АНАЛИЗ ПОТЕРЬ И НЕУЧТЕННЫХ РАСХОДОВ ВОДЫ В КОММУНАЛЬНОМ ХОЗЯЙСТВЕ ДОНБАССА

Зайченко Л.Г., Омельченко Н.П., Синежук И.Б.

Донбасская национальная академия строительства и архитектуры,

г. Макеевка, Украина, ljusik@matrixhome.net, darr@icm.dn.ua

The article is devoted to the problem of calculation and comparative analysis of individual technological standards for using drinking water for structural divisions of Enterprise "Company "Water of Donbas".

Введение

Коммунальное водопроводно-канализационное хозяйство Донецкой области представлено региональной компанией — коммунальным предприятием Донецкого областного совета «Компания «Вода Донбасса» — и рядом независимых горводоканалов, большинство которых покупает воду у Компании.

Компания является крупнейшим предприятием сферы ЖКХ Украины – это уникальный комплекс гидротехнических и водопроводных и водоотводящих сооружений. В состав предприятия входят 32 подразделения, расположенных на территории Донецкой области. Ежесуточно потребителям подается более 1,5 млн. м³ питьевой и 0,4 млн. м³ технической воды. КП «Компания «Вода Донбасса» является предприятием, которое соединяет в себе две системы водоснабжения — централизованную (районные производственные управления) и муниципальную (производственные управления водопроводно-канализационного хозяйства) [1, 2].

Услугами централизованного водоотведения в Донецкой области пользуется население 52 городов (100 %), 52 поселков городского типа (39,7 %) и 50 сельских населенных пунктов (4,5 %). В области насчитывается 124 системы канализации с установленной пропускной производительностью 1771,20 тыс. м³/сутки.

Одной из приоритетных задач предприятий водопроводно-канализационного хозяйства (ВКХ) является разработка мероприятий по экономному расходованию водных ресурсов на основе экономически обоснованной тарифной политики, обеспечивающей возмещение фактических затрат предприятия на производство услуг для потребителей – как для населения, так и производственных предприятий. Решение этой задачи включает также экономию расходов на собственные нужды предприятий.

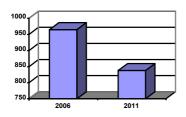
По договору с КП «Компания «Вода Донбасса» кафедра водоснабжения, водоотведения и охраны водных ресурсов Донбасской национальной академии строительства и архитектуры выполнила расчет индивидуальных технологических нормативов использования питьевой воды (ИТНИПВ) для всех подразделений, входящих в структуру Компании [3]. Также кафедра выполнила хоздоговорную работу по заказу КП «Донецкгорводоканал» (ведущего предприятия, не входящего в состав Компании), предметом которой, в частности, было определение неучтенных расходов сточных вод [4].

Рассмотрим основные результаты анализа потерь и неучтенных расходов воды на ведущих предприятиях водопроводно-канализационного хозяйства Донецкой области и предложения по совершенствованию нормативов.

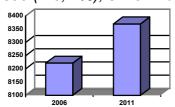
Основная часть

Технологические расходы и потери питьевой воды на предприятиях ВКХ определяются на основании анализа статистических и эксплуатационных данных при помощи методик, разработанных Государственной академией жилищно-коммунального хозяйства "Госжилкоммунхоз Украины" при участии ведущих специалистов водопроводно-канализационного хозяйства и экологии Госстроя Украины [5].

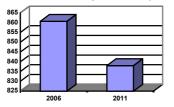
Для проведения технологического аудита предприятием были предоставлены расчеты технологического норматива использования питьевой воды всеми структурными подразделениями за 2005-2006 гг.

