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Abstract
Unsupemised learning is the great promise o f 

the futurę. In such training the network is provided 
with inputs but not with desired outputs. 
Unsupemised learning is used for the principal 
component networks. This paper describes a nerw 
method for training o f the recirculation networks. 
Such method is called a sectioning learning. It is 
characterized by smali training time and stability o f 
training.
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1. Introduction

As it is known from statistics[l] the Principal 
Component Analysis (PCA) is the basie tool to 
reduce dimension by eliminating redundant variables. 
Such transformation from the n -dimensional to the 
m -dimensional vector equals the concatenation of 
the first m  eigenvector of the correlation matrix of 
the input signals. In this procedurę the input space is 
rotated in such a way that the output values are as 
uncorrelated as possible and the energy or variances 
of the data is mainly concentrated in a few first 
principal components.

The principal component networks 
(recirculation networks) use the various variants of 
unsupervised learning. So many papers are based on 
Hebbian learning [2,3,4]. Such learning rule is the 
equivalent to the Principal Component Analyses. 
Other authors [5,6,7] have used the backprogation 
algorithm or cumulative delta rule. However these 
algorithms have excessive training times and lack of 
convergence to an acceptable solution. There is no 
guarantee that the learning will be a success.

This paper describes a new method for training 
the recirculation network. Such method is

characterized by smali training times and stability of 
training. Various numerical experiments are used to 
illustrate the potential of the suggested method.

2. Architecture

Recirculation networks are characterized both 
feed-forward у  = f  (x )  and feed-back X = / (y ) 
transformation of the pattems. Such networks are 
used for compression (feed-forward transformation) 
and decompression (feed-back transformation) of the 
data. The architecture of the recirculation neural 
network is shown on Fig.l. It consists of three layers. 
The input units receive data from outside and 
distribute these data to hidden units. The hidden units 
perform the compression of the input data X  :
Y = F(WX) (1)
The units in the output layer are meant for 
decompression of the data of the hidden layer:
X  = F(W'Y) , (2)
where W is the weight matrix; X  is the input vector;
Y  is the output vector of the hidden layer; X  is the 
decompressed vector; F  is the activation function.

w Y w'

Figurę 1.
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One сап see in Fig.i, that recirculation network has 
two weight layers, called the forward and inverse 
layers. The purpose of the learning is to reduce the 
error between the decompressed vector and the input 
vector.

3. Background and motivation

4. Linear network

Such networks use a linear activation function 
and perform the linear compression of a data set. 
Then the outputs of the forward layer are as follows

•У, = ! > / , * , .  (*)

The proposed method involves two separate 
phases of the training. At the first phase the 
definition of the weight matrix W 'and  principal
components Y for minimization of the total sąuare 
error between the decompressed data and the original 
data set is performed. For this purpose it is necessary 
to minimize the following eąuation:
\X - fVY\  —» min (3)
It is equivalent to the minimization

l  *-l /=1
(4)

where L is the ąuantity of the input data. 
By this

X, (5)

where p  is the dimension of the hidden layer and 
p  < n. For the minimization of the eąuation (5) the 
method of steepest descent can be used. As a result 
the weights w ' of inverse layer and principal

components у  are defmed.

At the second phase the weight matrix W  of 
the forward layer is determined. As the target outputs
the vector Y is used, which has been obtained 
previously. Then the aim of the training at the second 
phase is to minimize the following expression:

where j  = l , p .
The outputs of the inverse layer are given by

(9)
/=1

where / =  1,77 .
The learning problem at the first phase can be 
formulated as: how do we compute Дм/ ( / )  and

Aу (t) in order to minimize the total mean-square

error between the decompressed data X  and the 
original data set X  (eąuation 4)? Let's examine the
definition of the vector Y  for the minimization of 
the eąuation (4). For this purpose the gradient 
descent method is used. Then the learning rule is

Э К
y i (t + \) = y j ( t ) - a ( t ) - — - ,  (10)

ćy.it)

where a } (t) is the adaptive training ratę for neuron 

j  of the hidden layer.

The error E is defmed by the expression:

K = r  £ c ? i  -# » )* •
i  /=i

Then the error derivate is
ЪЕ ЪЕ Ъх, 

дх, ду,
= X wji( X i-X ,)

(П)

( 12)

I  к-1 /=1
where

y , = F i wox ,
i=i

(6)

(7)

Theorem 1. The adaptive training ratę «  .(/) is
defmed by the following expression:

CCj(t) =
1

X(Wy/(0 ) 2
(13)

The method of steepest descent we will use for 
minimization of the eąuation (6). Such approach 
permits to train the inverse and forward layers 
separately. Let’s consider the training rules for linear 
and nonlinear networks.

Proof. In order to compute the training ratę tt (t)
we will use the method of the steepest descent. From 
this follows that

f
a l (t) = m m \ E ( y l(t)-ccJ(t)

dE ]

Эу;( Oj
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The activation values of element i can be written as:

*i 0 + !) = 4  (yj (0 -(XjYj ) + I  щ у к (t)
k*j

After modifications we have 
Xi(t + l) = x i ( t ) - a j yjw 'jl 
The error function for a pattem

^ /-i
Then the derivate is 
dE 

da
= 1  (* ,(0 -X, - aJy jw'y)* (-7/w',)=0 (14)

Now we can determine the adaptive ratę. 

