2. Бутаков Е.А., Островский В.И., Фадеев И.Л. Обработка изображений на ЭВМ. – М.: Радио и связь, 1987. – 240 с.

АЛГОРИТМЫ ВЕКТОРНОГО КВАНТОВАНИЯ В СИСТЕМЕ ИДЕНТИФИКАЦИИ РЕЧЕВЫХ СИГНАЛОВ.

Садыхов Р.Х.*, Ракуш В.В.**

*Белорусский Государственный Университет
Информатики и Радиоэлектроники.
***Научно-Исследовательский Институт Криминологии,
Криминалистики и Судебных Экспертиз.

Введение.

Как отмечается в работах по автоматическому распознаванию личности по голосу [1], в системах нового поколения в качестве структурных элементов используются субречевые единицы, образующиеся при переходе от скалярного представления сигнала к векторному разработано признаков. C этой целью пространству несколько алгоритмов векторного квантования разновилностей [2]. Hx том, что если $\bar{x} = [x_1, x_2, ..., x_N]^T$ — N-мерный заключается вектор, координаты параметрический которого $\{x_{\iota}, 1 \leq k \leq N\}$ —действительные случайные величины, то он может отражаться в N-мерный вектор $\bar{\nu}$, координатами которого также лействительные случайные числа. Множество являются $\overline{Y}=\left\{ \overline{y}_{i},1\leq i\leq L
ight\}$ называется кодовой книгой. L – размер кодовой книги, а $\{\overline{y}_i\}$ — множество кодовых векторов (центроидов). Для построения кодовой книги М-мерное пространство векторов \overline{x} разбивается на L областей $\left\{c_i,1\leq i\leq L\right\}$. Каждой области c_i соответствует векторцентроид \overline{y}_i . Если \overline{x}_i лежит в c_i , ему присваивается значение кодового вектора \overline{y}_i . Естественно, что при этом возникает ошибка квантования. Отклонение \overline{x} от \overline{y} может быть определено мерой близости $d(\overline{x},\overline{y})$, в качестве которой может использоваться среднеквадратичное отклонение (СКО)

$$d(\overline{x}, \overline{y}) = \frac{1}{N} (\overline{x} - \overline{y})^T (\overline{x} - \overline{y}) = \frac{1}{N} \sum_{k=1}^{N} (x_k - y_k)^2 (1)$$

N – количество координат в векторе.

Создавая таким образом кодовые книги-эталоны и кодовые книгитесты, затем сравнивая их, можно верифицировать или идентифицировать пичность по голосу [3]. Для систем верификации, работающих по парольной фразе, кодовые книги-эталоны и кодовые книги-тесты имеют одинаковую размерность L, их сравнение не вызывает каких-либо затруднений. Другое дело, когда распознавание осуществляется по произвольной речи, продолжительность и семантика которой не регламентированы. В этом случае эталонная кодовая книга должна иметь максимальную размерность, а кодовая книга-тест будет иметь переменное значение L, зависящее от продолжительности и семантики высказывания. В этом случае возникает необходимость решения задачи оптимального квантования входной реализации в соответствии с некоторым критерием качества векторного квантования, оцененным априори.

Алгоритмы формирования кодовых книг.

В этом разделе мы рассмотрим модификацию алгоритма векторного квантования, применяемую для формирования эталонной и тестовой кодовых книг.

Одним из методов построения кодовой книги является алгоритм K-средних [2]. Пусть K=L. В этом случае алгоритм разбивает набор входных векторов \overline{x}_i на L областей (кластеров). Обозначим через m номер итерации, а через $C_i(m)$ — i-ый кластер на m-ой итерации с центроидом $y_i(m)$. Тогда алгоритм K-средних можно разбить по шагам.

Шаг 1. Начальное разбиение на L кластеров. m=0. Для m=0 разбиение осуществляется с помощью обычного дихотомического алгоритма, результатом работы которого является последовательность векторов-центроидов $\overline{y}_i(0), 1 \leq i \leq L$.

Шаг 2. Классификация. Входные векторы $\{\overline{x}_i,1\leq i\leq M\}$ разбиваются по кластерам C_i с помощью правила ближайшего соседа $\overline{x}\in c_i(m)$ тогда и только тогда, когда $d[\overline{x},\overline{y}_i(m)]\leq d[\overline{x},\overline{y}_i(m)]$ для всех $j\neq i$.

*Шаг 3. Коррекция кодового вектора.*Для m=m+1 производится перерасчет центроидов всех кластеров $\overline{y}_i(m) = cent(c_i(m))$ $1 \le i \le L$.

