
New Approach of the Recurrent Neural Network Training

V. Golovko, Y. Savitsky
Brest Polytechnic Institute

Moskowskaja str. 267, Brest 224017
Belarus, e-mail: cm@brpi.belpak.brest.by

Abstract

In this work the techniąue o f creation o f adapthre
training algorithms for recurrent neural networks
(RNN) is cortsidered. These algorithms have high
convergence and accuracy on a comparison with
traditional backpropagation. The original technique o f
calculation o f an adaptive training step with use of
steepest descent method is resulted. The features o f
calculation o f an adapttve pitch for neural elements
with recurrent connections are discussed. Are
considered the neural units with various functions of
activation, used in architectures neural systems of
forecasting. The indicated computing experiments
demonstrate advantage o f the developed RNN training
methods.

1: Introduction

The training of RNN with plenty of recurrent
connections with use backpropagation is a large
problem. It is connected to defects of training
algorithm and complexity of neural network
architecture. Therefore there is a problem of
development of adaptive training algorithms
permitting to execute RNN training of a complicated
structure with a high exactitude and a speed [3-6]. In
this work the technique of calculation of an adaptive
training step is resulted which can be applied to any
activation of neural elements. The adaptive step for
sigmoid, logarithmic and linear functions of activation
used by the authors for construction of systems of
forecasting is considered.

2: Basic RNN Architecture

This work is focused in the fully connected third-
layered recurrent neural network (RNN) architecture,
as shown in a Fig 1 [3]. The output activity of the
neural network is defmed by expression:

f
Y/ (t) = F \Y jW,Jy i (t) -T l

(i=i
(1)

where N h - number of units of the hidden level, У,«)
- output activity of hidden units, s t - threshold for
output unit, w^ - weights from hidden input units i to
the output unit j , j = {1,jV0} .
The output activity of the hidden units on the current
training iteration t for training exemplar p is defmed
as:

N, Nh Ny
1.1/1 = (o♦ (/ - 1) +£/«,//(/ - 1)-) (2)

w *=i /=1
where x, (t) is a i ’th element of the input vector
x (t), n , - size of an input vector, wtj - weights ffom
extemal units i to hidden units j , wkj - weights from

hidden units к to hidden units j , y k(t - l) - output
activity of a hidden unit к for the previous moment of
time, w,j - weight to the hidden unit j tirom an output
unit / , Yt (t -1) - network output activity for the
previous moment of time and s . - thresholds of the
hidden units.

In this work we use three types of neural units
transfer function:

• Linear activation function:
F(Sj) = M - S j (3)

This function is used as RNN output units in the some
types of the neural prediction systems.

• Logarithmic activation function:

F{Sj) = ln^(S; +.j(SJ)2 +a): v'a j , (a> 0) (4)

The choice by this transfer function is stipulated by
that it is unlimited on all define area. It allows better to
simulate and predict complex non-stationary
processes. We propose to use this function in the
hidden units of RNN. The parameter a defines
declination of the activation function (see Fig. 2).

32

mailto:cm@brpi.belpak.brest.by

Г, (О

Figurę 1. The RNN architecture

Figurę 2. The logarithmic activation
function for various parameters a :
a) a = 1.0, Ь) a = 0.1 , c) a = 0.01, d) a = 0.001 •

• At other case in hidden units is used standard
sigmoid transfer function, defrned as:

F (S ,) Ą l + e~S iY (5)
Let’s consider the adaptive training step

calculation for mentioned above transfer functions.

3: Adaptive Training Step Calculation for
RNN

In standard backpropagation algorithm there is a
problem of choice of an optimal training step to
increase speed of training. For choice of adaptive step
it would be possible to use a method of steepest
descent. According to it, on each iteration of neural
network training, the training step for each layer by
such is necessary to select to minimize a root-mean-
square error of a neural network:

a(t) = min£(_yv(r + 1)) (6)
where j = (I, N0 } , NQ - number of neural units of the
output layer.
The output value of the j ’th neuron depends on
function of activation of units and is generał ly
determined as follows:

j ^ f + l) = .F(w,/ (f + l),7’_,(/ + l)) (7)
The weights and thresholds are modified as:

ńF,
wv (t+l) = W y(t)-a(t)-

dw dł)

7’;(? + l)= r / (t) - e (t)

