$$y'' = \left| M(x) \right|^n \cdot const$$

где n - показатель, определяемый геометрией сечения. Например, для балки прямоугольного сечения, оптимизируемой за счет изменения ее ширины, имеем n=0, и тогда изогнутая ось представляет собой дуги окружностей, кривизна которых зависит только от принятой высоты сечения данного участка балки и заданной долговечности.

В качестве примера приводится задача о симметричной трехопорной балке, нагруженной равномерно-распределенной нагрузкой. Оптимизация проведена для балки, участки которой имеют постоянную высоту и переменную ширину или, наоборот, переменную высоту и постоянную ширину. При этом для соседних участков высота (ширина) может быть неодинаковой. Определена геометрическая форма, вес, максимальные прогибы балок. Из расчетов следует, что выштрыш в весе может составлять более 100%, а жесткость оптимальной балки может оказаться даже выше жесткости балки постоянного сечения с такими же уровнями нагрузки и максимальных напряжений.

Рассмотрен также ряд более сложных задач.

РАСПРОСТРАНЕНИЕ ТРЕЩИНЫ ПО СЕЧЕНИЮ СТЕРЖНЯ ПРИ ЧИСТОМ ИЗГИБЕ

Холодарь Б.Г.

Известно, что долговечность материала зависит от характера напряженного

состояния, что объясняется различным влиянием гидростатической и девиаторной части напряженного состояния на скорость разрушения и рекомбинации структуры связей в материале.

В простейшем случае одноосного растяжения-сжатия это можно математически выразить в виде

$$\alpha_p \sigma = (\alpha_\Gamma + \alpha_\partial) \sigma, \quad \sigma > 0$$

$$\alpha |\sigma| = (-\alpha_\Gamma + \alpha_\partial) |\sigma|, \quad \sigma < 0$$

где $\alpha_p, \alpha_c, \alpha_\Gamma, \alpha_\partial$ - структурные коэффициенты (положительные). Индексы "р", "с", "г", "д" обозначают соответственно - расширение, сжатие, гидростатический, девиаторный.

Влияние напряженного состояния на долговечность можно проидлострировать на примере движения трещины по сечению балки при чистом изгибе и на основе полученного решения построить ускоренную методику определения структурных параметров материала.

В качестве кинетического уравнения развития поврежденности использовано уравнение вида

$$\omega = \upsilon(1-\omega)\exp\left(\frac{2\sigma}{1-\omega}\right), \quad \upsilon = const.$$

При реплении задачи сечение (прямоугольное) стержня разбивалось на слои одинаковой толщины, внутри которых поврежденность $0 \le \omega \le 1$ считалась одинаковой во всех точках. При достижении поврежденностью в слое $\omega = 1$ слой считался разрушенным.

В зависимости от значений $k=\alpha_c/\alpha_p$ грещина может развиваться симметрично относительно середины сечения (k=1) или несимметрично, причем от разрушения растянутой части сечения. При k<0.6 фронт трещины является односторонним, картина разрушения, естественно, зависит и от действующего в сечении момента.

В целом расчеты показывают, что долговечность при изгибе может превышать долговечность при растяжении (оизг = ораст) примерно в 1,05-1,25 раза, то есть время "долома" стержня при неизменном моменте составляет 5-25% от времени появления признаков трещины в поверхностном слое, увеличиваясь с ростом нагрузки (момента) и уменьшаясь с

ростом соотношения $k = \frac{\alpha_n}{\alpha_n}$. Эксперименты подтверждают такой ре-

зультат.