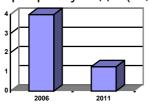

Расчеты ИТНИПВ для муниципальной системы водоснабжения, в состав которой входят 24 производственных управления ВКХ, показывают, что в сравнении с 2006 в 2011 году подача воды в систему подачи и распределения воды (ПРВ) увеличилась на 23 %, а ее потери — на 39 %. Анализ данных свидетельствует о том, что среди составляющих технологических нормативов использования питьевой воды максимум приходится на:

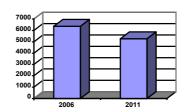
- неучтенные расходы воды из системы ПРВ, которые обусловлены утечками воды вследствие неудовлетворительных технических характеристик водоразборной арматуры, недостатков в организации, технической эксплуатации водоразборных и водозапорных устройств, повышенных напоров, а также недостаточной чувствительности водосчетчиков [6];
- потери воды из систем ПРВ, обусловленные изношенностью трубопроводов, их высокой аварийностью.

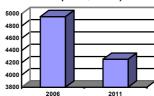

Анализ показателей технологического норматива использования питьевой воды для централизованной системы водоснабжения за 2006 и 2011 годы показывает (рис. 1), что на фоне общего снижения технологических расходов воды на 13,2 %, количество воды на подъем и очистку в 2011 году возросло на 1,8 % в сравнении с 2006 годом.

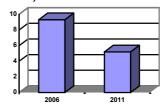
Расшифруем отдельные позиции норматива.

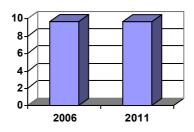

Технологический расход воды на подъем включает расход воды на промывку трубопроводов подъема воды на водоочистную станцию и зависит от скорости движения воды в трубопроводе, продолжительности промывки участка трубопровода, количества промывок, количества промывных участков и диаметра трубопровода. Все эти показатели в среднем постоянны [4]. Вызывает сомнение объединение этого показателя в нормативах с расходами на очистку воды. По природе и методике расчета этот показатель является расходом на транспортировку воды. Объединение двух разноплановых показателей в один «затуманивает» анализ и затрудняет понимание истинного положения дел. Так, в Макеевском райуправлении подводящие из канала на фильтровальную станцию водоводы очень короткие и самотечные, а в других подразделениях они длинные и напорные.


Технологические расходы воды, тыс. M^3 /год (-13,2 %), в том числе:


- на подъем и очистку воды (+1,8 %)


- на транспортировку воды (-2,7 %)


- на вспомогательных объектах (-68 %)


Потери воды из системы ПРВ в результате повреждений трубопроводов, опорожнения труб для ремонта, из водоразборных колонок и резервуаров, тыс. м³/год: (-17,2 %)

Неучтенные расходы воды из системы подачи и распределения воды (ПРВ) на приборах учета, на противопожарные нужды, коммерческие потери, тыс. м³/год: (-14 %)

Расходы воды на хозяйственно - питьевые нужды работников, тыс. м³/год (-44,0 %)

Расходы воды на поддержание зон санитарной охраны и сооружений, тыс. м³/год (0 %)

Рисунок 1 — Технологические нормативы использования питьевой воды в КП «Компания «Вода Донбасса»

Технологические расходы воды на водопроводных очистных сооружениях (BOC) включают:

- 1) выпуск осадка из камер реакции и отстойников;
- 2) чистку отстойников и промывку фильтров;
- 3) подачу воды на хлораторы;
- 4) приготовление растворов реагентов и промывку баков реагентов;
- 5) обработку хлорной водой и промывку сооружений ВОС;

- 6) промывку внутриплощадочных сетей водопровода на территории ВОС;
- 7) работу водной лаборатории, в том числе на централизованный отбор проб воды.

Анализ этих составляющих показывает, что на водопроводных очистных станциях увеличилось количество осадка, что связано с увеличением суммарного объема сооружений с осадочной частью в сравнении с 2006 г., как следствие, увеличилось количество воды на промывку этих сооружений при прочих равных условиях.

