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Abstract

ln this paper the features o f neural networks 
using for improve o f measurement accuracy of 
physical ąuantities by sensor drift prediction are 
considered. There is use a techniąue o f data volume 
increasingfor training o f predicting neural network by 
using o f separate approximating neural network.

1: Introduction

The new technologies require the greater ąuantity 
of the measuring information that has resulted recently 
in significant development of its reception means. 
High accuracy and significant information processing 
possibilities characterize the modem measuring 
systems. However in majority of cases is rationed 
(installed) the measurement error of output sensor 
signal instead of physical ąuantity. In the last decades 
the accuracy of sensor signal measurement has 
increased in dozens of times. However the analysis of 
[1] and [2] has shown that the sensor error has 
insignificantly decreased for this time. For example, at 
temperaturę measurement by Honeywell PtlOO sensors 
[1] and błock Hydra 2625A Fluke [3] a ratio of errors 
of measuring channel elements morę than flfty. The 
development of computing means has allowed 
considerably to increase a degree of information 
Processing (to use complex mathematical methods of 
Processing and to operate with knowledge of 
measurement object). But majority of work, which 
devoted to sensor signals processes [4, 5, 6, 7], 
consider ąuestions that not connected with improving 
of measurement accuracy of physical ąuantity at 
measuring systems exploitation. In the works [8,9] 
using of artificial intelligence methods for improving 
of measurement accuracy of physical ąuantities are 
discussed.

In this work the methods predicting of sensor drift 
by artificial neural network system are considered.

2: General Structure

Intuitively considering intelligence in signal 
Processing systems, the existence of a central 
computational processing unit is obvious. The higher 
the number of signals (here sensor devices), the grater 
the computational power needed and heavier the Ioad 
of signal transmission through the system. A 
preferable structure is of a distributed signal 
processing system, were sensor device(s) information 
is being processed in an intermediate level and only 
"useful" information is transmitted to a higher 
hierarchical level. Considering the sensor devises as a 
sensors (actuators) and sensor interface circuits and the 
need of a human-machine interface, a generał structure 
of a multi-sensory, multi-modal system is presented in 
Fig. 1. The realization of such structure is feasible 
under the premise that the computational power hidden 
in the processing levels is adeąuate to perform the 
operations, which will give to the system four basie 
properties: adaptability, accuracy, reliability and 
universality.

/. Accuracy
An accurate system must be able to compensate 
systematic (offset, gain, nonlinearity, cross 
sensitivities), systematic drift and random errors 
originated from sensors characteristics or system 
parameters. The ability of dealing with missed data 
due to random (transient or intermittent) faults is also 
desirable.

2. Universality
The universality system must provide following 
possibilities:
• Application of ISIS for the solving of various 

problems. It means the ISIS application for 
measurement of wide number of physical 
ąuantities. The modular structure of wide 
operating hardware and universal software are 
used for this purpose;

• The possibility of ISIS easy inereasing. This ISIS 
property means the development and wide use of 
the hardware and software modular libraries. To
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Figurę. 1. General Structure of ISIS

add the new interface sensor circuit it is sufficient to 
have its driver. The operating program of middle level 
node is compiled at the high level taking into account 
all necessary drivers, and it is recorded to the node in 
remote reprogramming modę.

2.1: Distribution of operations in system levels

Having defined the system's main principles, the 
next step in model ing its generał structure is the 
defmition of all possibly reąuired operations and their 
distribution at the various levels. Following the 
structure of Fig. 1 bottom-up such a description is 
madę in the rest of the paper.

2.1.1: Physical level.
Physical level includes the sensors/actuators 

whose inputs are the physical quantities and outputs 
are signals of voltage, current or time (period or 
frequency in a form of pulses). In the case of actuators, 
excitation signals provided by the lower level is 
needed. The sensors interface circuit (or MM) should 
provide the connection of different sensors and are 
classified according to sensors signals, but not 
according to sensors types.

2.1.2: Lower level.
The sensor interface circuit must receive the 

sensor's signai and manipulate it to provide a digital 
output signai comprehensible by the middle level. 
Possible operations executed here are:
• Amplification.
• Filtering (DC rejection, separation of common 

modę from differential modę signai etc.).
• Analog to digital conversion;
• Switching.

