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Abstract
We apply some variants of evolutionary computations 
to the Hopfield model of associative memory. In the 
model, a number of patterns can be stored in the net
work as attractors if synaptic weights are determined 
appropriately. One of our goals of this study is to 
learn the number and distribution of these Solutions 
in weight space, which is still an open problem. To 
address this issue, we test a method to visualize So
lutions in high-dimensional space in this paper.

keywords: Neural network, Associative memory, 
Weight space, Yisualization.

1 Introduction
In studies using evolutionary algorithms, visualiza- 
tion of high-dimensional space provides various as- 
pects of insight into the search space explored. We 
can imagine, for instance, convergence/divergence 
behaviors of a population, topology of a fitness land- 
scape, what does a walk from a random point to the 
global optimum look like, and so on. The problem 
of mapping a number of points in multi-dimensional 
space to points in 2D space with the distances among 
the original points remaining as much as possible is 
one of those techniąues. Shine et al. [1] and Collins
[2] argued such a techniąue together with other pos
sible alternatives. Collins cali this techniąue “S a m -  

m o n  M a p p i n g ” after Sammon [3] who proposed this 
techniąue originally (Shine et al. cali this “D i s t a n c e  
M a p ”) .  Since the techniąue is an optimization prob
lem, we can employ a genetic algorithm (GA) to solve

this problem. Неге we employ this techniąue in some- 
what of a different way.

We apply some variants of evolutionary computa
tions to the fully-connected neural network model of 
associative memory. In the model, a number of pat
terns can be stored in the network as attractors if 
synaptic weights are determined appropriately. Al- 
though some of the Solutions of weights have been 
found heuristically, the number and distribution of 
the whole Solutions are still unknown issue. As a pre- 
liminary stage toward addressing this issue, we apply 
the Sammon Mapping to visualize our wight space.

Since neither Collins nor Shine gave us any de- 
scription such as how large dimensionality can be ex- 
plored, or how many points can be mapped properly, 
we start by visualizing two known shapes in the space 
of high dimensionality. Then we apply the techniąue 
to our weight space of the neural network model of 
associative memory.

2 Associative Memory
Associative memory is a dynamical system which has 
a number of stable states with a domain of attraction 
around them [4]. If the system starts at any state in 
the domain, it will converge to the stable state. Hop
field [5] proposed a fully connected neural network 
model of associative memory in which information 
is stored by being distributed among neurons, and 
we can retrieve the information from dynamically re- 
laxed neurons’ states. In the model, some of the ap- 
propriate configurations of synaptic weights give the 
network a function of associative memory.

The Hopfield model consists of N  neurons and N 2 
synapses. Each neuron state is either active (+1) or
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I
I

ąuiescent ( — 1). When ап arbitrary A-bit b i p o l a r  p a t 

i e m ,  a seąuence of +  1 and — 1, is given to the network 
as an initial state, the dynamical behavior of neurons’ 
States afterwards are characterized by the strengths 
of the N 2 synapses. The synaptic strengths are called 
w e i g h t s ,  and the weight from neuron j  to neuron i  is 

. denoted as W ij in this paper. Provided the synaptic
weights are determined appropriately, network can 
storę some number of patterns as attractors. Hopfield 
employed the so-called Hebbian rule [6] to prescribe 

i the weights. That is, to storę p  bipolar patterns :

' C  -G>. *'=».-  v

the weight values are determined as:
I

W ij =  -fi £  C V, (*' t -  j ) ,  w u  =  0.
v=i

An instantaneous state of a neuron is updated asyn- 
chronously (one neuron at a time) as:

Si (t +  1) =  sgn I
V

where Si(t) is a state of the i-th neuron at time t. If 
an initial state converges to one of the stored patterns 

as an eąuilibrium state, then the pattern is said 
to be recalled. Furthermore, if an initial state chosen 
from the stored patterns remains unchanged from the 
beginning, then the pattern is said to be stored as a 
fixed point.