Также увеличился расход воды на промывку фильтров в результате резкого увеличения количества промывок вследствие уменьшения средней продолжительности фильтроцикла, что, в свою очередь, обусловлено износом фильтрующей загрузки, а также резким ухудшением качества воды в источниках водоснабжения [7, 8]. Так, согласно национальным нормам ДСанПіН 2.2.4—171—10, при ухудшении качества воды в источниках водоснабжения по микробиологическим показателям назначаются дополнительные технологические мероприятия, согласуемые с СЭС: увеличение доз хлора для первичного хлорирования, коагулянта — не менее чем на 15—20 %; применение полиакриламида и перманганата калия, а также сокращение продолжительности фильтроцикла не менее чем на 5—10 %.

Однако технологические расходы воды на хлораторы и приготовление реагентов на водопроводных очистных станциях в 2011 г. уменьшились в сравнении с 2006 г. в среднем на 16 %, что связано, в первую очередь, с уменьшением расходов хлора и коагулянта. При этом следует учесть следующую оговорку: расходы на приготовление реагентов (в том числе хлорной воды) по сути не являются потерями, так как возвращаются с растворами в очищаемую воду.

Расход воды на хлорирование и промывку сооружений, а также промывку внутриплощадочных сетей водопровода на территориях водопроводных очистных станций в среднем одинаковый для условий 2006 и 2011 гг. Потребление воды лабораториями на обеих станциях в 2011 году несколько увеличилось. Это связано с увеличением количества работающих на станциях в сравнении с 2006 годом.

Анализ составляющих технологических расходов воды на подъем и очистку приводит к выводу, что главными факторами, которые привели к повышению этих расходов в 2011 году в сравнении с 2006 годом являются увеличение суммарного объема смесителей, камер хлопьеобразования и отстойников, а также увеличение количества промывок скорых фильтров при прочих равных условиях. Повышение этих показателей, несомненно, связано с продолжительным ухудшением качества воды в водоисточнике (канал Северский Донец-Донбасс) по микробиологическим показателям, что свидетельствует об антропогенном загрязнении и необходимости установления причин ухудшения качества воды в источнике водоснабжения.

Следует также учитывать тот факт, что не у всех подразделений Компании источником воды является канал. Ряд районных управлений потребляет воду из водохранилищ, а Славянское РУ использует воду непосредственно из реки Северский Донец, а также подземные воды.

Вода на поддержание зон санитарной охраны (3CO) и сооружений расходуется на полив зеленых насаждений в пределах первого пояса 3CO, и ее расход остается неизменным из-за постоянства орошаемых площадей. Последнее замечание по потерям воды касается утечек воды из сооружений и трубопроводов системы водоснабжения вследствие того, что многие из них располагаются на подрабатываемых территориях, образовавшихся в результате производственной деятельности угледобывающих предприятий Донбасса.

Относительно неучтенных расходов в канализационном хозяйстве следует выделить основные три источника их формирования:

- стоки, образующиеся в результате производственной деятельности предприятий ВКХ;
- дополнительные стоки от превышения фактического водопотребления сверх нормативного;
- стоки от инфильтрации грунтовых, атмосферных и дренажных вод из систем холодного и горячего водоснабжения в результате скрытых утечек и негерметичности канализационных сетей.

При расчете тарифов фактически не учитывается попадание в канализационную сеть питьевой воды от некоторых технологических процессов. Например, сброс питьевой воды в канализационную сеть города при ремонте (опорожнении), хлорировании, промывке водопроводных сетей. Также следует учесть технологические процессы, которые образуют дополнительные сточные воды на вспомогательных объектах водопроводного хозяйства.

К неучтенным потерям питьевой воды, которая попадает в канализационную сеть, можно отнести также внутриквартирные утечки, связанные с неполным закрытием водоразборной арматуры или заполнением смывных бачков на максимальных уровнях поплавкового клапана. Минимальные потери из неисправных водоразборных кранов и смесителей составляют 1,7 литров в час, или 15 м куб. в год. Потери, связанные с неисправными смывными бачками при утечке 8 литров в час, составляют 184 м куб. в год. Принимая, что от 10 до 15 % потребителей имеют неисправные сантехнические приборы, данный вид потерь может достигать 540 тыс.м куб. в месяц.

