

Рисунок 5 – График функции $\beta'(\omega)$ для глиняного кирпича.

На рис. 5 показаны обобщенные экспериментальные данные (обозначены кружочками) для глиняного кирпича плотностью $ho_0=1700$ кг/м³ [2] в сравнении с расчетными (сплошная линия), полученными исходя из функции распределения (36). Значения параметров $\Pi=31,7\%$, $\mathbf{r_{cp}}=1,24\cdot10^{-8}$ м, $\mathbf{cos}\,\phi=0,156,\;\mathbf{j}=4,98\cdot10^{-7}$ кг/(м²·с) были установлены путем табулирования.

ЗАКЛЮЧЕНИЕ

Результаты вычислительного эксперимента показывают, что разработанное теоретическое описание процесса капиллярной диффузии в строительных материалах при заданных значениях параметров материала и жидкости позволяет достаточно точно вычислять коэффициенты влагопереноса.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Афонин А.В., Никитин В. И. К расчету переноса жидкой влаги в капиллярно-пористых материалах // Проблемы технологии производства строительных материалов, изделий и конструкций, строительства зданий и сооружений, подготовки инженерных кадров для строительной отрасли: Материалы VIII Междунар. науч.-практ. семинара. Мн.: Стринко, 2001. С. 29-34.
- 2. Фокин К.Ф. Строительная теплотехника ограждающих частей зданий. М.: Стройиздат, 1973, 287 с.
- 3. Лыков А.В. Теоретические основы строительной теплофизики. Минск: Изд-во Академии наук БССР, 1961, 520 с.
- Лыков А.В. Тепломассообмен: (Справочник). 2-е изд. М.: Энергия, 1978. – 480 с.
- Афонин А.В. Расчет паропроницаемости пористых материалов методом аналогии // Сб. тр. Междунар. науч.практ. конф. Напрягающие цементы, бетоны и самонапряженные конструкции/ Под ред. проф. Тура В.В. Брест, БГТУ, 2001. С. 151-155.
- 6. Лыков А.В. Тепломассообмен: (Справочник). М.: Энергия, 1971. 560 с.
- Ait-Mokhtar A., Amiri O., Sammartino S. Analytic modelling and experimental study of the porosity and permeability of porous medium — application to cement mortars and granitic rock // Magazine of Concrete Research, 1999, 51, No. 6, Dec., 391-396.
- 8. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: 1970, -720 с.
- 9. Марпл.-мл. С.Л. Цифровой спектральный анализ и его приложения. М.: Мир, 1990 .- 584 с.
- Я́нке Е., Эмде Ф., Леш Ф. Специальные функции (Формулы, таблицы, графики). М.: 1968. 344 с.

УДК 624.012.45

Радзишевски П.

ПОВТОРНОЕ ПРИМЕНЕНИЕ МАТЕРИАЛОВ, ПОЛУЧАЕМЫХ ПОСЛЕ РАЗБОРКИ КОНСТРУКЦИЙ ДОРОЖНЫХ ПОКРЫТИЙ, УТРАТИВШИХ ЭКСПЛУАТАЦИОННУЮ ПРИГОДНОСТЬ

1. ВВЕДЕНИЕ

Стремительное экономическое развитие государства способствует росту интенсивности транспортных перевозок, особенно автомобилями большой грузоподъемности. Оживленное движение легковых автомобилей в сочетании с неблагоприятными климатическими условиями Польши приводит к ускоренному разрушению дорожных покрытий. К неблагоприятным факторам, отражающимся на эксплуатационном состоянии польских дорог, следует причислить также слишком низкие финансовые средства, выделяющиеся на содержание дорожной инфрастуктуры.

Специалисты-дорожники разрабатывают новые технологии, которые наравне с традиционными, позволили бы использовать "старые" материалы из пришедших в негодность конструкций дорожного покрытия. При этом новые технологии обеспечивая использование "старого" материала должны быть экономичными и не наносить вреда окружающей среде.

В настоящее время в Польше проводятся исследования, связанные с разработкой и внедрением новых технологий выполнения оснований дорожных покрытий при использовании минерально-цементно-эмульсионных (МЦЭ) смесей и

являющихся после разборки конструкций дорожных покрытий, утративших эксплуатационную пригодность.

