
Unsupervised Training Algorithm for Recirculation Neural Network

Vladimir Golovko, Vitaly Gladyschuk

Department of Computers, Brest polytechnic institute, Moscowskaja 267, 224017 Brest,
Republic of Belarus, ph: +375 162 421081, fax: +375 162 422127,

e-mail: cm@brpi.belpak.brest.by

Abstract
Unsupemised learning is the great promise o f

the futurę. In such training the network is provided
with inputs but not with desired outputs.
Unsupemised learning is used for the principal
component networks. This paper describes a nerw
method for training o f the recirculation networks.
Such method is called a sectioning learning. It is
characterized by smali training time and stability o f
training.

Keywords. Recirculation neural network,
unsupervised training, compression.

1. Introduction

As it is known from statistics[l] the Principal
Component Analysis (PCA) is the basie tool to
reduce dimension by eliminating redundant variables.
Such transformation from the n -dimensional to the
m -dimensional vector equals the concatenation of
the first m eigenvector of the correlation matrix of
the input signals. In this procedurę the input space is
rotated in such a way that the output values are as
uncorrelated as possible and the energy or variances
of the data is mainly concentrated in a few first
principal components.

The principal component networks
(recirculation networks) use the various variants of
unsupervised learning. So many papers are based on
Hebbian learning [2,3,4]. Such learning rule is the
equivalent to the Principal Component Analyses.
Other authors [5,6,7] have used the backprogation
algorithm or cumulative delta rule. However these
algorithms have excessive training times and lack of
convergence to an acceptable solution. There is no
guarantee that the learning will be a success.

This paper describes a new method for training
the recirculation network. Such method is

characterized by smali training times and stability of
training. Various numerical experiments are used to
illustrate the potential of the suggested method.

2. Architecture

Recirculation networks are characterized both
feed-forward у = f (x) and feed-back X = / (y)
transformation of the pattems. Such networks are
used for compression (feed-forward transformation)
and decompression (feed-back transformation) of the
data. The architecture of the recirculation neural
network is shown on Fig.l. It consists of three layers.
The input units receive data from outside and
distribute these data to hidden units. The hidden units
perform the compression of the input data X :
Y = F(WX) (1)
The units in the output layer are meant for
decompression of the data of the hidden layer:
X = F(W'Y) , (2)
where W is the weight matrix; X is the input vector;
Y is the output vector of the hidden layer; X is the
decompressed vector; F is the activation function.

w Y w'

Figurę 1.

19

mailto:cm@brpi.belpak.brest.by

One сап see in Fig.i, that recirculation network has
two weight layers, called the forward and inverse
layers. The purpose of the learning is to reduce the
error between the decompressed vector and the input
vector.

3. Background and motivation

4. Linear network

Such networks use a linear activation function
and perform the linear compression of a data set.
Then the outputs of the forward layer are as follows

•У, = ! > / , * , . (*)

The proposed method involves two separate
phases of the training. At the first phase the
definition of the weight matrix W 'and principal
components Y for minimization of the total sąuare
error between the decompressed data and the original
data set is performed. For this purpose it is necessary
to minimize the following eąuation:
\X - fVY\ —» min (3)
It is equivalent to the minimization

l *-l /=1
(4)

where L is the ąuantity of the input data.
By this

X, (5)

where p is the dimension of the hidden layer and
p < n. For the minimization of the eąuation (5) the
method of steepest descent can be used. As a result
the weights w ' of inverse layer and principal

components у are defmed.

At the second phase the weight matrix W of
the forward layer is determined. As the target outputs
the vector Y is used, which has been obtained
previously. Then the aim of the training at the second
phase is to minimize the following expression:

where j = l , p .
The outputs of the inverse layer are given by

(9)
/=1

where / = 1,77 .
The learning problem at the first phase can be
formulated as: how do we compute Дм/ (/) and

Aу (t) in order to minimize the total mean-square

error between the decompressed data X and the
original data set X (eąuation 4)? Let's examine the
definition of the vector Y for the minimization of
the eąuation (4). For this purpose the gradient
descent method is used. Then the learning rule is

Э К
y i (t + \) = y j (t) - a (t) - — - , (10)

ćy.it)

where a } (t) is the adaptive training ratę for neuron

j of the hidden layer.

The error E is defmed by the expression:

K = r £ c ? i -# »)* •
i /=i

Then the error derivate is
ЪЕ ЪЕ Ъх,

дх, ду,
= X wji(X i-X ,)

(П)

(12)

I к-1 /=1
where

y , = F i wox ,
i=i

(6)

(7)

Theorem 1. The adaptive training ratę « .(/) is
defmed by the following expression:

CCj(t) =
1

X(Wy/(0) 2
(13)

The method of steepest descent we will use for
minimization of the eąuation (6). Such approach
permits to train the inverse and forward layers
separately. Let’s consider the training rules for linear
and nonlinear networks.