V
ÓE

ds.(l)

(8)

Root-mean-square error of the RNN is defmed as:

Then for determination a(t) it is necessary to find
дЕ _ 8E dYj(t +1) ,1Qł

da(t) dYj(t +1) da(t) ' V '
The given equation cannot be decided rather a{t) by
an analytical way. Therefore in the series of
publications for definition of an adaptive training step
it is offered to use methods of linear search [1].
However it is connected to difficult calculations.
Therefore it is possible to offer an approximate method
of a determination of a training step a (t) . It bases on
expansion of the neural unit activation function in a
number Tailor serial. Let's consider it explicitly.
Let output value of the j ’th neuron of the output layer
is equaled:

Yj (t) = F(Sj(0).
57(0 = I> ',W w //(0 -7 'y(t), (11)

where у , (/) - output value of the i ’th neuron of the
hidden layer.
For definition of the weighted sum of the j ’th neuron
in the moment of time r + 1 we shall use in (11)
expressions (8):

33

SJ(t+ 1)‘* £ * (w9 -T j + Л -Ц г
a r.

V 7- / V \= > y , w „ - T i - a - l у V ,-------------------).
^ ' v 1 ^ 1 dw„ ST,U ł

(12)

(13)
We shall designate

Z 8E 8E
y ^ w ;i U J

Then the expression (12) can be presented as follows:
Sj(t + l) = SJ(t) - a - a J. (14)

The target value of j th neuron in the moment of time
t +1 is eąualed:

У,(Г + 1) = Г (^ (г + 1)). (15)
Let’s decompose this expression under the Tailor
formula and limits by first two members:

T/ (f + l) = F(0) + n O) - 5 / (f + l), (16)
where

** r~-
F'(0) = - - for S . = 0.

8S, J
We shall use in (16) expressions (14). Then

У, U +1) = FI 0) + F'{0)Sj (t) - aFX0)a, (17)
As

YJi l) = F(0) + F'(0)Sj (t), (18)
that expression (17) can be presented as follows:

Y, (t +1) = Yt (t) - aF'(0)a/ (19)
For definition of an adaptive training step it is
necessary to supply:

£ = y X (r / (?+1)~ ^)2_>ni,n (20)
* J

T h e n

9dEa = Y jn (t) 11 ~ aF ' ^ aj) ' (- ^ '(0)eу) = 0 (21)
/

Expressing from the last eąuation, we shall receive:

a(t) = —------- = (22)
И 0) 2 > /

d2EAs , > 0, for want of given a the minimum of a
d a 2

root-mean-square error is ensured. Let's find
expression for a; . For this purpose we shall define:

8E BE °Y, 8S,
— = — —^ ---L = { r . - t .) F X S i) -y„
dwy dYj dsj dWy J J 1 ‘

dE dE dY. dS.
- = — ----------- --- = -(Y. -I ,)F '(S

dT dYj 8Sj dT J J '

(23)

Using (22) in expression (12), we shall receive:

aj ={\ + Y j y ,2)-(YJ - tj) - n s j) (24)

Proceeding from a principle of independence of
stratums, we assume that

rj=y,-‘j (25)
Using expressions (24) and (25) in (22), we shall
receive approximate expression for calculation of an
adaptive training step of various layers if neural
network:

' Z r J2F'(Sj)

a{t) = - (26)
п о н 1 + ^ , 2) ^ ; (Г (^)) 2

j j
where yj - error of j ‘th neural element, which for
various layers of the neural network is calculated as:

Yi = L Y ,F '(S J)wlJ
И

(27)

In the formula (26) expressions (1 + £ y , 2) represent
i

the sum of ąuadrates of input activities of neurons of
the current layer. Therefore similarly it is possible to
receive expression for calculation of an adaptive step
of the hidden neurons containing recurrent
connections. This expression looks like:

W m
Ufy------------- ---------- L---------------------- ;____ ,(28)

i к I j

where v4 (/ — !),>>/ (? — 1), - source activity of context-
sensitive neurons, k = {1, Nh}, / = {1, Na }.