Also, when many similar sensors (physical 
redundancy) are used, they can share the same 
interface circuit or parts of it by multiplexing. 
Excitation signals to actuators are supplied by the 
circuitry of this level. So, the wiring required between 
physical and lower layer is for data and actuator 
excitation signai transferring. Finally, as to the 
adaptability rule, a digital to analog conversion of the 
control signals provided by the higher hierarchical 
(middle) layer might be required. The lower level must 
provide digital to analog conversion for creation of 
sensor activaton signai (for example, set of working 
current RTD). Also it is sufficient to have some 8-bit 
DAC, its output voltage can be measured by 16-bit 
ADC. The universality rule requires the possibility of 
different types of sensor interface circuit usage in ISIS. 
They must provide interaction with maximum number 
of sensors.

2.1.3: Middle level
This layer must carry out three important tasks, 

control the lower level units, collect and process 
information from them and communicate with the 
upper layer. Such performance can be accomplished 
by the use of either a high performance
microcontroller (|iC) or a Digital Signai Processor 
(DSP).

According to adaptability and reliability rules, 
middle level must control sensor and sensor interface 
circuit modes and ranges (adjusted to improve 
sensitivity) as well as the multiplexing (depending on 
desired data ratę) of the various sensor devices to the 
sensor bus. This leads to a bi-directional sensor bus for 
digital data and control signals transferring. Since 
either parallel or serial bus can be applied, the choice 
is madę by compromising between data ratę and
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wiring reduction. However latest pC and DSP include 
high-speed synchronous and asynchronous serial ports, 
making serial bus selection extremely appealing.

Error compensation and data validation should de 
performed in this level. For systematic drift errors, 
numerical (Iook-up tables) or analytical (polynomial, 
exponential etc. model fitting) compensation can be 
applied. Filtering (including integration and averaging) 
and proper design of the system can reduce random 
errors. Data validation is ąuite a complex procedurę 
and various methods can be applied. Usually, fault 
detection is achieved by the use of either physical or 
analytical redundancy. The combination of data from 
similar sensors or sensor’s mathematical model can 
generate residuals, analytical functions that accentuate 
in the presence of fault. When the values of residuals 
exceed defined thresholds, a fault detection control 
signal is generated and transmitted to upper level. A 
morę advanced implementation would use abstract 
computing techniques for the generation of
characterized fault detection signals, depending on the 
fault’s source and duration as well as the contribution 
of fault to unreliability of data.

An other appealing method of error
compensation and data validation would be the use of 
Artificial Neural Networks (ANNs). The drawback of 
the realization of ANNs in this layer of the system is 
the computational power reąuired in the training 
phase. Feasible solution could be the execution of the 
training phase at the upper layer and the transferring of 
the computed neuron synapsę weights down to the 
middle layer. Application of ANN metrologies will be 
further discussed on the upper level session.

Communication between middle and upper layer 
includes the transferring of data and status signals 
upwards and data and control signals downwards. 
Standard protocols like RS232, RS485 or IEEE1451 
can be applied. The DataBus should provide the 
following reąuirements:
• The network topology is the common bus with the 

branching possibilities;
• The total network length should be not less than 

two kilometers;
• The possibility of the additional users connection 

to the network without its tuming off;
• The cheapness cost of cable and network 

accessories;
• The maximum usage of already existing 

eąuipment.

2.1.4: Upper level
The main computational unit of the system 

collects and combines data and status signals from the 
various information processing devices and makes the 
abstract application-depended decisions. Relating to 
system’s adaptability and reliability, self-testing and 
auto-calibration should be performed here.

Self-testing refers to the intelligent function of 
monitoring each and every sensor device and detectmg 
of any unreasonable behavior. In case of such 
detection, attempt of (auto) calibration or isolation of

the device while signaling for maintenance or 
replacement should be performed.

Auto-calibration is the system’s adaptation 
mechanism to system devices and environmental 
parameter changes. Although, as for systematic drift 
errors, numerical or analytical compensation can be 
applied, the need of memory/computational power will 
dramatically increased in proportion to the system’s 
complexity. This is a case where the use of ANNs 
capable of altering middle layer’s compensation 
characteristics is preferable. For numerical or 
analytical compensation, new look-up table elements 
or eąuation coefficients can be calculated. For ANN 
compensation, auto-calibration is equivalent to ANN 
training. Finally, ANNs should identify and maintain 
the optimal (or nearly optimal) of characteristic 
parameters, like residual thresholds in data validation.