Proof. In order to compute the training ratę tt (t)
we will use the method of the steepest descent. From
this follows that

f
a l (t) = m m \ E (y l(t)-ccJ(t)

dE]

Эу;(Oj

20

The activation values of element i can be written as:

*i 0 + !) = 4 (yj (0 -(XjYj) + I щ у к (t)
k*j

After modifications we have
Xi(t + l) = x i (t) - a j yjw 'jl
The error function for a pattem

^ /-i
Then the derivate is
dE

da
= 1 (* ,(0 -X, - aJy jw'y)* (-7/w',)=0 (14)

Now we can determine the adaptive ratę.

From equation (14) follows that:

yja , =

5 » » 1
i=i

It may be noted, that

(15)

da ,
From this follows that the equation (15)

minimizes the error function. Thus the learning ratę
is adapted to connection weights w':j.
The learning rule is

У i
y j(t+ D = y j (. t) - - (16)

f
/=i

Now we have to determine the learning rule for
connection weights w'u . In accordance to the
gradient descent method

dE
w' (t + \) = w ' (t) - a (t) . (17)

dWj, (t)

where a(t) is adaptive learning ratę for inverse
layer.
In this case we can get that
и ' (t + 1) = и / (t) -a(l) fx , - X,) y , . (18)
The learning ratę can be defmed by analogy with
theorem 1. Then

a { t) = — ^— (19)

I ^ a(0
7=1

As can be seen, the learning ratę is adapted to
every pattem Y .

At the second phase it is necessary to compute
A (t) in order to minimize the total mean-square

error between the data Y and the target data set Y
(equation 6). Then we have that

dE'w, {t +1) = w (/) - a (t) - — — . (20)
OWy(/)

The error function for a pattern

l 7=1

(21)

where у ,, j = l , p , are the first principal
components.
By using the gradient descent method we can get that
Wy (/ +1) = w(/ (0 -a (t) (y j - y ;)x, (22)
The learning ratę is

a(t) = —

.7=1

(23)

5. Nonlinear networks

The nonlinear activation function is used for
such network. By using nonlinearity of better results
can be achieved in comparison with the linear
function. Let’s consider the training rules for
nonlinear networks. As the activation function we
will use a hyperbolic tangent. Then the j th output of
a forward layer is given by
У , = th (S j) , (24)

where s j = ^ w tjx t
i=i

where j = \ , p .
Accordingly for an inverse layer
x, = th (s ,)

s , = i w „ У i
7=1

(25)

(26)

(27)

Let's examine the training rules. At the first
phase it is necessary for each input vector X to
define such vector у , which will ensure the
minimization of expression (4).
The error derivate is equal to

Э£ дЕдх ds, — . . _ 7. , /-«ох
dy, Эх, Эл, dyt

Then

y j(t + l) = yJ(t) - a J(t)'£(x, - x ,) (l - x 2)w'jr (29)
i

By using Taylor series decomposition and the
steepest descent method we can receive the adaptive
training ratę:

- x,)W

/=1

(30)

Let’s defme the expression for the modification of the
weights W Then:

3 £ _ dE dxi dS,
dw\ dxi Э 5 , c h ł ' ,

= (x, - x,)(1 - x,')yt (31)

By using Taylor series decomposition and the
steepest descent method we can receive the adaptive
training ratę:

- х ,) 2(1- х 2) * Ii=l_________________

(i > 2)ż(*< --*/)2(i- ^ ') 2I <=l

(32)

Then the modification of weight connections W ' is
as follows:

w; {i + 1) = w-j, (0 - a(t)(x t - x,)(1 - x)) y f . (33)
Thus at the first stage of the training the weights of
the inverse layer w . and p - first principal

Let L be the quantity of input pattems. The
algorithm of sectioning training consist of the
following steps:

1. Random ly initialization of weights.
Choice of the minimum total mean-square error
Em.

6. Proposed algorithm

2. Cosequently L of patterns enter the
neural network inputs. By this for each pattem
only a feed-forward transformation of data is
performed. As a result of the given stage the set
of the compressed images Y is defined which
will be used at the next stage of the algorithm.

3. Only the inverse layer is considered. As
the input information the values Y are used
which are defined on the previous step of
algorithm. As the target pattems of the inverse
layer the vector of input data X is used. The
following sequence of operations is performed:

3.1. For L pattems Y weights update
using the expression (18) for linear or (33)
for nonlinear neural networks.

components Уj are calculated.
At the second phase the weights of the forward

layer are calculated, where the values Y are used as
target outputs. For this purpose it is necessary to
minimize the mean-square error (equation 6).
By using the gradient descent method we can get:
dE' dE' dy dSj -

1 1 ' ' '
By using Taylor series decomposition and the
steepest descent method we can get the adaptive
training ratę:

a{l)= -n• _------------------------- (35)
(Х*,2Ш Т , - Т ,) 2(1- Т ,2)2

;=1 j - 1

Then

3.2. For L pattems Y outputs update
of the hidden layer using expression (16)
for linear or (29) nonlinear neural
networks.

