выволы

По результатам проведенных расчетов ленточных фундаментов с использованием российских, белорусских и польских норм получено, что фундаменты будут наиболее экономичными, если использовать белорусские нормы в соответствии с техническими условиями ТУ 223 БССР – 12-86.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- PN-81/B-03020. Posadowienie bezpośrelne budowli. Obliczanie statzczne i proektowanie. Polski komitet normalizacji, miar i jakości.- Warszawa. - 1981.- 24 s. Polska norma.
- 2. СНиП 2.02.01-83. Основания зданий и сооружений. Госстрой СССР. - Москва. - 1985. - 40 с. Строительные нормы и правила.

- 3. СНБ 5-01-01-99. Основания и фундаменты зданий и сооружений. Минск, Министерство архитектуры и строительства. - 1999. - 36 с.
- ТУ 223 БССР 12-86. Плиты железобетонные с призматической поверхностью опирания для ленточных фундаментов. Брестский ИСИ, Республиканский технический центр. Минск. – 1987. – 17 с. Технические условия.
- Трофименков Ю. Г., Михеев В. В. О расчете фундаментов мелкого заложения по различным нормам. РИИ оснований и подземных сооружений / ОФМГ № 2. – 1999. – с.
- 6. Грицук М. С. Рациональные конструкции плитных фундаментов. Брест, Брестский политехнический институт. -1997. – 218 c.

УДК У528:53

Сырова Н.С.

СРАВНЕНИЕ ДВУХ ПОЛЯРНЫХ МЕТОДИК ВЫЧИСЛЕНИЯ СРЕДНЕЙ КВАДРАТИЧЕСКОЙ ОШИБКИ ЕДИНИЦЫ ВЕСА ПРИ ОЦЕНКЕ ТОЧНОСТИ В НЕТРАДИЦИОННЫХ МЕТОДАХ УРАВНИВАНИЯ

В нетрадиционных методах уравнивания находят решение соответствующее минимуму целевой функции

$$\boldsymbol{\Phi}(X) = \sum_{i=1}^{N} \boldsymbol{P}_{n_i} | \boldsymbol{L}_i(X) |^n , \qquad (1)$$

где X - вектор координат определяемых пунктов;

N - количество результатов измерений;

$$P_{n_i} = const / \sigma_i^n$$
 - веса измерений;

 $L(X) = \varphi(X) - T$ - свободный член нелинейного параметрического уравнения;

n - показатель степени (при n = 1.0 - метод наименьших модулей; при n = 2.0 - метод наименьших квадратов и т.д.).

Оценку точности функций измеренных и уравненных величин выполняют по формуле

$$m_F = \mu \sqrt{\frac{1}{P_E}} \,, \tag{2}$$

где
$$\frac{1}{P_F} = fQf^T$$

f - вектор коэффициентов весовой функции.

Например, при оценке точности положения пунктов используют формулу

$$M = \mu \sqrt{Q_{XX} + Q_{YY}} , \qquad (3)$$

где $\mathcal{Q}_{\mathit{XX}},\mathcal{Q}_{\mathit{YY}}$ - диагональные элементы матрицы обратных весов, вычисленной по формуле $Q = F P_n^{-1} \cdot F^T$,

$$\mathbf{O} = \mathbf{F} \mathbf{P}^{-1} \cdot \mathbf{F}^{T} \,, \tag{4}$$

где

$$\boldsymbol{F} = \left(\boldsymbol{A}^T \boldsymbol{C} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^T \boldsymbol{C} \,, \tag{5}$$

А - матрица коэффициентов параметрических уравнений поправок, а C по формуле

$$C = P_N \left(\operatorname{diag} \left| L(X) \right|^{n-2} \right), \tag{6}$$

которая после уравнивания при V = L(X) примет вид

$$C = P_N \left(diag \left| V \right|^{n-2} \right), \tag{7}$$

где V- вектор поправок в результаты измерений из уравнивания.

