
New Approach of the Recurrent Neural Network Training

V. Golovko, Y. Savitsky 
Brest Polytechnic Institute 

Moskowskaja str. 267, Brest 224017 
Belarus, e-mail: cm@brpi.belpak.brest.by

Abstract

In this work the techniąue o f creation o f adapthre 
training algorithms for recurrent neural networks 
(RNN) is cortsidered. These algorithms have high 
convergence and accuracy on a comparison with 
traditional backpropagation. The original technique o f 
calculation o f an adaptive training step with use of 
steepest descent method is resulted. The features o f 
calculation o f an adapttve pitch for neural elements 
with recurrent connections are discussed. Are 
considered the neural units with various functions of 
activation, used in architectures neural systems of 
forecasting. The indicated computing experiments 
demonstrate advantage o f the developed RNN training 
methods.

1: Introduction

The training of RNN with plenty of recurrent 
connections with use backpropagation is a large 
problem. It is connected to defects of training 
algorithm and complexity of neural network
architecture. Therefore there is a problem of 
development of adaptive training algorithms
permitting to execute RNN training of a complicated 
structure with a high exactitude and a speed [3-6]. In 
this work the technique of calculation of an adaptive 
training step is resulted which can be applied to any 
activation of neural elements. The adaptive step for 
sigmoid, logarithmic and linear functions of activation 
used by the authors for construction of systems of 
forecasting is considered.

2: Basic RNN Architecture

This work is focused in the fully connected third- 
layered recurrent neural network (RNN) architecture, 
as shown in a Fig 1 [3]. The output activity of the 
neural network is defmed by expression:

f
Y/ (t) = F \Y jW,Jy i ( t) -T l 

( i=i
(1)

where N h - number of units of the hidden level, У,«) 
- output activity of hidden units, s t - threshold for 
output unit, w^ - weights from hidden input units i to 
the output unit j , j  = {1,jV0} .
The output activity of the hidden units on the current 
training iteration t for training exemplar p is defmed 
as:

N, Nh Ny
1.1/1 = (o♦ (/ - 1) +£/«,//(/ - 1)- ) (2)

w *=i /=1
where x, (t) is a i ’th element of the input vector 
x (t), n  , - size of an input vector, wtj - weights ffom 
extemal units i to hidden units j , wkj - weights from

hidden units к to hidden units j ,  y k( t - l )  - output 
activity of a hidden unit к for the previous moment of 
time, w,j - weight to the hidden unit j  tirom an output
unit / , Yt (t -1) - network output activity for the 
previous moment of time and s . - thresholds of the 
hidden units.

In this work we use three types of neural units 
transfer function:

• Linear activation function:
F(Sj ) = M - S j (3)

This function is used as RNN output units in the some 
types of the neural prediction systems.

• Logarithmic activation function:

F{Sj) = ln^(S; +.j(SJ)2 +a):  v'a j , ( a> 0) (4)

The choice by this transfer function is stipulated by 
that it is unlimited on all define area. It allows better to 
simulate and predict complex non-stationary 
processes. We propose to use this function in the 
hidden units of RNN. The parameter a defines 
declination of the activation function (see Fig. 2).
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Figurę 1. The RNN architecture

Figurę 2. The logarithmic activation 
function for various parameters a :
a) a = 1.0, Ь) a = 0.1 , c ) a  = 0.01, d) a = 0.001 •

• At other case in hidden units is used standard 
sigmoid transfer function, defrned as:

F ( S , ) Ą l  + e~S iY  (5)
Let’s consider the adaptive training step 

calculation for mentioned above transfer functions.

3: Adaptive Training Step Calculation for 
RNN

In standard backpropagation algorithm there is a 
problem of choice of an optimal training step to 
increase speed of training. For choice of adaptive step 
it would be possible to use a method of steepest 
descent. According to it, on each iteration of neural 
network training, the training step for each layer by 
such is necessary to select to minimize a root-mean- 
square error of a neural network:

a(t) = min£(_yv(r + 1)) (6)
where j  = (I, N0 } , NQ - number of neural units of the 
output layer.
The output value of the j  ’th neuron depends on 
function of activation of units and is generał ly 
determined as follows:

j ^ f  + l) = .F(w,/ (f + l),7’_,(/ + l)) (7)
The weights and thresholds are modified as:

ńF,
wv (t+l) = W y(t)-a(t)-

dw dł)

7’;(? + l)=  r / ( t ) - e  (t)

V
ÓE

ds.(l)

(8)

Root-mean-square error of the RNN is defmed as:

Then for determination a(t) it is necessary to find
дЕ _ 8E dYj(t +1) ,1Qł

da(t) dYj(t +1) da(t) ' V '
The given equation cannot be decided rather a{t) by 
an analytical way. Therefore in the series of 
publications for definition of an adaptive training step 
it is offered to use methods of linear search [1]. 
However it is connected to difficult calculations. 
Therefore it is possible to offer an approximate method 
of a determination of a training step a ( t) . It bases on 
expansion of the neural unit activation function in a 
number Tailor serial. Let's consider it explicitly.
Let output value of the j  ’th neuron of the output layer 
is equaled:

Yj (t) = F(Sj(0).
57(0 = I> ',W w //(0 -7 'y(t), (11)

where у , (/) - output value of the i ’th neuron of the 
hidden layer.
For definition of the weighted sum of the j  ’th neuron 
in the moment of time r + 1 we shall use in (11) 
expressions (8):
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SJ(t+ 1)‘* £ * (w9 -T j + Л -Ц г
a r.