3: Neural Network Using for Decreasing of 
the Sensor Errors

The sensor error is determined by initial spread of 
its conversion characteristic (at manufacturing) and by 
its drift in operating conditions [2]. First component is 
corrected relatively easy. The drift of the majority of 
the sensors is characterized by complex temporary 
functions where its parameters depend on operating 
conditions [10]. Thus the drift prediction after results 
of preliminary researches of particular type of sensors 
provides sufficient reliability of accuracy improving 
only in separate cases. The reliable improving of 
accuracy irrespective of operating conditions is 
provided by periodic testing of sensors with standard 
sensor or by using of special calibrator for sensor’s 
calibration. The highest accuracy is reached at testing 
or calibration on operating place, but the operations 
that realize these methods are reasonably laborious. 
The decrease of costs on their realization is possible by 
decrease of their fulfillment frequency at the expense 
of high-quality prediction of sensor drift during inter- 
testing interval.

It is necessary to notę that the functions of sensor 
drift usually have individual character and have 
significant casual component [11]. Prediction of such 
functions is reasonably a complex problem. For its 
solving it is offered to use neural networks that are 
optimum for problems of such kind [12]. It is defined 
by adaptive properties of neural networks at the 
expense of its self-training. It is known [13] that the 
quality of neural networks training in a strong degree 
depends on using data volume. However the aspiration 
to increase the inter-testing interval at the expense of 
high-quality prediction of sensor drift proportionally 
reduces numbers of data for neural network training. 
The method of artificial increasing of data volume is 
offered by using of approximating and predicting 
neural networks. The first network approximated the 
real data and permits to generate data volume which 
sufficient for training of predicting neural network. 
The necessity of two neural networks using is defined 
by the different requirements to their properties and 
their internal structure.
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Figurę 3. Sensor error prediction scheme.

The objective of the neural system is to predict the 
sensor error for any moment of time:
т > r„ andr e [r1;r„ ] . For achievement this goal is 
necessary to solve the following tasks:

1. Given a finite seąuence
А1(г1),Д2(г2),.--,Ал(гл), find the meaning of error
A for any moment time r, e [rl5rn J :

r ll ^11>Г12 ‘ * Д 12 

T2\ Д 21>т 22 Д 22

Г и-1,1 Д л-1,1>Г л-1,2 ~ * Д л-1,2

2. Given a finite seąuence for any moment of 
time те[т1гт„], find the continuation the time series

Д л+1 ( Г л+1)>Д л + 2 (Г л+2 )>■■•

Such approach permits to predict the sensor errors 
for any moment of time.

The common architecture of the neural system is 
presented on Fig. 3. It consists of two neural modules. 
Multilayer perceptron (MLP) or counter propagation 
neural network (CPNN) can use as the first module. It 
is meant for the approximation of the function 
A -  f ( r ) . In result is obtained the training set for the

second module. The recurrent neural network is used 
as the second module. It is meant for predicting sensor 
errors.

The use of this neural system involves several 
separate phase, which have to be follows:

1. The leaming of MLP or CPNN, in which 
suitable training set is used to train the neural 
networks. As far as the training algorithm is 
concemed, the backpropagation or counterpropagation 
algorithms can be applied. A morę detail information 
about application of this algorithms will be gave 
below.

2. The validation phase for MLP (CPNN) [8]. In 
this case the neural network’s generalization ability is 
verified by means of other data. Also the neural 
network accuracy is estimated.

3. The production phase for MLP (CPNN). In 
result can be obtained the training set for the recurrent 
neural network.

4. The leaming of RNN. The previously obtained 
data are used for training of the RNN. As far as the 
leaming algorithms concemed, it will be gave below.

5. The validation phase for RNN, which is 
performed same as previously.
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Figurę 4. The MLP architecture

6. The production phase for RNN, in which the 
sensor errors are defined for any moment of time 
r>r, ,

4.1: The MLP Architecture and Training for 
Approximation

As network architecture for approximation was 
accepted third-layered multilevel neural network 
containing one hidden layer of nonlinear units and a 
single output linear unit, as shown on Fig. 4. The 
output activity of the neural network is defined by 
expression:

У  =  £ » ,  ~ s 0 ( 1)
i= 1

where Nh - number of units of the hidden level, 
Л, - output activity of hidden units, j 0 - threshold for 
output unit, w,0 - weights from hidden input units i to 
the output unit. The output activity of the hidden units 
is defined as:

hj =g(w/,X/ +Sj) (2)

where x, is the input element, w,j - weights from 
input unit to hidden units j  and s , - thresholds of the 
hidden units. In hidden units is used sigmoid transfer

function, defined as g(x) = ((1 + e~x ) .The most 
popular training algorithm for multilevel perceptrons is 
backpropagation. This algorithm is based on gradient 
descent method and consists of fulfilment of an 
iterative procedurę of updating weights and thresholds 
for each training exemplar p o i  training set under 
following rule:

Awj(t) = - a dEpU) (3)

ASj(t) = - a
cEp{t)
A,(t)

(4)

ćEp(t) dEp(t)where ----- — , 4------' . gradients of error function
&j(t)

on training iteration /for training exemplar p , 
p e {1, P }, P is the size of the training set;

(5)

Yp(t) - network output activity on training iteration 
/ for training exemplar p , D& - desirable value of a 
network output for training exemplar p .  During 
training there is the reduction process of the total 
network error:

p
£(/) = ^ £ p(/) (6)

p =\

For improvement of network training parameters 
and removal defects of classical back propagation 
algorithm, connected with empirical selection of a 
constant training step, use the steepest descent method 
for calculation of an adaptive training step, according 
to it:

bWjj(t) = - a p(t) dEp(t)

As (t) = - a p( t ) Ę ^ ,CSj(!)

<*P ( 0  =  m i n { £ p  (w tJ ( /  +  l ) , S j  ( /  + 1 ) ) }

(7)

where a p(t) - step value, adapted on each training 
iteration t for each extemal vector p .

According to expression (7) the formulas for 
calculation of adaptive step for sigmoid and linear 
functions of activation were obtained.
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For linear transfer function the adaptive training 
step is defined by expression:

a p (t) = ~-------'--------  (8)
£ (h ? ( t) )2 +l

where hf{t) - elements of input activity of the linear 
unit at the time t for the training vector p .

For sigmoid transfer function adaptive training step 
is computed as:

5 > ,o ) 2* f(oa-% (0)
£ » ' ■ ( / ) =  4  , x ^ ------------- ----------------------- ( 9 )

1 + ( x f f  & , „ , „ ,

v'“'
where wi0{t) - weights from hidden units to output
unit, adapted on training iteration t .

At training the network is actual problem of 
initialization of neural network units weights. The 
speed, accuracy and stability of training depends on it 
in many respects, especially if is used training sets 
with analogue values. Usually initialization consists of 
appropriation to weights and thresholds of units of the 
random evenly distributed values from some rangę: 
w,у -  R(c, d), Sj = R(c, d ) . Upper and Iow bounds of
this rangę is defmed empirically. In our paper the 
following procedurę of delimitation of a rangę for 
sigmoid function is offered:

Vt к ‘i In
( * /Г + 1 %1-c

(10)

wid = *t__
(*/)' +1

(U)
where x t is expectation of the external activity on the

MLP input, D0 is expectation of the external activity 
of desired output of the network, wlc, wId are bounds 
of the weights rangę, c, d are upper desired value and 
Iow desired value of the output activity for nonlinear 
units.

For linear output unit we proposed to calculate 
parameters wlc, wld as:

Nuc* + 1
-A, ( 12)

w,d =■Nhd + I
(1 3 )

The weights and thresholds of the units are 
initialized as:

W,i = R{v>ic,Wld)
(14)

Sj =R(wic,wid)
For stabilization of the training procedurę is used 

the following algorithm of level-by-level training:
1) Calculate upper and lower bounds of the weights 

rangę, using expressions (10), (11) for hidden units 
and expressions (12), (13) for output unit. Update 
weights and thresholds according to expressions (14).

2) For the training vector p  calculate output

activity Y0P (t) of the neural network.
3) Calculate an error of an output unit.
4) Update weights and thresholds only for the 

output unit according to expressions (7), using 
adaptive step (8).

5) Calculate the error of units of the hidden level 
for the network with the updated weights for an output
level.

6) Update weights and thresholds of units of the 
hidden level, using adaptive step (9) for sigmoid 
transfer function.

The application of this algorithm has allowed to 
stabilize learning process of the recurrent neural 
network with varied functions of activation and 
considerably to reduce time of training.

For simulation is used the time series of sensor 
errors, described by function / ( r ) =  It +sin(3r). 
Computing experiments for sensor error
approximation by MLP shown in the Table 4.1.

Training set size 80
Number of hidden units 6
Parameters c, d  (for hidden units) 0.1, 0.9
Total mean sąuare training error 1.92*10'3
Number of approximation steps 195
Approximation error in percentage 1.89%

Table 1. Sensor error approximation results 
by MLP

One can see on the table 1, that MLP approximate 
the function with smali error.

Let’s examine the CPNN for approximation.