В разных литературных источниках μ , входящее в (2) и (3), предлагается вычислять по разному: B[1]

$$\mu_{1} = \sqrt{\frac{V^{T} P_{n} V}{r}}, \qquad (8)$$

B[2]

$$\mu_2 = \sqrt{\frac{V^T C V}{r}} \,. \tag{9}$$

В которых *r* - количество избыточных измерений. Например, в случае равноточных измерений $(P_n = E)$ и при n = 1некоторыми авторами вместо (9) предлагалась формула

$$\mu_2 = \sqrt{\frac{V^T \left(diag \frac{1}{|V|}\right)V}{r}}.$$
 (10)

Сравнению двух формул (8) и (9) посвящена настящая статья. Как известно, практика критерий истины. Поэтому сравним выражения (8) и (9) на двух различных числовых примерах, для которых $P_n = E$. При этом применим форму-

лы (3), (4), (5), (6). В первом примере уравняем при $\boldsymbol{n}=1;2;$ 3; и 4 сеть трилатерации [3 с. 202]. В табл.1 приведены поправки в измерения из уравнивания.

 $ag{Taблицa} 1.$ Векторы $extbf{V}^T$ при разных $extbf{n}$ для первого примера

	Поправки в измерения в метрах							
n	1	2	3	4	5	6		
1.0	0,0286	0,0396	0	-0,0279	0	0		
2.0	0,0255	0,0245	0,0147	-0,0167	0,0141	0,0149		
3.0	0,0228	0,0225	0,0186	-0,0175	0,0160	0,0165		
4.0	0,0220	0,0218	0,0198	-0,0177	0,0167	0,0170		

Сырова Наталья Сергеевна. Преподаватель каф. инженерной геодезии и картографии Белорусского государственного университета транспорта.

Беларусь, Бел ГУТ, 246022, г. Гомель, ул. Кирова, 34.

Для контроля вычисления этих поправок представляем таб. 2. Результаты вычислений $oldsymbol{V}$ верны, если диагональные

элементы
$$\left(\left|V\right|^{\frac{n}{2}}\right)^T\left|V\right|^{\frac{n}{2}}$$
 будут минимальны (см. подчеркну-

тые величины) в каждой колонке, соответствующей *п* [4].

Таблица 2. Контроль уравнивания

	•	71		
n	1.0	2.0	3.0	4.0
1.0	0,0961	0,0032	1,075 · 10-4	3,76·10 ⁻⁶
2.0	0,1104	0,0022	4,523·10 ⁻⁵	9,964·10 ⁻⁷
3.0	0,1139	0,0022	$4,362 \cdot 10^{-5}$	8,797·10 ⁻⁷
4.0	0,1151	0,0022	4,388·10 ⁻⁵	$8,733\cdot10^{-7}$

В таб. 3 подставлены расчеты $\pmb{\mu}, \pmb{\mu}_1$ и $\pmb{\mu}_2$ для двух методик вычисления $\pmb{\mu}$.

Таблица 3. Сравнения двух полярных методик.

	Д	ля фор	мулы (8	3)	Для формулы (9)				
	1	2	3	4	1	2	3	4	
μ	0,040	0,033	0,033	0,033	0,219	0,033	0,0047	0,00066	
M_1	0,0546	0,0373	0,0376	0,0379	0,3013	0,0373	0,0053	0,0007	
M_2	0,0595	0,0406	0,0409	0,0412	0,3285	0,0406	0,0058	0,0008	

Поскольку формулы (3) - (6) в двух методиках одни и те же то,

$$\boldsymbol{M} = \frac{\boldsymbol{M}_{(8)} \boldsymbol{\mu}_{(9)}}{\boldsymbol{\mu}_{(8)}}, \tag{11}$$

где (8),(9) указывает какая формула применялась при вычислении $\pmb{\mu}$. Из табл. 3 видно, что формула (9) неверна т.к. дает невероятные значения для \pmb{M}_1, \pmb{M}_2 .

В табл.(4) - (6) приведены аналогичные расчеты для геодезического четырехугольника [5] при уравнивании по углам.

