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Abstract
One of the major paradigms for unsupervised learning in Artificial Neural Networks is Hebbian 

learning. The standard implementations of Hebbian learning are optimal under the assumptions of 
Gaussian noise in a data set. We derive e-insensitive Hebbian learning based on minimising the least 
absolute error in a compressed data set and show that the learning rule is equivalent to the Principal 
Component Analysis (PCA) networks’ learning rules under a variety of conditions.

1 Introduction
The basis of many unsupervised learning rules is Hebbian learning which is so called after Donald Hebb [9] 
who conjectured ”When ап axon of celi A is near enough to eicite a celi В and repeatedly or persistently 
takes part in firing ii, some growth process or metabolic change takes place in one or both cells such that 
A ’s efficiency, as one of the cells firing B, is increased.” This paper investigates a novel implementation of 
Hebbian learning

Neural nets which use Hebbian learning are characterised by making the activation of a unit depend on 
the sum of the weighted activations which feed into the unit. They use a learning rule for these weights 
which depends on the strength of the simultaneous activation of the sending and receiving neuron. These 
conditions are usually modelled as

Vi ~  (U
i

and Awij =  rjXjyi (2)

the latter being the Hebbian learning mechanism. Неге yi is the output from neuron i, Xj is the j th input, 
and Wij is the weight from xj to t/,-. r) is known as the learning ratę and is usually a smali scalar which may 
change with time. We see that the learning mechanism says that if Xj and у,- fire simultaneously, then the 
weight of the connection between them will be strengthened in proportion to their strengths of firing. 

Substituting (1) into (2), we can write the Hebb learning rule as

A w ^ -  ,« ,  £ > * * *  =  .! (3)
к к

It is this last equation which gives Hebbian learning its ability to identify the correlations in a data set.
Now it is well known that the simple Hebbian rule above is unstable in that repeated use causes the

weights to increase without bounds. Thus weight change rules which have an inbuilt decay term in them 
have been developed. Many of the most significant of these have been those developed by Oja and colleagues
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Figurę 1: The negative feedback network. Activation transfer is fedforward and summed and returned as 
inhibition. Adaption is performed by simple Hebbian learning.

[13,14, 15] which have been shown to not only cause the weights to converge but in particular, to converge so 
that the network is performing a Principal Component Analysis (PCA) of the data set. It is well known that 
PCA is the best linear compression of a data set in that it minimises the mean sąuared error between the 
compressed data and the original data set. An alternative definition is that PCA provides the linear basis 
of the data set that captures most variance. This basis is formed from the eigenvectors of the covariance 
matrix of the data set in order of largest eigenvalues.

In section 2, we describe a negative feedback implementation of Oja’s rules and derive a new t-insensitive 
form of Hebbian learning. In section 3, we experiment with the rule and show that it performs an арргох- 
imation to Principal Component Analysis and that it is morę robust in the presence of shot noise; we also 
illustrate the effectiveness of the method in an anti-Hebbian rule and in a topology preserving network.

2 The N egative Feedback Network and Cost Functions
Figurę 1 shows the network which we have shown to perform a PCA [5] : the data is fed forward from 
the input neurons (the x-values) to the output neurons. Неге the weighted summation of the activations 
is performed and this is fed back via the same weights and used in the simple Hebbian learning procedurę. 
Consider a network with N dimensional input data and having M output neurons. Then the iih output 
neuron’s activation is given by

N
У, =  act,- =  У " W j j i j  (4)

i =i
with the same notation as before. This firing is fed back through the same weights as inhibition to give

м
Xj{t  + 1) <- Xj(t)  -  Y  w kjyk (5)

k =1

where we have used (t ) and (t + 1) to differentiate between activation at times t and t + 1. Now simple 
Hebbian learning between input and output neurons gives

м
A =  r ) t y t X j ( i  +  1) =  T ) t V i { x j { t )  -  Y  Щ У > }  (6)

;= i
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where rjt is the learning ratę at time t. This network has previously been shown in [1*8, 19, 5] to perform 
a Principal Component Analysis (PCA). In [5], we showed that we may have different weights for feeding 
back activation from those used for feeding forward activation which accords better with biological neurons 
in that synapses are one-directional. This network actually only finds the subspace spanned by the Principal 
Components; we can find the actual Principal Components by introducing some asymmetry into the network
И-

We have previously [8] introduced nonlinearity after the feedback operation in the learning rule to give
м

Awij =  ritfiyi)xj(t +  1) =  4 tf(y i){x j(t) -  ^ 2  w4 У>}
1=1

and related the resulting network to Exploratory Projection Pursuit. We will in section 4 be morę interested 
in the addition of nonlinearity before the feedback,

N
У> =  / ( act,) =  f ( £ 2  WijZj) 

i =i
(7)

followed by (5) and (6). [10] have shown that learning rule (6) may be derived as an approximation to 
gradient descent on the mean sąuared residuals (5) after feedback.