From equation (14) follows that:

yja ,  =

5 » » 1
i=i

It may be noted, that

(15)

da ,
From this follows that the equation (15) 

minimizes the error function. Thus the learning ratę
is adapted to connection weights w':j.
The learning rule is

У i
y j( t+ D  = y j ( . t ) - - (16)

f
/=i

Now we have to determine the learning rule for 
connection weights w'u . In accordance to the 
gradient descent method

dE
w' (t + \) = w ' ( t ) - a ( t )  . (17)

dWj, (t )

where a(t) is adaptive learning ratę for inverse 
layer.
In this case we can get that 
и ' (t + 1) =  и / ( t) -a(l ) fx ,  - X, ) y , . (18)
The learning ratę can be defmed by analogy with 
theorem 1. Then

a { t)  = — ^—  (19)

I ^ a(0
7=1

As can be seen, the learning ratę is adapted to 
every pattem Y .

At the second phase it is necessary to compute 
A (t) in order to minimize the total mean-square

error between the data Y and the target data set Y 
(equation 6). Then we have that

dE'w, {t +1) = w (/) - a ( t )  - — — . (20)
OWy(/)

The error function for a pattern

l  7=1

(21)

where у ,, j  = l , p ,  are the first principal 
components.
By using the gradient descent method we can get that
Wy (/ +1) = w(/ ( 0 -a ( t ) (y j  -  y ; )x, (22)
The learning ratę is

a(t) = —

.7=1

(23)

5. Nonlinear networks

The nonlinear activation function is used for 
such network. By using nonlinearity of better results 
can be achieved in comparison with the linear 
function. Let’s consider the training rules for 
nonlinear networks. As the activation function we 
will use a hyperbolic tangent. Then the j th output of 
a forward layer is given by 
У , = th (S j) ,  (24)

where s j = ^ w tjx t
i=i

where j  = \ , p .
Accordingly for an inverse layer
x, = th (s ,)

s , = i w „  У i
7=1

(25)

(26) 

(27)

Let's examine the training rules. At the first 
phase it is necessary for each input vector X to 
define such vector у , which will ensure the 
minimization of expression (4).
The error derivate is equal to

Э£ дЕдх ds, — . . _ 7. , /-«ох
dy, Эх, Эл, dyt

Then



y j(t + l) = yJ( t ) - a J(t)'£(x, - x ,) ( l - x 2)w'jr  (29)
i

By using Taylor series decomposition and the 
steepest descent method we can receive the adaptive 
training ratę:

-  x, )W
__________

/=1

(30)

Let’s defme the expression for the modification of the 
weights W Then:

3 £  _  dE dxi dS, 
dw\ dxi Э 5 ,  c h ł '  ,

= (x, -  x, )(1 -  x,' )yt (31)

By using Taylor series decomposition and the 
steepest descent method we can receive the adaptive 
training ratę:

- х , ) 2(1- х 2) * Ii=l_________________

( i > 2)ż(*< --*/)2( i- ^ ' ) 2I <=l

(32)

Then the modification of weight connections W ' is 
as follows:

w; {i + 1) = w-j, (0  -  a(t)(x t -  x, )(1 -  x) ) y f . (33) 
Thus at the first stage of the training the weights of
the inverse layer w  . and p  - first principal

Let L be the quantity of input pattems. The 
algorithm of sectioning training consist of the 
following steps:

1. Random ly initialization of weights. 
Choice of the minimum total mean-square error 
Em.

6. Proposed algorithm

2. Cosequently L of patterns enter the 
neural network inputs. By this for each pattem 
only a feed-forward transformation of data is 
performed. As a result of the given stage the set 
of the compressed images Y is defined which 
will be used at the next stage of the algorithm.

3. Only the inverse layer is considered. As 
the input information the values Y are used 
which are defined on the previous step of 
algorithm. As the target pattems of the inverse 
layer the vector of input data X  is used. The 
following sequence of operations is performed:

3.1. For L pattems Y weights update 
using the expression (18) for linear or (33) 
for nonlinear neural networks.

components Уj  are calculated.
At the second phase the weights of the forward 

layer are calculated, where the values Y are used as 
target outputs. For this purpose it is necessary to 
minimize the mean-square error (equation 6).
By using the gradient descent method we can get: 
dE' dE' dy dSj -

1 1  ' ' '
By using Taylor series decomposition and the 
steepest descent method we can get the adaptive 
training ratę:

a{l)=  -n ......• _------------------------- (35)
(Х*,2Ш Т , - Т , ) 2(1- Т ,2)2

;=1  j - 1

Then

3.2. For L pattems Y outputs update 
of the hidden layer using expression (16) 
for linear or (29) nonlinear neural 
networks.

3.3. The steps 3.1 and 3.2 are repeated, 
until the total mean-square error of an 
inverse layer becomes smaller than the 
given Em.