В настоящей статье представлены результаты исследования минерально-цементно-эмульсионных смесей (МЦЭ), применяемых для устройства дорожных оснований на базе заполнителей, типичных для северо-восточного региона Польши.

2. ОТХОДЫ ИЗ ИСПОЛЬЗОВАННЫХ КОНСТРУКЦИЙ ДОРОЖНЫХ ПОКРЫТИЙ

Источниками получения отходов от разборки дорожных покрытий, использующимися для повторного применения могут быть:

- бетонные покрытия (цементный бетон);
- булыжниковые или плиточные покрытия;
- битумные покрытия после их фрезерования.

Материалы, получаемые из бетонных покрытий в последствии подвергаются измельчению в дробилках и рассеву по фракциям. Повторно эти материалы используют в качестве оснований, либо при возведении новых бетонных покрытий.

Радзишевски Петр. Доктор технических наук, профессор, Политехника Белостоцка, Польша. асфальто-цементных бетонов, получаемых из материалов,

Каменные материалы, получаемые после разборки булыжниковых и плиточных покрытий дробятся и рассеиваются по фракциям. Как полноценный заполнитель дробленный каменный материал используют для приготовления минерально-асфальтовых смесей, предназначенных для устройства слоев покрытий и дорожных оснований.

В результате фрезерования слоев дорожных покрытий при температуре окружающей среды получают минерально-битумный материал, называемый деструктом. Этот материал чаще всего складируют на территории заводов, производящих минерально-битумные смеси. Польские дорожные фирмы, имеющие на своих складах деструкт используют его, прежде всего, для возведения оснований под покрытия дорог низкого технического класса. Однако с точки зрения ценных качеств деструкт может использоваться и как добавка к минерально-асфальтовым смесям, применяемым для устройства истираемых слоев (например, в Голландии - до 30%), связующего слоя (40-50%) и основания (до 60%).

В виду неблагоприятного воздействия на здоровье человека деструкт, получаемый из смоляных покрытий исключается из использования или применяется в качестве основания в так называемых минерально-цементного-эмульсионных (МЦЭ) смесях.

В соответствии с [1] МЦЭ является смесью с непрерывным зерновым составом, состоящей из деструкта (минерально-битумный материал), либо деструкта и минерального заполнителя, смешанных в определенных пропорциях в холодном состоянии с цементом и асфальтовой эмульсией при оптимальной влажности.

Слои основания из смесей МЦЭ характеризуются меньшей жесткостью по сравнению с основаниями, стабилизированными гидравлическим вяжущим, благодаря чему существует меньшая вероятность образования усадочных трещин в основании и ударных повреждений в верхних слоях асфальтового покрытия дорог.

Другим видом минерально-битумной смеси приготовляемой холодным способом при использовании деструкта из асфальтовых покрытий является асфальто-цементная смесь. Эта новая технология, которая проходит этап лабораторных и полевых исследований [3]. Полученные результаты исследований свидетельствуют о том, что основания, выполненные из асфальто-цементного бетона характеризуются высокой стабильностью и усадочной трещиностойкостью и имеют свойства подобные битумным макадамам.

Основными составляющими асфальто-цементных смесей являются: асфальтовый деструкт, портландцемент, дробленный песок и вода.

3. СОСТАВЛЯЮЩИЕ МАТЕРИАЛЫ ДЛЯ ПРИГОТОВЛЕНИЯ МЦЭ И АСФАЛЬТО-ЦЕМЕНТНОГО БЕТОНА

Лабораторным исследованиям были подвергнуты типичная для северо-восточного региона Польши минеральные заполнители, использующиеся в виде составляющих минерально-цементно-эмульсионных и асфальто-цементных смесей: гравий, песчано-гравийная смесь и дробленный песок. Гранулометрический состав исследованных заполнителей

представлен в табл. 1.