We can use the residuals (5) after feedback to define a generał cost function associated with this network 
as

J  =  /i(e )  =  / i  (x -  Wy) (8)
where in the above f i  — | | . | |2, the (sąuared) Euclidean norm. It is well known (e.g. [17, 1]) that with this 
choice of / i( )  the cost function is minimised with respect to any set of samples from the data set on the 
assumption of Gaussian noise on the samples.

It can be shown that, in generał (e.g. [17]), the mimimisation of J  is equivalent to minimising the negative 
log probability of the error or residual, e, which may be thought of as the noise in the data set. Thus if we 
know the probability density function of the residuals, we may use this knowledge to determine the optimal 
cost function.

It is well known that e.g. speech signals give a data set with kurtotic statistics. An approximation to 
these density functions is the (one-dimensional) function

P (e )  =  2 f  e e x p (  Iе ! ' ) (9 )

e | _  г 0 V | e | < e  
f *■ |e — el o th e rw ise (1 0 )

where

with e being a smali scalar > 0. Using this model of the noise, the optimal Д () function (to minimise the 
negative log probability of the error) is the c - insensitive cost function

/i(e ) = Mi (U)

rule
Therefore when we use this function in the (nonlinear) negative feedback network we get the learning

which gives us the learning rules

A W  oc dJ d fi  (e) de 
Ш  ~  de 3W

A  Wij -  { 0
r).yi.sign(xj -  Г »  wkjyk) =  T).y.sign{e)

if \*i ~  Et wkjVk \ < £
otherwise (1 2)
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where sign(t) =  1 if t > O and sign(t) = — 1 if t < 0.
We see that this is a simplification of the usual Hebb rule using only the sign of the residual rather than 

the residual itself in the learning rule. We will find that in the linear case (section 3) allowing e to be zero 
gives generally as accurate results as non-zero values but the data sets in section 4 reąuire non-zero e because 
of the naturę of their innate noise.

2.1 Is th is a H ebbian  R ule?
The immediate ąuestion to be answered is ”does this learning rule ąualify as a Hebbian learning rule given 
that the term has a specific connotation in the Artificial Neural Networks literaturę?” . We may consider 
e.g. covariance learning [12] to be a different form of Hebbian learning but at least it still has the familiar 
product of inputs and outputs as a central learning term.

The first answer to the ąuestion is to compare what Hebb wrote with the eąuations above. We see that 
Hebb is ąuite open about whether the pre-synaptic or the post-synaptic neuron would change (or both) and 
how the mechanism would work. Indeed it appears that Hebb considered it unlikely that his conjecture could 
ever be verified (or falsified) sińce it was so indefinite[4]. Secondly, it is not intended that this method replaces 
traditional Hebbian learning but that it coexists as a second form of Hebbian learning. This is biologically 
plausible - ”Just as there are many ways of implementing a Hebbian learning algorithm theoretically, naturę 
may have morę than one way of designing a Hebbian synapsę”[2]. Indeed the suggestion that Long Term 
Potentiation ”seems to tnvolve a heterogeneous family of synaptic changes with dissociable time courses” 
seems to favour the coexistance of multiple Hebbian learning mechanisms which learn at different speeds.

We now demonstrate that this new simplified Hebbian rule performs an approximation to Principal 
Component Analysis in the linear case and finds independent components when we have nonlinear activation 
functions.

3 e-insensitive Hebbian Learning
In this section we will use the linear neural network

N

У i =  J 2 Wfi xi
J = 1

M
+ Zj(t) -  £  wk)yk

k = 1
A w .. _  r 0 if \xj(t  +  1)1 < e

”  1 T].yi.sign(xj(t +  1)) otherwise

and show that the network converges to the same values to which the morę common PCA rules [14, 16] 
converge.

