РАСЧЕТ КОМПЕНСАТОРОВ ДЛЯ ДОСТИЖЕНИЯ ТОЧНОСТИ СБОРКИ МАШИН С УЧЕТОМ ПОГРЕШНОСТЕЙ ПРИГОНОЧНЫХ РАБОТ

А.В. НИНИЧУК (студентка 5 курса)

Проблематика. Существующие методики расчета компенсаторов не учитывают взаимосвязь допуска компенсатора с погрешностями пригоночных работ и применяемой сборочной технологической оснастки, что не позволяет минимизировать металлоемкость компенсаторов и трудоемкость пригонки. Таким образом, усовершенствование методики расчета компенсаторов для достижения точности сборки методом пригонки является актуальной задачей.

Цель работы. Анализ влияния погрешностей выполнения пригоночных работ на точность сборки машин, разработка рациональных схем компенсации экономически целесообразных допусков составляющих звеньев сборочных конструкторских размерных цепей, а также математических выражений для определения размера первоначально изготовленного компенсатора и припуска на пригонку компенсатора.

Объект исследования. Взаимосвязь размеров и параметров точности замыкающего звена, составляющих звеньев, компенсаторов и сборочной оснастки.

Научная новизна. Разработана усовершенствованная методика определения размера первоначально изготовленного компенсатора, и минимально достаточного припуска на пригонку компенсатора. Методика ранее не описана в учебной и технической литературе.

Использованная методика. Теория размерных цепей, методика размерного анализа техпроцессов механической обработки по линейным размерам деталей.

Полученные научные результаты и выводы. Обоснована недостаточная точность и рациональность существующих методик определения размера компенсации и расчета размера первоначально изготовленных компенсаторов для всех экземпляров изделия. Выявлены рациональные схемы компенсации и взаимосвязь размеров и параметров точности замыкающего звена, составляющих звеньев, компенсаторов и сборочной оснастки.

Практическое применение. Применение разработанной методики позволяет сократить металлоемкость первоначально изготовленных компенсаторов и трудоемкость из пригонки. Данная методика может быть полезна инженерамтехнологам, проектирующим техпроцессы сборки машин

3D-МОДЕЛИРОВАНИЕ КРИВОШИПНО-ШАТУННОГО МЕХАНИЗМА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ В ГРАФИЧЕСКОМ РЕДАКТОРЕ AUTODESK INVENTOR 2015

Р.А. РУДСКИЙ, Д.А. КОНЮХОВ (студенты 2 курса)

Проблематика. В процессе выполнения данной работы были изучены: назначение и устройство кривошипно-шатунного механизма двигателя внутреннего сгорания; возможности 3D-моделирования, трехмерной сборки.

Цель работы. Построение трехмерной модели кривошипно-шатунного механизма двигателя внутреннего сгорания в графическом редакторе AUTODESK INVENTOR 2015 для последующего применения презентации в курсе лекций «Автомобильные двигатели».

Объект исследований. Возможности 3D-моделирования в графическом ре-

дакторе AUTODESK INVENTOR 2015.

Использованные методики. При создании 3D-деталей в графическом редакторе AUTODESK INVENTOR 2015 использовались операции выдавливания, вычитания, вращения, зеркальное отражение, поворот, отверстие, выполнение сопряжений и фасок. При создании сборки использовалась инструментальная палитра «Зависимости», с помощью которой осуществлялся анализ пересечений и проверка правильности сопряжений.

Научная новизна, в чем особенность проведенных исследований. В настоящее время значительное число конструкторов-машиностроителей в корне поменяли свой подход к процессу проектирования, перейдя от двумерных систем автоматизированного проектирования к трехмерным, реализующим идею выполнения компьютерных моделей с твердотельными свойствами. Этого требуют конкуренция и необходимость сокращения сроков проектирования. Для большинства конструкторов возможность выразить свои разработки в трехмерном виде означает большую творческую свободу и эффективность.

Полученные научные результаты и выводы. Тонированные изображения, полученные по объёмным моделям, более наглядны по сравнению с двумерными чертежными проекциями, а значит — более предпочтительны для презентаций и технических статей. AUTODESK INVENTOR позволяет четко и ясно демонстрировать проекты заказчикам — в первую очередь тем, кто не является специалистом в техническом черчении.

Практическое применение полученных результатов. В дальнейшем эту трехмерную модель кривошипно-шатунного механизма двигателя внутреннего сгорания можно использовать для последующей презентации при изучении курса лекций «Автомобильные двигатели».

ВЫБОР МЕТОДИК ТЕХНИКО-ЭКОНОМИЧЕСКОЙ ОЦЕНКИ ПРОЕКТОВ АВТОТРАНСПОРТНЫХ ПРЕДПРИЯТИЙ

А.О. ТРОФИМОВ (студент 4 курса)

Проблематика. Данная работа направлена на анализ методов оценки технико-экономических показателей (ТЭП) проектов автотранспортных предприятий (АТП) и выбор наиболее подходящего метода для конкретного проекта АТП.

Цель работы. Определение оптимальной методики для технико-экономической оценки проектов автотранспортных предприятий с современным подвижным составом.

Объект исследования. Объектом исследования являются методики техникоэкономической оценки проектов автотранспортных предприятий.

Использованные методики. Использовались численные методы для технико-экономической оценки проектов автотранспортных предприятий по мето-