Как показывают наши расчеты, существенная величина перерасхода питьевой воды относительно нормируемой величины, вызванная несовершенством (низким классом точности) квартирных водосчетчиков, также приводит к поступлению дополнительных сточных вод и увеличению гидравлической нагрузки на канализационные сети. При этом дополнительные сточные воды не учитываются при оплате услуг водоснабжения и канализации.

Заключение

С целью обеспечения сокращения технологических расходов воды для системы централизованного водоснабжения коммунального предприятия «Компания «Вода Донбасса» предложены следующие мероприятия:

- оперативный контроль и прогнозирование качества воды в источнике с целью выбора наиболее рациональных режимов технологии производства питьевой воды, в частности, установление четкого начала и конца периода применения реагентов, последовательности и интервалов времени их введения в обрабатываемую воду;
- технологический контроль параметров работы каждого этапа производства питьевой воды для обеспечения наиболее высокой степени очистки воды на каждом этапе;

- соблюдение установленной продолжительности и технологии рабочих циклов;
 - своевременное реагирование на изменения качества исходной воды;
- правильный выбор режимов промывки фильтровальных сооружений (периодичность, интенсивность и продолжительность);
- организация учета расхода промывных вод с помощью измерительных приборов, нормирование и контроль соблюдения установленных норм расхода воды.

Следует также отделить нормативы на подъем воды (фактически на транспортировку воды от водозабора до ВОС) от нормативов на очистку воды и включить в нормативы на транспортировку воды.

По результатам расчетов поступления дополнительных стоков в систему канализации г. Донецка разработана комплексная программа по сокращению неучтенных расходов, которая включает:

- проведение мониторинга системы транспортирования сточных вод на очистные сооружения;
- оборудование приборами учета основных коллекторов и напорных канализационных трубопроводов;
- осуществление капитального ремонта канализационных колодцев для предотвращения притока дождевых, талых и поливомоечных вод;
 - сокращение собственных производственных расходов;
 - внедрение квартирных водосчетчиков высокого класса точности.

Список литературы

- 1. Радько, Н.Ф. Состояние и перспективы развития водопроводно-канализационного хозяйства Донецкого региона на примере коммунального предприятия «Компания «Вода Донбасса» / Н.Ф. Радько, Т.С. Дегтярева, И.Г. Илясова // Комунальне господарство міст. Вип. №96. С. 57—60.
- 2. Зайченко, Л.Г. Проблемы централизованного и муниципального водоснабжения в Донецком регионе / Л.Г. Зайченко, В.И. Нездойминов, Е.П. Задорожная // MOTROL. No 14-6 / Люблин, 2012. C. 57–64.
- 3. Звіт науково-дослідної роботи "Розрахунок поточного індивідуального технологічного нормативу використання питної води для КП "Компанія «Вода Донбасу" Макіївка, 2011. 87 с.
- 4. Отчет по научно-исследовательской работе "Обоснование разницы реализуемых объемов сточных вод от фактических, которые попадают на донецкие очистные сооружения" Макеевка, 2013. 92 с.
- 5. Про затвердження Галузевих технологічних нормативів використання питної води на підприємствах водопровідно-каналізаційного господарства України // Наказ Держкомітету України з питань ЖКГ від 17.02.2004 р.
- 6. Лернер, А.Д. Проблемы обоснования величин неучтенных расходов воды в системах водоснабжения и водоотведения / А.Д. Лернер, К.В. Домнин, С.В. Бойко, М.Г. Кочетова // Водоснабжение и санитарная техника. 2012. № 4. С. 64–70.
- 7. Водоснабжение / А.Я. Найманов, С.Б. Никиша, Н.Г. Насонкина [и др.] Донецк: Норд-Прес, 2004. 649 с.
- 8. Зайченко, Л.Г. Факторы, влияющие на показатели технологических расходов питьевой воды в системе коммунального хозяйства / Л.Г. Зайченко, Ю.Г. Акулова // Вестник ДонНАСА: Макеевка. Вып. 2010-6(86). С. 42—46.