3.1 Principal C om p on en t A nalysis
To demonstrate PCA, we use the e-insensitive rules on artificial data. When we use the above learning rules 
on Gaussian data, we find an approximation to a PCA being performed. The weights shown in Table 1 are 
from an experiment in which the input data was chosen from zero mean Gaussians in which the first input 
has the smallest variance, the second the next smallest and so on. Therefore the first Principal Component 
direction is a vector with zeros everywhere except in the last position which will be a 1 so identifying the filter 
which minimises the mean sąuare error (which is equivalent to maximising the variance in the projection of 
the data onto this filter). In our experiment, we have three outputs and five inputs; the weight vector has



2.0749643e-003 6.1149565e-002 -3.9888122e-001 3.6858096e-001 -8.3912233e-001
2.8296234e-002 7.7505112e-003 8.5505936e-001 4.7078573e-OOl -1.9534208e-001
5.0981820e-003 -2.5554618e-002 3.2719504e-001 -7.9844131e-001 -5.0683308e-001

Table 1: The subspace spanned by 
= 0.1

first three principal components is captured after only 5000 iterations. e

-1.7574163e-002 3.3526187e-002 2.6317708e-002 4.9533961e-002 1.0068893e+000
-1.7960927e-002 -2.0583177e-002 2.1191622e-002 -1 .0037621e+000 6.8503537e-003
-4.1927978e-003 3.6645443e-002 -9.9189108e-001 -3.5904231e-002 6.6094374e-002

Table 2: The actual principal components are captured after only 5000 iterations. e =0.5

converged to an orthonormal basis of the principal subspace spanned by the first three principal components: 
all weights to the inputs with least variance are an order of magnitude smaller than those to the three inputs 
with most variance. This experiment used 5000 presentations of samples from the data set, f =  0.1 and the 
learning ratę was initially 0.01 and was annealed to 0 during these 5000 iterations.

Just as Oja’s Subspace Rule may be transformed into a PCA rule by using deflationary techniąues [16] 
we may find the actual Principal Components by using a deflationary rule with this Hebbian learning. Thus 
the feedforward rule is as before but feedback and learning occur for each output neuron in turn.

zy(f +  l) <- xj ( t ) - w kjyk Vj
A w kj = rjtykXj(t +  1) Mj

for к =  1, 2....
Table 2 shows the results when 5 dimensional data of the same type as before was used as input data, the 

learning ratę was 0.1 decreasing to 0 and e was 0.1. These results were taken after only 5000 iterations. The 
convergence is very fast: a typical set of results from the same data are shown in Table 3 where the simulation 
was run over only 1000 presentations of the data ( We have also used 6=0 in this case to demonstrate that 
the particular value of e is not crucial). So, as might have been expected, minimising the mean sąuare error 
and minimising the mean absolute error give the same results in the Gaussian case.

We may expect that sińce the learning rule is insensitive to the magnitude of the input vectors x, the rule 
is less sensitive to outliers than the usual rule based on mean sąuare error. To test this, we add noise from 
a uniform distribution in [-10,10] to the last input (that with smallest variance) in 30% of the presentations 
of the input data. Table 4 shows that the PCA properties of the c-insensitive deflationary network are 
unaffected by the noise. In comparison, Table 5 shows that the Sanger [16] network responds to this noise 
(as one would expect).

We notę that this need not be a good thing, however in the context of real biological neurons we may 
wish each individual neuron to ignore high intensity shot noise and so the e-insensitive rule may be optimal. 
Finally the insertion of a differentiated в, term in the calculation of the residual (as in [15]) also causes 
convergence to the actual Principal Components but was found to be two orders of magnitude slower than 
the deflationary techniąue described above.

-5.1776166e-003 4.5376865e-002 -2.3840385e-003 1.2658529e-002 1 .0019231e+ 000
-3.6847661e-002 1.0566274e-002 -1.3372074e-001 9.9144360e-001 1.6136625e-003
-1.1309247e-002 -8.1029262e-003 9.9036232e-001 1.4140185e-001 -1.4256455e-003

Table 3: The actual principal components are almost found after only 1000 iterations. e =0.
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2.5339642е-002 -3.9976042е-002 4.7171348е-002 3.3109733е-002 9.9560379е-001
1.5587732е-002 1.4625496е-002 9.7532991е-003 -1 .0013772е+000 3.2922597е-002
-4.8078854е-002 -6.4830431е-002 9.9738211е-001 2.1815735е-002 -4.5000940е-002

ТаЫе 4: The 30% outliers are ignored by the c-insensitive rule.