3.3. The steps 3.1 and 3.2 are repeated,
until the total mean-square error of an
inverse layer becomes smaller than the
given Em.

4. The modification of the weight of the
forward layer is performed according to
expression (22) for linear or (36) nonlinear
neural networks. For this purpose the input
patterns consequently enter at the network and
there is only forward transformation of the
information for each pattem. The values Y
obtained on the previous step of algorithm are
used as the target data.

wit (t +1) ~ w,j (0 a (0 (У i У ,)0 Уj)x i ■ (36) 5 The step 4 proceeds untill the total mean-
square error of the forward layer becomes
smaller than the given one (E m).

22

Figurę 2. Fragments of the test image(at the
top) and decompressed image (at the down).

For defmition of weights the normalized training
ruie can be used.

By using this algorithm it is possible to train the
nonlinear recirculation network for the compression
of the data. The experiments have shown that the
offered algorithm is morę effective in comparison
with the usual ones [5-7].

Figurę 3. Diagrams of the variation of the
total square error during training:
a) sectioning training; b) back-propagation
algorithm; c) cumulative delta rule.

7. Experim ents

We have applied the proposed algorithm to the task
of data compression. In the first experiment we
illustrate the application of our results for the
compression of human faces. In the second
experiment our algorithm is used for the compression

23

Table 3. Comparison of different training methods.
Training method Number of

tests
Number of
successful
tests

Number of
failure1 tests

Average
number of
iterations

Average time
of training,
sec.

Cumultative delta
rule with constant
steps

20 3 17 2,07E4 27,4

Back propagation
algorithms with
constant steps

20 14 6 3,09E3 41,2

Sectioning
training with
constant steps

20 20 20 899 1,7

Sectioning
training with
adaptive steps

20 17 3 19,2 0,0412

of the real array. The results of the experiments are
discussed.

7.1. Image compression

The recirculation neural network was tested for
image compression. The standard color testing image
is 256x256 with 24 bit/pixel. Both the training and
test sets contain 16384 patterns. The neural network
consisted of 12 input neurons and 6 hidden neurons.
One byte of the information (real and normalized
number) enters each network input. The hyperbolic
tangent is used as the activation function. The
diagrams of the variation of the total square error
during the training are shown in figurę 3. These
diagrams show that the sectioning algorithm has the
smallest time complexity. As can be seen that the
sectioning training algorithm has good stability in
comparison with the traditional algorithms.
Fragments of the test image and the decompressed
image are shown in figurę 2.

7.2. Real array compression

For the analysis of the abilities of our training
method we tested recirculation neural network for
compression of the real arrays. In this tests we used
different real arrays as the input data. The example of
one of them is presented in table 1. Table 2 shows the
compressed array after neural network training. In
this case we use neural network with 4 input neural
elements and 2 hidden ones. Also the hyperbolic
tangent was used as the activation function. The total
main square error for a successful test must be less
than 0,01. Table 3 shows information about different
training methods for compression of the given real
array.

Tablel. Input array.
0,134 0,045 0,032 0,032
0,135 0,134 0,032 0,023
0,072 0,073 0,144 0,032
0,025 0,125 0,123 0,123

Table 2. Compressed array for sectioning training
with adaptiye steps._________________________

0,211 0,613
0,332 0,8

8. Conclusion

Our sectioning algorithm is an efficient tool for
reducing of the dimension of the data. This algorithm
will be used for training of the recirculation neural
networks. We are currently exploring other
applications of our approach.

9. Acknowledgments

This work is performed within the project INTAS 97-
0606 “Development of an intelligent sensing
instrumentation structure”. The authors are thankful
to the European Community for the financial support
of the project.

10. References

1. Jolliffe I.T. Principal Component Analysis. //
Springer-Verlag. 1986.

2. E. Oja, H. Ogawa, and J. Wangviwattana. Pca
in fully parallel neural networks. In Aleksander

1 if a total main square error reduced less than 1E-5 for 100 iteration.

24

&Taylor, editor, Artificial Neural Networks,2,
1992.

3. T.D. Sanger. Analysis of the two-dimensional
receptive fields learned by the generalized
hebbian algorithm in response to random input.
Biological Cybemetics, 1990.

4. C. Fyfe and R. Baddeley. Non-linear data
structure extraction using simple hebbian
networks. Biological Cybemetics,
72(6):533{541, 1995.

5. Cottrell G., Munro P., Zipser D. Image
compression by back-propagation: a
demonstration of extensional programming //

Tech. Rep. N.TR8702.-LISCD: Institute of
Cognitive Sciences-1987

6. Hinton G., McClelland J. Learning
Representation by Recirculation // Proceedings
of IEEE Conference on Neural Information
Processing Systems.-1989.

7. Cottrell G., Munro P., Zipser D. Learning
Internal Representation from Gray-Scale
Images: An Example of Extensional
Programming // Proceedings 9th Annual
Conference of the Cognitive Science Society -
1987.-P.461-473.

25