Let's consider definition o f expressions (25), (27)
for various functions of activation of neural elements.
S ig m o id fu n c t io n . As derivatives of sigmoid function:

Yj = F ' (S J) = Yj (\ - Y J),
1 (29)

Yj (0) = Г (0) = Т
J 4

that expression for an adaptive training step can be
presented as follows:

4 2 > Л (1 - у ,) ,
a(t) = ---------- - - — — — - (30)

а + 2 > л - 5 > Л / а - 10>2I j
For neurons of the hidden layer, with allowance for of
recurrent connections, the adaptive training step is
determined by expression:

4Ш у£ - у}>
<*/)=----------------1 --------------------------- (31)

o+S 3y fv -y ,f
i к i j

L o g a r ith m ic fu n c t io n . Derivatives of logarithmic
function is:

34

I

(32)

efficiency of adaptive algorithms was observed (see
Table 1).Yj = F b j) =

i Sj + a

Y. (0) = F'(0) = -— ,
iJ a

that expression for an adaptive training step can be
presented as follows:

,-i
J ^ Z r Ą p j) 2 +a

a (i) -

(1+I> '2> - I > / (^ 2+a)''’
(33)

у i = , y j (\ - y j) wij (34)

For neurons of the hidden layer, with allowance for of
recurrent connections, the adaptive training step is
determined by expression:

d!)= (35)

i к

У ,= Т у , т W:> (36)
S r + a1

Linear function. As derivatives of linear function:
Yj - F ' {S j) = M,

Y j (0) = F'(0) = M,
then we receive the next expression:

(37)

M Y j j 2
a(t) = ——— (38)

4: Testing

Table 1. RNN training results
Туре of
training step

Training error
for RNN with
logarithmic
transfer function
o=0.01

Training error
for RNN with
sigmoid transfer
function

Adaptive 1.78ЕГ5 6.92ЕГ4
a = 0.0099 3.91£~2 3.1 LfT1
a =0.099 7.13 ET3 5.OLE"2
a =0.99 9.11E-4 9.78FT3
a =1.99 5.21 £ “4 6.97ЕГ3
a =9.99 2.87FT1 9.98E-4
a = 19.99 1.09 8.78FT3

5: Conclusion

In this work the problem of fast training of recurrent
multilayer neural networks with complicated structure
is partially decided. The circumscribed original
techniąue of calculation of an adaptive training step
can be applied for any functions of activation of
neuroelements. In work the application of the
developed algorithms on an example of concrete types
of RNN architectures is shown. The computing
experiments demonstrate potential abilities of the
developed adaptive algorithms for training of
complicated neural networks.

Acknowledgments
This paper is supported by INTAS program “INTAS
OPEN 97-0606”. The authors express gratitude to the
European Union for fmancial support.

6: References
For simulation two types of RNN architectures were
taken. One of them consists from neurons with
sigmoid activation function in the hidden layer. In the
other case were used hidden units with logarithmic
transfer function. Both neural networks contained 20
inputs, 5 nonlinear elements in the hidden layer and
one output linear neuron. For training set organization
were used the time serial of passenger
airtransportations described in [2]. It size is 144 units.
The testing task is forecasting of the described below
time serial. For training both neural networks 3000
training iterations were executed. In procedures of
training the appropriate expressions for calculation of
an adaptive pitch were used. For a comparison the
training with various constant steps were executed.
The ąuality of training was inspected by a root-mean-
square training error, as (9). In all cases higher

1. Hortz J., Krogh A., Palmer R. Introduction to the theory
of neural computation. - Addison Wesley Publishing
Company.-1991 .-327p.

2. Box G.E.P., Genkins G. M. Time-Series Analysis,
Forecasting and Control. New York, 1970.

3. Pedersen M. Training Recurrent Networks // Proceeding
of the IEEE Workshop on Neural Networks for Signal
Processing VII. -New Jersey: IEEE.-1997.

4. T.Lin, B.G. Home, P.Tino., C.L. Giles. Learning Loln-
Term Dependies with NARX Recurrent Neural
Networks. // IEEE Transactions on Neyral Networks.,
vol. 7, no. 6, p. 1329, - 1996.

5. M.W. Pedersen, L.K. Hansen. Recurrent Neural
Networks: Second-Order Properties and Pruning. //
Advanced in Neural Information Processing Systems 7,
Cambridge, MA: The MIT Press, 1995, pp. 673-680.

6. Pineda F. Generalization of back-propagation to
recurrent neural network. // Physical Review Letters,
19(59), 2229-2232,- 1987.

35