In analyzing the Hopfield model, there have been 
basically two different approaches: one is to explore 
pattern spact searching for attractors under a spe- 
cific weight configuration, and the other is to explore 
weight space searching for an appropriate weight con
figuration that stores a given set of patterns. To 
be morę specific, the former is an analysis of the 
Hamiltonian energy as a function of all the possi- 
ble configurations of bipolar pattern to be given to 
the network, where synaptic weights are pre-specified 
using a learning algorithm, usually the Hebb’s rule, 
so that the network Stores a set of p  given patterns. 
In this context, the model for p =  1 corresponds 
to the Mattis model of spin-glass [7], in which the 
Hamiltonian energy has two minima, while the model 
for infinitely large p corresponds to the Sherrington- 
Kirkpatrick model [8], in which the synaptic weights 
become Gaussian random variables. Analyses of the 
former type have been madę in between these two 
extreme cases (see Amit [9]). The latter analysis, on

(1)

the other hand, was addressed by Gardner [10]. She 
discussed the optimal weight configurations for a f i x e d  

number of given patterns in terms of the volume of 
the Solutions in weight space, suggesting that the vol- 
ume shrinks to vanish when p approaches to 2N .  In 
short, the former approach searches for the optimal 
pattern configurations which minimize the Hamilto
nian energy in p a t i e m  s p a c e  w i t h  t h e  w e i g h t s  b e i n g  

f i x e d ,  while the latter searches for the weight config
urations i n  w e i g h t  s p a c e  that optimally storę a set of 
given f i x e d  p a t t e r n s .

In this paper, our concern is on weight space where 
some points give a network a capability to storę a 
fixed set of patterns, and we cali these points Solu
tions.

3 Sammon mapping
As Collins [2] wrote, the dimension reduction has 
been an important techniąue for visualization of the 
space of high dimensionality. The Sammon Mapping
[3] is one of these techniąues. This enables us to 
map a set of A f  points in n-dimensional space to 2-D 
location data so that the distance information is pre- 
served as much as possible, or as Shine [1] wrote “s o  

t h a t  t h e  n - d i m e n s i o n a l  d i s t a n c e s  a r e  a p p r o z i m a t e d  b y  

2  d i m e n s i o n a l  d i s t a n c e s  w i t h  a m i n i m a l  e r r o r . ” This 
problem is an optimization problem.

Shine et al. [1] and Collins [2] proposed a method to 
solve this problem by a Genetic Algorithm, as follows. 
First, the distance matrix whose entries are Euclidean 
distances between all possible pairs of A f  points in the 
n-dimensional space is calculated. Then tentative A f  
points in 2-dimensional space are determined repre- 
senting the original A/"-points in the n-dimensional 
space. The distance matrix of these A f  2D points is 
also calculated, which then will be subtracted from 
the original n-dimensional distance matrix, yielding 
an error matrix. A GA is used to minimize this error 
matrix.

For the sake of simplicity, we assume here the di
mension reduction from 2401D space to 2D space. 
Given A f  points in 2401D space

where each point X k is expressed by 2401 coordinates 
as

Y* — tzk 'i i * 2 4 0 1  /•

Then the square distance between m-th point and
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л-th point is calculated as

2401

R m n  =  £  ( z \ n  -  z ? ) 2

t=i

The values for all the possible combination of m  and 
n  construct a distance matrix. Since the matrix is 
symmetric with zero diagonal elements, we use the 
lower triangle elements (m < n).

Then we generate V  sets of the 2-dimensional Af 
points at random, i.e.,

^ ( O i -
• • > v (a)

,9 # (V )

where the fc-th point of the i-th set is represented as:

**('■) = K,‘ ,Ca*)-
Thus the i-th set of these A f  points has its distance 
matrix whose elements are

rmB(i) =  £ ( G m - C ) a
1=1

The objective function of the i-th sets / ( i )  can be 
defined as

/(*’) =  £  r ™ ( i ) - R ™
m < n

Starting with a random configuration of A f  points 
in 2-dimensional space, the GA corrects these points 
generation by generation applying crossover and 
mutation1 to 2D coordinates. The correction is re- 
peated until the error converges to an acceptable min
imum.

