the third step there are three dependencies:

°Y3 = K'3°S3,
°Y3 = K \A 3 K'2% , (23)
°Y3 = K '3A3 K'2A2 K*,°S,

Am.2 - Am.j Am.jK m.2. (19) and so on.
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To make obvious the recurrent naturę of the pro- 
posed algorithm, let's introduce the designation Atj for 
matrix of connections between vectors Y, and Sj . Us- 
ing this matrix, we can express the dependence of the 
first of the above-mentioned vectors ffom the second 
in the following form:

°Y, = A,j %  (]<i). (24)

Using this designation, let's present (21) in the fol
lowing form:

°y, = A„ °Sh (25)

where An = K* (22) can be expressed as follows:

%  = K'2°S2 = A22% ,
°Y2 = K \A 2 K',°S, = K'2A2 A„ %  = A2I°S, , (26)

where A22 = К’2, A2,= K'2A2 Ац’, and (23) can be ex- 
pressed in the following form:

°Y3 = K'}%  = A33°S3.
°Y3 — К 3A3 К 2°S2 = К jA3 A22°S2 = A32°S2,
°Y3 = К p43 К 2A2 К ,°S, — К y i3 A21°Si = A3i°S], 

where
A33 = К 3, A32 = К p43 A22, A3] -  К 3A3 A2).

In generał, we can conclude that after processing of 
/-th layer (/ > 1) we have i matrices Av (1 < у < i) cal- 
culated. For next, (i'+l)th layer, we can calculate /+1 
matrices in accordance with the following rule:

Afi+i)j = К o+ijA(i+i) Ay, (1 i j  <i)
A (H I) ( i+ l)  ~  ^  о + »

After processing of the last (w-th) layer we have m 
matrices Amj (1 <,j<, m) calculated. They are used as 
the above-mentioned matrices At . Indeed, the meaning 
of these matrices is determined by connection equation 
(16); after its comparison with (24), we can see that 
Amj -  Aj .

Thus, we can conclude that there are at least three 
methods that can be applied for calculation of the line- 
arized dependence of NN output coordinate on the 
States of each layer ("in the vicinity of eąuilibrium 
position"). The first method consists of direct calcula
tion of each of the dependencies in the matrix form. 
The second method includes two stages: 1) the calcu
lation of "equilibrium position" for all coordinates of 
each layer (the forward-direction calculations) and 2)

the calculation of dependence of the last layer output 
coordinates (i.e. the output coordinates of NN) on the 
States of preceding layers (the reverse-direction calcu
lation). In the third method, it is proposed to determine 
the relationship for output coordinate in parallel with 
the calculation of "equilibrium position", i.e. the val- 
ues of NN coordinates determined by the value of the 
input coordinates.

5: Determination of output coordinates 
derivatives with respect to parameters

In the back-propagation algorithm, it's necessary to 
calculate the derivatives of output coordinates with 
respect to parameters (not with respect to the States of 
layers). While the relation between these derivatives is 
rather simple, let's present some relationships between 
them. First, the matrix Aj between the centralized val- 
ues °Ym = Aj °Sj can be considered as the matrix of de- 
rivatives of non-linear dependence of Ym on Sj with S3 
= S‘j . Such an assertion is grounded on application of 
Taylor series for approximation of all non-linear func- 
tions used in this conversion. Each element of matrix 
Aj ~ (fypq) is the derivative of p-th component of NN 
output vector (w-th layer) with respect to q-\h compo
nent of States vector ofy-th neuron layer sjq .

Sjpą — Ćtym j j d s lt q.

If given the matrix expression of dependence ofy- 
th States column Sj on output vector of the preceding 
layer Yj.i (see (1))

Sj -  Bj + Aj Yj.i

we take only the q-th linę

Sj. Я ~  b j,q  +  aj q , y j . j  q / ^ Oj q 2yj-j, q. 2 +  ••• .

where bJq = -в)ч , then it is obvious that

т У Y bj q — Y\;m jJ O Sj q —  Sj pq,

dym. j / d a j  q , k ~  d y m f / d S j  q X  d s j  у  d a j  *  =

— $ рч x yj-h я *• (27)

Thus, after determination of the derivatives of out
put column with respect to the States of all NN layers, 
we can determine the derivatives of output coordinates 
with respect to all NN parameters. Of course, for co
ordinate values we take their values in the experiment
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under consideration. In tum, on the basis of output 
coordinate derivative with respect to the parameters, 
we can determine the derivatives of the sąuare error 
with respect to the same parameters. In fact, this is the 
end of the deduction of main relationships of back- 
propagation algorithm.