4.2: The CPNN Architecture and Training for 
Approximation

The architecture used of CPNN is represented in 
the Fig 5. It consists of three layers. The hidden layer 
consists of Cohonen neurons (not shaded circles) and 
nonlinear neurons (shaded circles), which amount is 
eąualed among themselves. Such neurons will derivate 
pairs, and each Cohonen neuron in a pair has 
horizontal connection with a nonlinear neuron, 
appropriate to it, as shown Fig. 4. Besides all neurons 
of a hidden layer are connected to output neuron, 
which has linear function of activation. Let's use 
seąuential numbering of pairs of neural elements. Let's 
designate through wdj and w/; accordingly weight
factors of Cohonen neurons and nonlinear neurons of 
the hidden layer. Then the output value hj of j  ’th
nonlinear hidden neuron can be defined as

hj = ^ j uuxi)  O 5)
where у } - output of a Cohonen neuron in j  -th pair
of neurons, F - hyperbolic tangent. The output value 
of j  -th Cohonen neuron is eąualed to one, if this 
neuron is a winner, and zero otherwise. For definition 
of a neuron - winner the Euclidean distance is used:
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X,

Figurę 5. The counterpropagation neural network architecture

Dj = \X p -W Ą  (16)
In the correspondence with it:

\ \ , i f D k = m m \ x P - w \
Ук= \ 1 1 (17)

[0, otherwise
The weights from nonlinear neurons of the hidden 

layer to output neuron are equaled to one.
If a neuron - winner in the hidden layer has number 

k, the output of the neural network is eąual:
Y0 =vk +hk (18)

The amount m of neurons of the hidden layer is 
selected eąual:

m = P - 1 (19)
where P -size of the training set.

The training of CPNN is madę on the following 
algorithm.

1. The set-up a Cohonen weights by the empirical 
rule is madę:

where wtj - weight of the i -th of the Cohonen neuron, 

Xj - is i -th component of the training set ordered on 
increase, i =

2. Further in a cycle the set-up a weights of 
remaining neural elements is executed. On an input of 
the neural network values of the training set 
seąuentially move and the following operations are 
madę for each value:

• The value of an output of the neural 
network Yq and number A: of a neuron - winner 
of a Cohonen layer is calculated.

• The set-up of an appropriate neuron of the 
output layer is madę:

Avk(t) = -a(Y0P -D P )  (21)

where Dg - target value of CPNN normalized in 
a rangę [-1, 1], a -  0.01 - training step.

• The appropriate neuron of the hidden 
layer is set up:

Aulk (t) = -a(Y0p -  Dq ) ■ (1 -  (X  )2 )x f  (22)
3. The training total root-mean-square error is 

calculated:

£ =  ' (2 3 )
1  p = \

The steps 2 and 3 are repeated before stabilization 
of training error.

Computing experiments for sensor error 
approximation for various sizes if training set by 
CPNN shown in the table 2.

Training set size 80
Total inean square training error 1.587*10'5
Number of approximation steps 195
Approximation error in percentage 2.58%

Table 2. Sensor error approximation results 
by CPNN
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4.3: The RNN Architecture and Training 
for Time Series Prediction

As basie network architecture for prediction of the 
sensor error was accepted fully connected third- 
layered recurrent neural network containing one 
hidden layer of nonlinear units and a single output 
linear unit, as shown in the Fig. 6. The output activity 
of the neural network is defined by expression:

Yr = X  wioK ~ so (24)
/=i

where N h - number of units of the hidden level, A,' - 
output activity of hidden units at the moment r , s0 - 
threshold for output unit, wl0 - weights from hidden 
input units i to the output unit.

The output activity of the hidden units on the 
current moment r for training exemplar p is defined 
as:

N, /V,
h 'i = g Q ^ yv, jx '  + Щ ^ гА  + s t ) ( 2 5 )

1=1 k=I
where x[ is a i ’th element of the input vector x r , P 
is size of the training set, n  , - size of an input vector, 
Wy - weights ffom extemal units i to hidden units 
j , wkj - weights from hidden units к to hidden units

j  , h[~\t) - output activity of a hidden unit к for the 
previous moment of time r - 1, w0j - weight to the

hidden units from an output unit, Yr~l(t) - network 
output activity for the previous moment of time r - 1  

and s f - thresholds of the hidden units.
In this work we use two types for hidden units 

transfer function. At one case is used non-standard

logarithmic function g(x) - lnf (x + \lx2 +a)/yfa 1.

