О СОБСТВЕННЫХ ВЕКТОРАХ ПОЛОЖИТЕЛЬНОГО ОПЕРАТОРА ИЗ КОНУСА.

Годунов Б.А.

Пусть K - воспроизводящий и нормальный конус в банаховом пространстве E; A - линейный квази вполне непрерывный положительный оператор, действующий в E. Известно, что $\rho(A)$ является собственным значением операторов A и A^* и ему отвечают по крайней мере один собственный вектор $x_0 \in K$ и собственный функционал $\ell_0 \in K^*$.

Если оператор A сильно положителен , то $x_0\in IntK$. Действительно, пусть $x_0\in K$ и A $x_0\in \rho(A)$ x_0 . А так как A $x_0\in IntK$ и $\rho(A)>0$, то и $x_0\in IntK$.

Предположим , что оператор A имеет фредгольмов спектр и ρ_1 собственное значение второе по модулю , т.е. $|\rho_1|<\rho(A)$ и в кольце $|\rho_1|<|\lambda|<\rho(A)$ нет собственных значений оператора A. В этих условиях верна

Teopema: Пусть оператор A вполне непрерывен и сильно положителен относительно воспроизводящего конуса K. Тогда IntK может содержать собственные векторы оператора A, отвечающие лишь собственному значению $\rho(A)$.

Доказательство этой теоремы существенно опирается на следующее утверждение.

Теорема. Если существуют $u_0, v_o \in K$ и $u_0 \le v_0$ таковы, что $A\,u_o + f - u_0$ и $v_0 - A\,v_0 - f$ внутренние элементы конуса K, то существует единственное решение уравнения $x = A\,x + f$, к которому сходятся последовательные приближения $y_n = Ay_{n-1} + f\,(n=1,2,\ldots)$ при любом $y_0 \in \langle u_0, v_0 \rangle$.

Более того, в случае воспроизводящего конуса можно говорить о любом $y_0 \in E$.

ЛИТЕРАТУРА.

1. М.А.Красносельский и др. Приближенное решение операторных уравнений. Наука. 1969. С.455.