Таблица 1 — Гранулометрический состав минеральных заполнителей

	нителеи.						
	Прошло через сито (%)						
	Размер сторо- ны сита (мм)	гравий	гравийно- песочная смесь	дробленный песок	известковая мука		
ĺ	20.0	100.0	100.0				
	16.0	97.2	96.0				
	12.8	91.1	85.9				
	10.0	82.4	74.8				
	8.0	72.9	65.7				
	6.3	63.5	56.3				
	4.0	45.0	41.3	100.0			
	2.0	18.3	18.8	92.6	100.0		
	0.84	8.1	6.0	57.1			
	0.42	3.6	2.4	36.1	99.6		
	0.30	1.8	1.5	25.6	99.0		
	0.18	0.7	0.9	13.5	97.2		
	0.15	0.5	0.6	11.0	95.6		
	0.075	0.4	0.4	3.3	82.3		

Битумный деструкт, отобранный на заводе в Белостоке, производящем асфальто- минеральные смеси исследовали для оценки гранулометрического состава и содержания асфальта (табл. 2).

Таблица 2 – Результаты исследования битумного деструкта.

Размер сторо-	Прошло через сито (%)		
ны сита (мм)	Гранулометрический	Гранулометрический	
	состав	состав после экс-	
		тракции деструкта	
63.0	100.0		
31.5	90.4		
25.0	67,4		
20.0	61.1	100.0	
16.0	54.6	99.44	
12.8	45.0	97,35	
10.0	38.2	91.57	
8.0	33.0	84.75	
6.3	27.0	79.64	
4.0	18.5	66.59	
2.0	9.4	50.08	
0.84	3.7	34.63	
0.42	1.8	23.89	
0.30	1.1	17.30	
0.18	0.0	10.42	
0.15		8.18	
0.075		3.19	
Содержание	6.1 %		
асфальта в			
деструкте (%)			

Таблица 3 – Результаты исследований асфальтовой свободораспадающейся эмульсии К3-60.

Обозначение		Содержание	Требования согласно сборника 60	
			IBDiM	
1.	Содержание асфальта	60.1	60±2	
2.	Цвет	коричневый	темно-коричневый	
3.	Внешний вид	однородный	однородный	
4.	Прочность (%)	0.23	< 0.5	
5.	Сцепляемость с базальтом (%)	86.0	>85	
6.	Клейкость Энглера [⁰ E]	4.25	5±1	

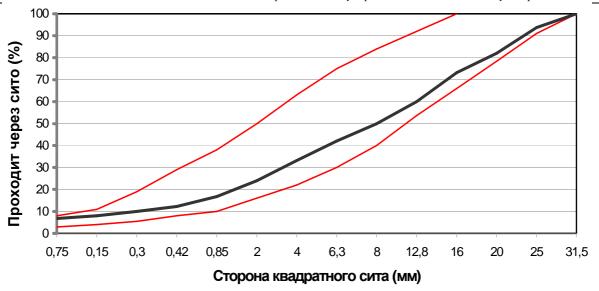


Рисунок 1 – Гранулометрический состав минерально-цемнтной смеси.

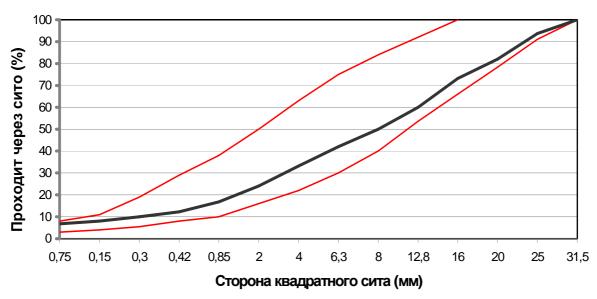


Рисунок 2 – Гранулометрический состав смеси асфальто-цементного бетона.

В исследованиях применяли известковую муку с гранулометрическим составом, представленным в табл. 1. При проведении опытов использовали катионовую свободно распадающуюся эмульсию. С целью определения пригодности эмульсии для приготовления минерально-цементно-эмульсионных смесей выполнили лабораторные исследования, определяющие следующие качества:

- окраску;
- содержание асфальта;
- внешний вид;
- прочность;
- сцепляемость с базальтом;
- клейкость.

Результаты исследований представлены в таблице 3.

Как видно из данных представленных в табл. 3 катионовая эмульсия K3 удовлетворяет требованиям рекомендаций [1, 2].