4 Results & Discussion
Towards the goal of visualizing Solutions in weight 
space, we apply the dimension-reduction technique to 
two toy examples, as test functions, in which distri- 
bution of the point is known. One is a set of points 
on a hyper-line, and the other is a set of points in 
the two separate regions. Our“experiments of the 
fully-connected neural network model of associative 
memory are carried out on networks with 49 neurons,

1 Wc em ploy un ifo rm  crossover [11] an d  B G A  m u ta tio n  [12] 
here.

which implies the weight space is 492 =  2401 dimen- 
sional space. So the dimensionality is set to 2401 in 
this paper.

Hyper-line
The first test is a visualization of a hyper-line. In

Figurę 1: Points mapped to 2D space from 120 points on 
a diagonal linę of the 2401-D space (top), and the time 
evolution of objective function (bottom).

mapping some points in high dimensionality to points 
in 2D space, there exists some constraints in gen
erał. It is elear, for example, that the four vertices 
of a tetrahedron in 3D space can never been exactly 
mapped to four points in 2D space. On the other 
hand, there is no such constraint in the case of points 
on a hyper-line. In that sence, hyper-line is a good 
benchmark for the algorithm.

First, we pick up 120 points that are distributed 
with eąual interval on a diagonal linę of the 2401- 
dimensional hyper-eube. To be morę specific, the 
points are:

(x i i * 2 1 ' ''  > *2 4 0 1 ) 1   ̂ =  0i 1]1 ■ • > HO

where

* 1  =  Х 2 — ■ ■ • =  * 2 4 0 1  =  ~1 +  к  ■ (2/119)

Then they are mapped to 120 points on 2-dimensional 
space so that the distance relation among the 120
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points on the 2401-dimensional space is kept as much 
as possible. A result is shown in Figurę 1 (top). We 
can see a straight linę in the 2-dimensional space. 
The task to search for an appropriate configuration 
of 2D points is ąuite easy in this case. As evolution 
proceeds, the objective function that took the value 
7,560,777 at the start asymptotically approaches the 
smali value around 0.1. The evolution is shown in 
Figurę 1 (bottom).

Two hyper-cubes
Next, we proceed to an example in which we can 
imagine the shape of the region in high-dimensional 
space. We sampled 60 points randomly from the 2401 
dimensional region whose ordinates are all between 
0.5 and 1.0 as well as the other 60 points from the 
region whose ordinates are between -0.5 and -1.0. 
Namely, points are sampled either from two sepa- 
rate hyper-cubes of the same size. In Figurę 2 (top), 
a result of dimension reduction of these 120 points 
is shown, together with a point that corresponds to 
the origin. The evolution of the objective function 
is shown in Figurę 2 (bottom). The value starts 
with 14,567,428, and eventually approaches 106,125. 
Though the finał value of the objective function is 
not so smali, the ratio of the finał value is 0.7% of 
the initial value. We can clearly see the two separate 
regions in the 2-dimensional space.

Hyper-sphere: w eight solution  
As stated earlier, multiple configurations of weights 
give a network a function of associative memory. The 
number of these configurations is known to be de
pendent on p, the number of patterns to be stored. 
Storing just one pattern gives a maximum number 
of Solutions of weights, while as p approaches twice 
the number of neurons, all the Solutions vanishes [10]. 
However, the number and distribution as a function 
of p is still unknown. So far, we have applied some 
variants of evolutionary algorithms to search for these 
Solutions (see e.g., [13]- [18]). Неге, we study the 
Solutions found by the Breeder Genetic Algorithm 
(BGA) among others, sińce only this algorithm has 
been able to search for Solutions for a wide rangę of p 
(see [19]). Our experiments were carried out on net- 
works with 49 neurons and the BGA found Solutions 
for up to p =  90. The Solutions that the BGA found 
are also expected to be different from run to run, 
as Miihlenbein et al. [12] wrote: “t h e  B G A  m u i a i i o n  

s c h e m e  i s  a b le  t o  o p t i m i z e  m a n y  m u l t i - m o d a l  f u n c -  
t i o n s .  ” As a preliminary stage of the goal of łeaming 
the number and distribution as a function of p, we

