прочность микросварных соединений и переходное электрическое сопротивление возрастают от 10,5 до 15,5 г и от 2,5 до 28 мОм, соответственно; износостойкость увеличивается в 4,5 раза (объемный износ при этом уменьшается от 3,7 до 0,8Ч10-6 мм³); паяемость улучшается на 15-20%. Наибольшая микротвердость (8,1 ГПа) для свежеосажденных покрытий достигается при малом содержании бора в сплаве (~1ат.%). При прогреве покрытий микротвердость и износостойкость возрастают в 1,5-2 раза. Связано это со структурно-фазовыми превращениями, происходящими при термообработке покрытий. При 300°C происходит распад твердого раствора бора в никеле с образованием фазы борида никеля (Ni, B), которая, повидимому, и обеспечивает улучшение механических свойств покрытия. Переходное электрическое сопротивление с ростом температуры прогрева для поликристаллических покрытий Ni-B увеличивается, а прочность микросварных соединений уменьшается. Связано это, по-видимому, с окислением поверхности покрытий, их рекристаллизацией, приводящей к укрупнению зерна. Для аморфных покрытий Ni-B наблюдается обратная зависимость - уменьшение переходного сопротивление и увеличение прочности сварных соединений с ростом температуры прогрева. Обусловлено это, по-видимому, образование фаз боридов (Ni,B и Ni,B).

Благодаря невысокому переходному сопротивлению покрытий Ni-B, сопоставимому с переходным сопротивлением покрытий из золота и серебра, удовлетворительной паяемости с использованием мягких припоев и малоактивных флюсов и способности к ультразвуковой сварке с алюминиевым проводником (усилие отрыва > 10г) покрытие Ni-B рекомендуется для замены золотых, серебряных, палладиевых покрытий в изделиях приборостроения, радио- и микроэлектроники.

ДВИЖЕНИЕ КАПЛИ ЭЛЕКТРОДНОГО МЕТАЛЛА ПРИ ДУГОВОЙ СВАРКЕ

Белоконь В.М., Старохозяев А.С. Могилевский машиностроительный институт

Изготовление сварных конструкций с применением дуговых процессов сварки связано с необходимостью последующей зачистки свариваемых поверхностей от капель электродного металла. На это тратится времени, в среднем 1,2-8 минут на 1 м. шва, что составляет до 30% всей трудоемкости изготовления конструкции.

Налипание капель элктродного металла зависит от вида и формы переноса электродного металла в сварочную ванну, величины и характера действующих сил на каплю, скорости, длины и времени полета капли и некоторых других факторов.

Перенос металла при сварке через дуговой промежуток происходит в виде капель, струи и паров. Наблюдаются следующие разновидности переноса металла: крупнокапельный (диаметр капли в 1,5 раза и более превышает диаметр электрода), короткими замыканиями и без них, мелкокапельный (диаметр капли близок к диаметру электрода), струйный (диаметр капли меньше 0,1 диаметра электрода).

Размер капель электродного металла определяется составом металла, защитного газа, а также направлением и величиной тока.

Капля электродного металла может переходить в сварочную ванну (что характерно для большинства из них) или вылетать из зоны сварки. В последнем случае ее называют брызгой.

Образование брызг может вызываться многими причинами: электродинамическими силами, возникающими в начале и в конце короткого замыкания дугового промежутка каплями электродного металла, взрывообразным испарением жидких перемычек металла в начале и в конце коротких замыканий, бурным выделением пузырьков газа (окисью углерода, азота, водорода и другие) из переплавляемого дугой металла, активным и реактивным действием на электродные капли возникающих в зоне дуги потоков паров и газов и т.п.

Зависит разбрызгивание металла от длины дуги. Короткими дугами являются дуги длиной 3-5 мм, длинными - 8-12 мм. Наибольшее разбрызгивание наблюдается при сварке короткими дугами с короткими замыканиями.