Шаг 4. Проверка на окончание процедуры. При формировании кодовой книги-эталона значение L заранее известно. В этом случае квантование завершается, если интегральная мера близости

$$D(m) = \frac{1}{L \cdot N} \sum_{i=1}^{L} \sum_{i=1}^{N} d_{\min}(\overline{x}_i, \overline{y}_i)$$
 (2)

на итерации m не уменьшилось по отношению к D(m-1). В противном случае осуществляется переход на шаг 2.

При формировании кодовой книги-теста значение L заранее неизвестно. Поэтому, чтобы заверщить квантование, необходимо D(m) сравнивать с каким-то пороговым значением ошибки квантования Р. Для оценки порога Р была создана фонетически сбалансированная речевая база данных продолжительностью звучания более 5 минут. Пять дикторов-

4. Распознавание образов и анализ изображений

мужчин начитывали этот текст, который затем вводился в компьютер и служил в качестве эталона.

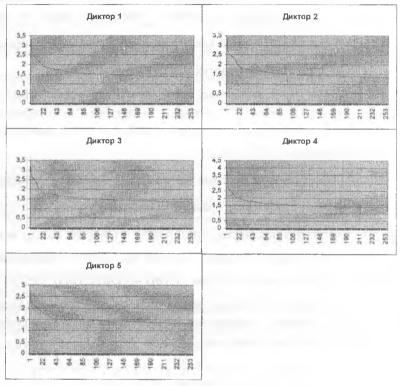


Рис1. Графики зависимости ошибок квантования от размерностей кодовых книг для 5 дикторов.

После этого рассчитывались кодовые книги для различных размерностей L, в зависимости от нее определялись ошибки квантования (1). Графики зависимости $d(\overline{x}, \overline{y})$ от L для пяти дикторов показаны на рис

1. Из них видно, что после L=200 $d(\bar{x}, \bar{y})$ ≈const =1,4. Окончательно в наших экспериментах L была выбрана 256.

Таким образом, для формирования тестовой кодовой книги пороговое значение ошибки квантования Р при сравнении на шаге 4 должно быть равным 1,4.

Экспериментальная проверка работоспособности алгоритма.

Для проверки работоспособности алгоритма была разработана специальная программа, прототип системы фоноучета голосов потенциальных правонарушителей, количество которых состояло из 5 человек. В качестве эталонов использовались описанные в разделе 2 книги, созданные из фонетически сбалансированных речевых файлов 5-минутной продолжительности.

Во время тестирования каждый из 5 дикторов наговаривал в микрофон произвольный текст произвольной длительности. На экране фиксировались пять мер близости между пятью эталонными и одной тестовой кодовыми книгами.

Результаты таких предварительных экспериментов показали, что, как правило, мера близости между тестовой реализацией и эталоном диктора, который в данный момент произносил фразу, была самой минимальной. Ошибок на базе из 5 дикторов зарегестрировано не было.

Выводы.

Предлагаемый алгоритм структуризации речи со среднеквадратичным критерием качества может быть использован в системах идентификации личности по произвольной речи, при этом размерность кодовой книги должна состоять не менее чем из 200-256 кодовых векторов. К недостаткам данного алгоритма следует отнести невысокое быстродействие работы,

особенно в режиме обучения, которая может продолжаться несколько дней непрерывного счета на компьютере типа Pentium 166.

Таким образом, устранение этого недостатка, по-видимому, должно стать объектом дальнейших исследований в этом направлении.

Литература.

- 1. Рылов А.С. Некоторые аспекты проблемы автоматического распознавания личности по голосу. Сб. статей Вопросы криминологии, криминалистики и судебной экспертизы. № 11, 1996 г., стр. 162-176.
- 2. Макхоул Д., Рукос С., Гиш Г. Векторное квантование при кодировании речи. ТИИЭР т.73, № 11, 1985 г., стр. 19-61.
- 3. Рылов А.С., Сапронович И.З., Францкевич А.В. Система автоматической верификации голоса говорящего. Тез. докладов международной конференции "Информатизация правохранительных систем". Москва, июль, 1995 г.

УДК 681.3

АЛГОРИТМЫ РАСПОЗНАВАНИЯ РУКОПИСНЫХ СИМВОЛОВ НА ОСНОВЕ КОЛЬЦЕВЫХ И СЕКТОРНЫХ МОМЕНТНЫХ ФУНКЦИЙ

Садыхов Р.Х., Муравин А.Л.

Институт технической кибернетики НАН Беларуси

Задача распознавания рукописных символов является частным случаем более общей задачи - задачи распознавания графических образов. Основными методами решения поставленных задач являются методы цифровой обработки сигналов (ЦОС).