 $ag{Taблица} ag{4}$. Вектор $extbf{V}^T$ при разных $extbf{n}$ для второго примера

							1			
n	Попра	Поправки в углы в секундах								
	1	2	3	4	5	6	7	8		
1.0	0,005	0,021	-0,005	27,67	-0,05	12,34	-20,69	10,71		
2.0	-1,33	0,24	0,44	21,88	-8,67	19,01	-13,79	12,22		
3.0	-1,05	3,34	3,50	19,61	-12,37	17,93	-14,90	13,94		
4.0	-1,02	4,98	4,99	18,61	-13,97	17,43	-15,57	14,56		

Таблица 5. Контроль уравнивания

n		$\sum V_i ^n = \left(V ^{\frac{n}{2}}\right)^T V ^{\frac{n}{2}}$						
	1.0	2.0	3.0	4.0				
1.0	71,49	$1,46.10^3$	$3,32.10^4$	$8,06.10^5$				
2.0	77,59	$1,26.10^3$	$2,24.10^4$	$4,24.10^5$				
3.0	86,64	$1,30.10^3$	$2,13.10^4$	$3,62.10^5$				
4.0	91,13	$1,35.10^3$	$2,16.10^4$	$3,55.10^5$				

Таблица 6. Сравнение двух полярных методик

	Для фо	рмулы	(8)		Для формулы (9)			
	1	2	3	4	1	2	3	4
μ	8,546	3,545	1,613	0,735	1,891	3,545	6,527	11,92
M_1	0,1458	0,1034	0,1191	0,1431	0,0323	0,1034	0,4821	2,320
M_2	0,2535	0,1634	0,2183	0,2859	0,0561	0,1634	0,8837	4,637

В табл. 3 и 6 величины $\boldsymbol{\mu}$, \boldsymbol{M}_1 и \boldsymbol{M}_2 совпадают только при \boldsymbol{n} =2.0 и значительно расходятся при других \boldsymbol{n} .

Общий вывод - формула (9) не дает правильного значения для μ .

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Мицкевич В.И., Ялтыхов В.В., Уравнивание и оценка точности геодезических засечек под различными критериями оптимальности решения // Геодезия и картография. 1994. №7. -с.14-16.
- Джунь И.В. Некоторые аспекты практического использования Lp и эксцесс оценок при обработке геодезических измерений //Из в. Вузов, сер. Геодезия и аэрофотосъёмка 1986 №4 с. 43 48.
- Пактикум по высшей геодезии (вычислительные работы)/ Н.В. Яковлев, Н.А. Беспалов, В.П. Глумов и др. Учебное пособие для вузов. М., Недра.
- Мицкевич В.И. О невозможности поиска грубых ошибок измерений при параметрическом способе уравнивания// Геодезия и картография. - №4. - 24 - 26.

УДК 65.9 (4Бел) 31-18

Бояринцев Г.А., Лукьянюк К.В.

ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО – РЕАЛЬНЫЙ ПРИОРИТЕТНЫЙ СЕКТОР РОСТА В ЭКОНОМИКЕ РЕСПУБЛИКИ БЕЛАРУСЬ

Строительство как отрасль в советской экономике была объектом особого отношения и внимания к ней. Гражданское строительство должно было обеспечить социальные приоритеты, показывая возможности улучшения качества жизни всех трудящихся, при планомерном и справедливо организованном распределении. Глобализация задач строительства привела в конечном итоге к уникальной организации выполнения строительных работ. Строительно-монтажные тресты, строи-

тельные управления стремилось к накоплению строительной техники, оборудования большой единичной мощности, чтобы выполнять задачи конвейерного массового строительства.

Поскольку планирование носило субъективный характер и осуществлялось не самими строителями, строители должны быть готовыми принять в любой момент задачи по сооружению самых различных объектов от жилых микрорайонов до производственных комплексов.

Бояринцев Георгий Анатольевич. К.э.н., профессор каф. экономики и организации строительства Брестского государственного технического университета.

Лукьянюк Кирилл Владимирович. Аспирант каф. экономики и организации строительства Брестского государственного технического университета.

Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.