6.5436571e-002
6.9542470e-002

9.5947374e-001

-4.2781770e-002
-1.4830770e-002
-1.7583321e-003

-3.5680891e-002
1.7929844e-002
-2.1653710e-001

5.9717521e-002
-9.9627047e-001

-9.4726964e-002

-9.9664319e-001
-7.1398709e-002
-1.1765086e-001

Table 5: The standard Sanger rule finds the noise irresistable.

3.2 A nti-H eb b ian  Learning
Now the e-insensitive rule was derived in the context of the minimisation of a specific function of the residual. 
It is perhaps of interest to enąuire whether similar rules may be used in other forms of Hebbian learning. 
We investigate this using anti-Hebbian learning.

Foldiak [3] has suggested a neural net model which has anti-Hebbian connections between the output 
neurons.

The eąuations which define its dynamical behaviour are

N

Vi = + £  “чй
i =i

In matrix terms, we have

у =  x +  W y 
And so, у  =  (I — W )_1x

He shows that, after training with the familiar anti-Hebbian rule,

A wy = -Ш У] for i ф j

the outputs, у are decorrelated.
Now the matrix W must be symmetric and has only non-zero non-diagonal terms i.e. if we consider only 

a two input, two output net,

" '  = ( i  o )  <13>
However the e-insensitive anti-Hebbian rule is non-symmetrical sińce, if Wij is the weight from y, to yj, 

we have

Auiij = -T]yjsign(yi) if |j/j| > e
Д Wij =  0 otherwise (14)

To test the method, we generated 2 diinensional input vectors, x, where each element is drawn independently 
from N(0,1) and then added another independently drawn sample from N(0,1) to both elements. This gives 
a data set with sample covariance matrix (10000 samples) of

(  1.9747 
V 0.9948

0.9948 \  
1.9806 ) (15)
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Compariscn af Networks

Figurę 2: The Kohonen mapping and the Scalę Invariant mapping on two dimensional uniform distribution.

The covariance matrix of the outputs, y, (over the 10000 samples) from the network trained using the 
e-insensitive learning rule is

(  1.8881 -0.0079 \  . .
V -0.0079 1.1798 )  [ J

We see that the outputs are almost decorrelated. It is interesting to notę that

• the asymmetrical learning rules have resulted in non-equal variances on the outputs.

• but the covariance (off-diagonal) terms are eąual.

It is our finding that the outputs are always decorrelated but the finał values on the diagonals (the variances) 
are impossible to predict and seem to depend on the actual values seen in training, the initial conditions 
etc..

A feedforward decorrelating network, у =  (I  +  W)x, may also be created with the e-insensitive anti- 
Hebbian rule with similar resuts.

3.3 T op ology  P reserv in g  M aps
We have also used the negative feedback network to create topology preserving maps [7] with somewhat 
different properties from Kohonen’s SOM [11]. The feedforward stage is as before but now we invoke a 
competition between the output neurons and the neuron with greatest activation wins. The winning neuron, 
the pth, is deemed to be maximally firing (= 1) and all other output neurons are suppressed(=0). Its firing 
is then fed back through the same weights to the input neurons as inhibition.

Xj(t +  1) «— xj(t) -  wpj.l for all j (17)
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where p is the winning neuron. Now the winning neuron excites those neurons close to it i.e. we have a 
neighbourhood function Л(p ,j) which satisfies Л(p ,j) < A(p,k) for all j, к :|| p -  j  ||> || p -  к || where || . || 
is the Euclidean norm. Typically, we use a Gaussian whose radius is decreased during the course of the 
simulation. Then simple Hebbian learning gives

Awij =  тцА(р, i).Xj(t +  1) (18)
= r]tA(p,i).(xj(t) -  wpj) (19)

The somewhat different properties of this mapping from the Kohonen mapping may be seen in Figurę 2: the 
Kohonen SOM spreads out evenly across the data set while with the scalę invariant mapping, each output 
neuron captures a slice of the inputs of approximately eąual magnitude angle. We may now report that if 
we use the e-insensitive learning rule

л  __  f  0
w,} * T).A(p, i).sign(xj(t + 1))

convergence to the same type of mapping is also achieved. As 
ąuickly and is morę robust against shot noise.

if |Xj(t +  1)| < e 
otherwise (20)

before, the resultant mapping is found morę

4 Conclusion
We have derived a slightly different form of Hebbian learning which we have shown capable of performing 
PCA type learning in a linear network. We have shown that the method may also be used for anti-Hebbian 
learning and for the creation of topology preserving maps.

Futurę work will concentrate on analysing the form of noise to be expected in real situations and creating 
cost functions which are optimal for these situations.
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