4. The modification of the weight of the 
forward layer is performed according to 
expression (22) for linear or (36) nonlinear 
neural networks. For this purpose the input 
patterns consequently enter at the network and 
there is only forward transformation of the 
information for each pattem. The values Y 
obtained on the previous step of algorithm are 
used as the target data.

wit (t +1) ~ w,j (0  a (0 (У i У , )0 Уj )x i ■ (36) 5 The step 4 proceeds untill the total mean-
square error of the forward layer becomes 
smaller than the given one ( E m).
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Figurę 2. Fragments of the test image(at the 
top) and decompressed image (at the down).

For defmition of weights the normalized training 
ruie can be used.

By using this algorithm it is possible to train the 
nonlinear recirculation network for the compression 
of the data. The experiments have shown that the 
offered algorithm is morę effective in comparison 
with the usual ones [5-7].

Figurę 3. Diagrams of the variation of the 
total square error during training:
a) sectioning training; b) back-propagation 
algorithm; c) cumulative delta rule.

7. Experim ents

We have applied the proposed algorithm to the task 
of data compression. In the first experiment we 
illustrate the application of our results for the 
compression of human faces. In the second 
experiment our algorithm is used for the compression
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Table 3. Comparison of different training methods.
Training method Number of 

tests
Number of
successful
tests

Number of 
failure1 tests

Average 
number of 
iterations

Average time 
of training, 
sec.

Cumultative delta 
rule with constant 
steps

20 3 17 2,07E4 27,4

Back propagation 
algorithms with 
constant steps

20 14 6 3,09E3 41,2

Sectioning 
training with 
constant steps

20 20 20 899 1,7

Sectioning 
training with 
adaptive steps

20 17 3 19,2 0,0412

of the real array. The results of the experiments are 
discussed.

7.1. Image compression

The recirculation neural network was tested for 
image compression. The standard color testing image 
is 256x256 with 24 bit/pixel. Both the training and 
test sets contain 16384 patterns. The neural network 
consisted of 12 input neurons and 6 hidden neurons. 
One byte of the information (real and normalized 
number) enters each network input. The hyperbolic 
tangent is used as the activation function. The 
diagrams of the variation of the total square error 
during the training are shown in figurę 3. These 
diagrams show that the sectioning algorithm has the 
smallest time complexity. As can be seen that the 
sectioning training algorithm has good stability in 
comparison with the traditional algorithms. 
Fragments of the test image and the decompressed 
image are shown in figurę 2.

7.2. Real array compression

For the analysis of the abilities of our training 
method we tested recirculation neural network for 
compression of the real arrays. In this tests we used 
different real arrays as the input data. The example of 
one of them is presented in table 1. Table 2 shows the 
compressed array after neural network training. In 
this case we use neural network with 4 input neural 
elements and 2 hidden ones. Also the hyperbolic 
tangent was used as the activation function. The total 
main square error for a successful test must be less 
than 0,01. Table 3 shows information about different 
training methods for compression of the given real 
array.

Tablel. Input array.
0,134 0,045 0,032 0,032
0,135 0,134 0,032 0,023
0,072 0,073 0,144 0,032
0,025 0,125 0,123 0,123

Table 2. Compressed array for sectioning training 
with adaptiye steps._________________________

0,211 0,613
0,332 0,8

8. Conclusion

Our sectioning algorithm is an efficient tool for 
reducing of the dimension of the data. This algorithm 
will be used for training of the recirculation neural 
networks. We are currently exploring other 
applications of our approach.

9. Acknowledgments

This work is performed within the project INTAS 97- 
0606 “Development of an intelligent sensing 
instrumentation structure”. The authors are thankful 
to the European Community for the financial support 
of the project.

10. References

1. Jolliffe I.T. Principal Component Analysis. // 
Springer-Verlag. 1986.

2. E. Oja, H. Ogawa, and J. Wangviwattana. Pca 
in fully parallel neural networks. In Aleksander

1 if a total main square error reduced less than 1E-5 for 100 iteration.

24



&Taylor, editor, Artificial Neural Networks,2, 
1992.

3. T.D. Sanger. Analysis of the two-dimensional 
receptive fields learned by the generalized 
hebbian algorithm in response to random input. 
Biological Cybemetics, 1990.

4. C. Fyfe and R. Baddeley. Non-linear data
structure extraction using simple hebbian 
networks. Biological Cybemetics,
72(6):533{541, 1995.

5. Cottrell G., Munro P., Zipser D. Image 
compression by back-propagation: a 
demonstration of extensional programming //

Tech. Rep. N.TR8702.-LISCD: Institute of 
Cognitive Sciences-1987

6. Hinton G., McClelland J. Learning 
Representation by Recirculation // Proceedings 
of IEEE Conference on Neural Information 
Processing Systems.-1989.

7. Cottrell G., Munro P., Zipser D. Learning
Internal Representation from Gray-Scale
Images: An Example of Extensional
Programming // Proceedings 9th Annual 
Conference of the Cognitive Science Society -  
1987.-P.461-473.

25