Figurę 2: Two regions of the 2401-D space mapped to 
the 2-D space; filled-in circle •  indicates the origin (top), 
and the time evolution of objective function (bottom).

sampled 30 such Solutions for p =  1. It is important 
to notę here that sińce each weights, W i j ,  can take 
an arbitrary real value, there are infinite number of 
equivalent configurations which differ only by scaling 
factor. In other words, for any scaling factor к ,  K W ij  
works exactly in the same way as u>ij in updating neu
ron states (see eąuation (1)). So, we normalized the 
Solutions obtained such that they locate on the hyper- 
sphere of radius 1. We suspect that these normalized 
Solutions for p =  1 are distributed uniformly on the 
surface of the hyper-sphere. We show the results of 
the 2D points mapped from the 2401-dimensional so
lution space for the number of Solutions Af =  9 in 
Figurę 3 (top). When the number of storing pat
terns is only one, we observed that the nine 2D points 
corresponding to the Solutions are almost uniformly 
distributed on the circle whose center corresponds to 
the origin of 2401-dimensional space, while the dis
tribution of these 2D points are disturbed morę or 
less for A f  morę than 9 (not shown here). In Figurę 
4, we show the time evolution of each objective func
tion value for A f  =  9 and 30. The value for Af =  9 
starts with 1,758 while the value for A f — 30 starts 
with 37,115 and these values ended up 8 and 129, re- 
spectively. The difference of these values is due to 
the degree of constraint of the dimension reduction
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problem.
We also tested the similar experiment with the di- 

mensionality 256 instead of 2401, but we found that 
the results were almost the same (not shown here), in 
that the limit in which points of high dimensionality 
are properly mapped to 2D space was around h f  =  9.

Next, we apply the techniąue to Solutions also ob- 
tained by the BGA runs for p =  90. This number of 
patterns to be stored is almost the upper bound of 
the storage capacity for a network with 49 neurons, 
and the Solutions are expected to be localized into 
smali region of weight space [10]. A result is shown 
in Figurę 3 (bottom). Though resolution is not so 
good, we can anyhow imagine the localized Solutions.

p - i

A r b lt r a r y  u n it

p =  9 0

A r b l t r a r y  u n i t

Figurę 3: 2D points mapped from nine Solutions in the 
2401-dimensional weight space. Filled-in ciicle • indicates 
the origin. The number of stored patterns is 1 (top) and 
90 (bottom).

5 Conclusion
We have described a techniąue to map a high- 
dimensional search space to 2D points remaining the 
distance information of the source points being as 
much as possible. What we are interested in is to vi- 
sualize weight configurations in weight space that give 
a network a function of associative memory. Since 
the topie has not been the subject of extensive re-

Figure 4: Time evolution of the objective function 
when high dimensional points are distributed on a hyper- 
sphere.

search, as Shine et ał. [1] pointed out, we preliminary 
applied the techniąue to two somewhat of trivial ex- 
amples to know the limitation of the techniąue. We 
have observed that 120 points on a 2401-dimensional 
hyper linę are mapped to a straight linę on 2D space, 
and 120 points that are distributed randomly on two 
separate hyper-eubes in 2401-dimensional space are 
mapped to two separate regions of 2D points.

Then we apply the techniąue to our weight space in 
which we search for the Solutions that give a network 
a function of associative memory. The dimension of 
the weight space is 2401 sińce we use neural networks 
with 49 neurons. If p, the number of patterns to be 
stored to the network as an associative memory, is 
only one, then the Solutions are expected to be uni- 
formly distributed in the space. On the other hand, 
if p =  90 that is almost the upper bound of the stor
age capacity, then the Solutions are expected to be 
highly localized. We normalized these Solutions such 
that they locate on the hyper-sphere of radius one. 
Then we used the techniąue to visualize these Solu
tions in 2D space, and found that we can obtain the 
expected results unless the number of Solutions ex- 
ceeds nine. This limit is not so good, but the result 
suggests that the Solutions are distributed uniformly 
at random for p =  1 and very localized for p =  90.
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