Подавляющее количество брызг, как показали исследования, вылетает из зона сварки под углом более 45° к поверхности свариваемой детали. Мелкие брызги размером примерно 0,02 мм вылетают из области сварки с большой скоростью (около 40 м/сек). Угол между направлением их полета и перпендикуляром к поверхности свариваемой детали обычно не превышает 25°. Более крупные брызги летят с меньшей скоростью и имеют больший угол разлета.

Капля размером 0,1-0,2 мм, как и очень мелкие, размером 0,02 мм разлетаются на большие расстояния от шва. Применительно к брызгам среднего и крупного размера проведем расчет времени и длины полета.

Для определения кинематики движения капли расплавленного метал-

Таблица 1. Время и длина полета средних и крупных брызг

ф, град.	v, м/сек	Г,мм	t·10-², ceK	ф, град.	v, м/сек	Г,мм	т.10-², сек
10	0,3	3,1	1,06	30	0,3	7,95	3,06
	1,0	34,8	3,54		1,0	88,4	10,2
15	0,3	4,6	1,58	35	0,3	8,6	3,5
	1,0	51,0	5,28		1,0	95,8	11,7
20	0,3	5,9	2,09	40	0,3	9,04	3,93
	1,0	65,6	6,98		1,0	100,4	13,12
25	0,3	7,05	2,58	45	0,3	9,18	102
	1,0	78,2	8,62		1,0	102	14,4

ла (брызги) рассмотрим ее как тело массой "m", радиусом "R", вылетающей из некоторой начальной точки (конец электрода) со скоростью " v_0 ". В этом случае, если пренебречь сопротивлением окружающей атмосферы (что планомерно из-за малых размеров), уравнение, описывающее траекторию полета

$$Y = X \cdot tg\varphi - \frac{g \cdot X^2}{2 \cdot v_0^2 \cdot \cos^2 \varphi},$$
 (1)

где Y и X - текущая ордината движения, j - угол между направлением полета и перпендикуляром к свариваемой поверхности, g - ускорение свободного падения.

Тогда продолжительность полета ${\bf t}$ и дальность полета ${\bf L}$ находятся по формулам

$$t = \frac{2 \cdot v_0 \cdot \sin \varphi}{g},\tag{2}$$

$$L = \frac{v_0^1 \cdot \sin 2\varphi}{g} \tag{3}$$

Результаты расчета сводим в таблицу 1.

Результаты расчета показывают, что наибольшее удаление брызг от шва средних (диаметром 0,8-1,0 мм) и крупных (до 2,5 мм и более) составляют 100 мм.

Направление полета капли имеет случайный характер. Как теоретически, так и опытным путем определено, что капли разлетаются во всех направлениях.

При относительно равномерном разбрызгивании во все стороны и при движущемся источнике нагрева равномерное покрытие брызгами на полосе от шва шириной в 100 мм не наблюдается. Наибольшее количество брызг наблюдается на полосе в 60-70 мм от центра шва. Это соответствует сектору, наиболее густо перекрытому возможными траекториями полета, падение капель подчиняется нормальному закону и составляет 2/3 от общей ширины полосы. На расстоянии от центра шва 70-100 мм наблюдаются отдельные брызги.

Результаты данной работы позволяют разработать мероприятия по защите поверхностей от налипания электродного металла от брызг и тем самым существенно снизить трудозатраты на последующую обработку изделий.

КОНЦЕПЦИЯ КОМПЛЕКСНОГО МОДЕЛИРОВАНИЯ ПРОЦЕССА ПЛАЗМЕННОГО НАПЫЛЕНИЯ ПОКРЫТИЙ НА ОСНОВЕ ПОРОШКОВЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Цырлин М. И., Родченко Д.А. Белорусский государственный университет транспорта

Процесс плазменного напыления является сложным и многофакторным. Высокие температуры и скорости протекания теплофизических и динамических процессов в плазменной струе создают сложность в оптимизации технологических режимов получения материалов и покрытий [1].

73