Ifs not difficult to see that the relationships ob- 
tained coincide (up to the designations) with the well- 
known derivative expressions for back-propagation 
algorithm. The main difference is not in finał results 
but in the way by which these results are obtained. In 
classical presentation of the back-propagation algo
rithm, the problem under consideration is the determi- 
nation of derivatives of composite function (i.e. mean- 
sąuare error) as such, without any connection with the 
problem of transfer function approximation by power 
polynomials. In such conditions, the application of 
chain rule and recurrent-type calculations for determi- 
nation of composite fimctions derivatives seems natu- 
ral and even necessary. However, the application of 
derivatives in any case implies the approximation of 
functions in the vicinity of some point. In the proposed 
approach, the starting point for finding better parame
ters values (in coinparison with the values used in the 
experiments) is the approximation of the dependence 
of efficiency factor on parameters in the rangę of vari- 
ables values in the training set. We think that in such 
conditions the application of derivatives is not a matter 
of principle, but providing they are used, the proposed 
algorithm gives the same results as the classical ap
proach for back-propagation algorithm. This was the 
main goal of the investigation proposed, and we think 
that this goal is achieved.

6: Determination of linearized 
relationships without application of de- 
rivatives

As a rule, the practical implementation of back- 
propagation algorithm includes some violations of the 
assumptions used for proving of algorithm conver- 
gency. These violations include not only the selection 
of the finał step, but also the correction of parameter 
values after the presentation of each pattem (the pulse 
method). At the same time, all considerations are valid 
only provided that the values of parameters remain the 
same during the presentation of all the pattems of the 
training set. Although the pulse method gives some 
benefits in many cases, it reąuires additional investi- 
gations. To simplify the following discussions with 
respect to the possibility of NN leaming without the

determination of derivatives, let's assume that the new 
values of parameters for back-propagation algorithm 
are implemented only after the end of processing of 
the training set.

In such conditions, the determination of "deriva- 
tives" of efficiency factor with respect to the NN pa
rameters without the differentiation of activation func
tions can be considered as the determination of coeffi- 
cients of linear regression of efficiency factor on the 
outputs of summators. These coefficient can be deter- 
mined, for example, using the method of least sąuares. 
These coefficients may be considered as the "general- 
izer errors" of back-propagation algorithm. However, 
the calculation of the derivatives of efficiency factor 
with respect to the parameters in accordance with (27) 
is strictly grounded on the basis of differential calcu- 
lus; at the same time, the application of (27) in the 
case under consideration reąuires strict grounds. As а 
heuristical recommendation, it may be proposed to 
apply the mean value of output coordinate instead of 
the value taken from the particular experiment.

To investigate the acceptability of the proposed 
recommendation for practical purposes, the numerical 
experiments, as a minimum, are necessary. As a test 
example for such experiments, we can use two NNs, 
the only difference between which is the activation 
function of formal neurons. For one of these NNs, the 
sign-function must be used as the activation function. 
For another NN, the sigmoid-function must be used 
with such a great value of the parameter that makes 
this function practically indistinguishable from the 
sign-function. It's obvious that, providing the before- 
mentioned heuristical recommendation is valid, the 
values of gradient of the efficiency factor for such 
NNs must be approximately the same. Such numerical 
experiment was carried out for one test example, and 
the results were satisfactory. Of course, the single ex- 
ample is not adeąuate ground to recommend the 
method for wide practical application; however, we 
think that the main goal of this investigation is 
achieved. This goal was to demonstrate the opportuni- 
ties of back-propagation algorithm, without respect to 
its particular implementation.
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