V  7- / V  \= > y , w „  - T i - a - l  у  V ,------------------- ).
^  ' v 1 ^  1 dw„ ST,U ł

( 12)

(13)
We shall designate

Z 8E 8E
y ^ w ;i U J

Then the expression (12) can be presented as follows: 
Sj(t + l) = SJ( t ) - a - a J. (14)

The target value of j  th neuron in the moment of time 
t +1 is eąualed:

У,(Г + 1) = Г (^ (г  + 1)). (15)
Let’s decompose this expression under the Tailor 
formula and limits by first two members:

T/ (f + l) = F(0) + n O ) - 5 / (f + l), (16)
where

** r~-
F'(0) = - - for S . = 0.

8S, J
We shall use in (16) expressions (14). Then

У, U +1) = FI 0) + F'{0)Sj (t) -  aFX0)a, (17)
As

YJi l)  = F(0) + F'(0)Sj (t), (18)
that expression (17) can be presented as follows:

Y, (t +1) = Yt (t) -  aF'(0)a/ (19)
For definition of an adaptive training step it is 
necessary to supply:

£ = y X (r / (?+1)~ ^ )2_>ni,n (20)
* J

T h e n

9dEa = Y jn  (t) 11 ~ aF ' ^ aj ) ' (- ^ '(0)eу) = 0 (21)
/

Expressing from the last eąuation, we shall receive: 

a(t) = —------- =  (22)
И 0 ) 2 > /

d2EAs , > 0, for want of given a  the minimum of a 
d a 2

root-mean-square error is ensured. Let's find 
expression for a; . For this purpose we shall define:

8E BE °Y, 8S,
—  = —  —^ ---L = { r . - t . ) F X S i ) -y„
dwy dYj dsj dWy J J 1 ‘

dE dE dY. dS.
- = — ----------- ---  =  -(Y. -I ,)F '(S

dT dYj 8Sj dT J J '

(23)

Using (22) in expression (12), we shall receive:

aj ={\ + Y j y ,2)-(YJ - tj ) - n s j)  (24)

Proceeding from a principle of independence of 
stratums, we assume that

rj=y,-‘j (25)
Using expressions (24) and (25) in (22), we shall 
receive approximate expression for calculation of an 
adaptive training step of various layers if neural 
network:

' Z r J2F'(Sj )

a{t) = - (26)
п о н 1 + ^ , 2) ^ ; ( Г ( ^ ) ) 2

j  j
where yj - error of j  ‘th neural element, which for 
various layers of the neural network is calculated as:

Yi = L Y ,F '(S J)wlJ
И

(27)

In the formula (26) expressions (1 + £ y , 2) represent
i

the sum of ąuadrates of input activities of neurons of 
the current layer. Therefore similarly it is possible to 
receive expression for calculation of an adaptive step 
of the hidden neurons containing recurrent 
connections. This expression looks like:

W m
Ufy------------- ---------- L---------------------- ;____ ,(28)

i  к I  j

where v4 (/ — !),>>/ (? — 1), - source activity of context- 
sensitive neurons, k = {1, Nh}, / = {1, Na }.

Let's consider definition o f  expressions (25), (27) 
for various functions of activation of neural elements. 
S ig m o id  fu n c t io n . As derivatives of sigmoid function:

Yj = F ' ( S J ) = Yj ( \ - Y J ),
1 (29)

Yj (0) = Г (0) = Т  
J 4

that expression for an adaptive training step can be 
presented as follows:

4 2 > Л ( 1 - у , ) ,
a(t) = ---------- - -  — — — - (30)

а + 2 > л - 5 > Л / а - 10>2I j
For neurons of the hidden layer, with allowance for of 
recurrent connections, the adaptive training step is 
determined by expression:

4Ш у£ - у}>
<*/)=----------------1 --------------------------- (31)

o+S 3y fv -y ,f
i  к i  j

L o g a r ith m ic  fu n c t io n . Derivatives of logarithmic 
function is:
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(32)

efficiency of adaptive algorithms was observed (see 
Table 1).Yj = F b j )  =

i Sj + a

Y. (0) = F'(0) = -— , 
iJ a

that expression for an adaptive training step can be 
presented as follows:

,-i
J ^ Z r Ą p j ) 2 +a

a ( i )  -

(1+I> '2> - I > / ( ^ 2+a)''’
(33)

у i = , y j ( \ - y j ) wij (34)

For neurons of the hidden layer, with allowance for of 
recurrent connections, the adaptive training step is 
determined by expression:

d!)= (35)

i к

У ,= Т у , т  W:> (36)
S r + a1

Linear function. As derivatives of linear function: 
Yj -  F ' {S j)  = M,

Y j ( 0) = F'(0) =  M,  
then we receive the next expression:

(37)

M Y j j 2
a(t) = ——— (38)

4: Testing

Table 1. RNN training results
Туре of 
training step

Training error 
for RNN with 
logarithmic 
transfer function 
o=0.01

Training error 
for RNN with 
sigmoid transfer 
function

Adaptive 1.78ЕГ5 6.92ЕГ4
a  = 0.0099 3.91£~2 3.1 LfT1
a  =0.099 7.13 ET3 5.OLE"2
a  =0.99 9.11E-4 9.78FT3
a  =1.99 5.21 £ “4 6.97ЕГ3
a  =9.99 2.87FT1 9.98E-4
a  = 19.99 1.09 8.78FT3

5: Conclusion

In this work the problem of fast training of recurrent 
multilayer neural networks with complicated structure 
is partially decided. The circumscribed original 
techniąue of calculation of an adaptive training step 
can be applied for any functions of activation of 
neuroelements. In work the application of the 
developed algorithms on an example of concrete types 
of RNN architectures is shown. The computing 
experiments demonstrate potential abilities of the 
developed adaptive algorithms for training of 
complicated neural networks.
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