(a > 0). The choice by this transfer function is 
stipulated by that it is unlimited on all define area. It 
allows better to simulate and predict complex non- 
stationary processes. The parameter a defines 
declination of the activation function (see Fig 7). At 
other case in hidden units is used sigmoid transfer

function, defined as g(x) = ((1 + e~x) '
For logarithmic activation function the estimate of 

an adaptive training step can be received by the 
following expression:

/а 1 (н -уо)2(^(В ;(0)2 ^ а )
C -J----------------------------- ~

N,

where

X(wy0)2j(Bf(0)2 +a)

(26)

+ ̂ w kl{t)hpk -\t)+wQj{t)Yp-\t)+ sJ
k=\

is weighed sum of inputs of the hidden unit j  .
For standard sigmoid transfer function adaptive 

training step is computed as:

(
1 ( " , о ) 2 ( Л / ( 0 ) 2 ( 1 - Л / ( 0 ) 2
/=!

Figurę 6. The recurrent neural network architecture
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Figurę 7. The logarithmic activation function for various parameters a :
a) a -  1.0, b) a = 0.1, c) a -  0.01, d) a = 0.001

For adaptive initialization of weights and 
thresholds in RNN before training is used the next 
expressions:

1. For logarithmic activation function in the 
hidden units:

Vяес -yfae
■w N

2 J 5 k)2 +Nhc2 +Ъ^ +1
k=I

Vaed -  Jie~a

J j ix k)2+Nhd2+D2 + 1 
k=\

(28)

(29)

where xk is expectation of the extemal activity on

the к ’th inputs, D0 is expectation of the extemal 
activity of desired output of the network, wlc, wld are 
bounds of the weights rangę, c,d  are upper desired 
value and Iow desired value of the output activity for 
nonlinear units.

2. For sigmoid activation function in the hidden 
units:

w, -ln '  c ^
1 -  c

^ ) 2 +N hc2 + D 2 + l '
(30)

' ln
^ x k )2 + N hc2 + D 2 + 1

' d

1 - d
(31)

fc=i
3. For linear activation function in the output unit:

И,‘ “  w 2 ,N hc2 + 1
(32)

d щ
WM = ,2 , D0N frd +1

(33)

The weights and thresholds of the units are
initialized as:

w,j = R(w,c>w,d) 
sj = R{w,c>w,d)

(34)

For training of the RNN is used described above 
level-by-level training algorithm. For simulation were 
used the time series of sensor errors, taken fforn MPL 
(CPNN) approximation results. It size is 195 units. 
For training were used 105 units of this number. The 
training was carried out the method of the sliding 
window. For simulation two types of neural networks 
were used. One of them contained the sigmoid 
activation function of the hidden units. In other 
network the logarithmic function of activation of the 
hidden units with the parameter a = 0.01 was used. 
Both networks consist of 10 input units, 5 hidden 
units, 1 output unit. The prediction was carried out on 
90 steps forwards. For an estimation of the prediction 
results is used the mean sąuare predict error 
computed as:

Epr(L) = j ^ { m - x( l ) f  (35)
" i=\

where Y (/) - predict value for the step / , x(l) -
actual value of time series in the moment / , L -  total 
of prediction steps. The training both neural networks 
was characterized by high accuracy, stability and 
speed. The outcomes of training and prediction are 
reduced in the table 3.

Sigmoid
network
architect.

Logarith
mic

network
architect.

Number of inputs 10 10
Number of hidden units 5 5
Number of outputs 1 1
Parameters c,d 0.9, 0.1 4.2,-4.2
Parameter a - 0.01
Training set size 105 105
Total training error 3E-5 4E-5
Number of predicting 
steps

90 90

Mean square predict error 3.57E-5 1.19E-5
Predict error in percentage 4.34% 3.21%

Table 3. Sensor error prediction experiments 
by RNNs
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5: Conclusion

As it is visible, some operating performances of 
measuring engineering hinder direct use of neural 
networks for increase of an exactitude of measuring 
channels. However use of features of neural networks 
and organization of their correct interaction with the 
measuring system allow to overcome originating 
difficulties and to supply increase of an exactitude of 
a measurement for want of minor working costs. In 
this work the unique technology of forecasting of 
errors of gauges with use of a complicated neural 
system is circumscribed. The effective methods of 
neural networks training of different architectures are 
indicated. The computing experiments with 
hypothetical datas of errors of sensors demonstrate 
potential possibilities of application of this 
intellectual neural system in actual problems
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