4. ПРОЕКТИРОВАНИЕ СОСТАВА МИНЕРАЛЬНО-ЦЕМЕНТНО-ЭМУЛЬСИОННЫХ И АСФАЛЬТО-ЦЕМЕНТНЫХ СМЕСЕЙ

При определении зернового состава МЦЭ и асфальтоцементных смесей использовали рекомендации IBDиМ [1]. При проектировании МЦЭ смеси использованы следующие заполнители: песчано-гравийная смесь, гравий, известковая мука, асфальтовый деструкт и портландцемент класса 32,5. Минерально-цементную смесь проектировали с непрерывным зерновым составом с двумя расходами цмемента: в количестве 3% (смесь МЦЭ I) и 4% (смесь МЦЭ II). Зерновой состав запроектированной минерально-цементной смеси представлен графиком, приведенным на рисунке 1.

Кривая зернового состава МЦЭ смеси располагается в области, занимаемой между граничными кривыми для подготовок, используемых при устройстве дорог с категорией движения от KR3 до KR6.

Таблица 4.

ица 4.						
		Вид образца смеси				
	Обозначение	І ЄДМ	ІІ ЄДМ	Бетон асфальто-	Бетон асфальто-	
				цементный	цементный Ц/П=1:2	
				Ц/П=1:1		
1.	Прочность (кН)	5.8	6.2	9.2	7.2	
2.	Деформация (мм)	1.4	1.7	1.3	4.9	
3.	Прочность на косвенное рас-					
	тяжение, 0^{0} С (МПа)	0.78	0.77	0.67	0.60	
4.	Прочность на косвенное рас-					
	тяжение, 10^{0} C (МПа)	0.51	0.50	0.53	0.43	
Госле 10	Іосле 10 циклов замораживания –					
оттаива	оттаивания					
5.	Показатель морозостойкости					
	на основе стабильности	0.91	0.94	0.89	0.97	
6.	Показатель морозостойкости					
	на основе определения прочно-					
	сти на косвенное растяжение					
	при 10 ⁰ C	0.81	0.92	0.85	0.80	

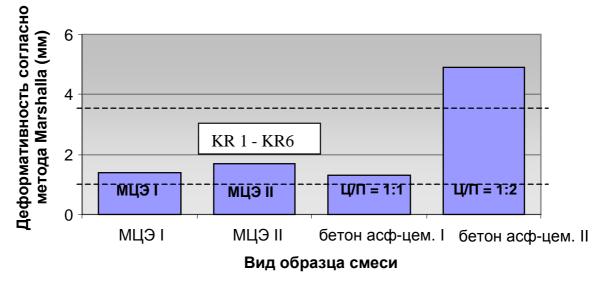


Рисунок 3 – Результаты деформации исследуемых смесей.

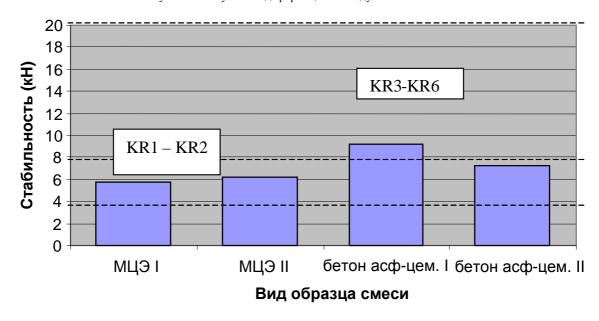


Рисунок 4 – Результаты стабильности исследования смесей.

Асфальто-цементную бетонную смесь проектировали на базе следующих материалов: асфальтового деструктора, дробленного песка, портландского цемента класса 32,5. Было запроектировано две смеси, отличавшиеся содержанием цементного раствора, выраженного отношением Ц/П (содержание цемента по отношению к содержанию песка). В первой смеси использовали цементно-песочный раствор с соотношением 1:1, во второй - 1:2. Кривая рассева смеси асфальтоцементного бетона представлена на рисунке 2 (граничные кривые как и для МЦЭ смеси). Установлено необходимое количество асфальтовой эмульсии, исходя из положения о том, что содержимое асфальта в МЦЭ смеси должно составлять ≤6%. Учитывая содержимое асфальта в деструкте в количестве 6,1% рассчитанное содержимое эмульсии составляло 3,4%.

5. ИССЛЕДОВАНИЕ МЦЭ И АСФАЛЬТО-ЦЕМЕНТНЫХ СМЕСЕЙ

С целью определения пригодности запроектированных МЦЭ асфальто-цементных смесей для строительства оснований под покрытие дорог были изготовлены лабораторные образцы для исследований методом Marshalla и в соответствии с т.н. "бразильской методикой" (образцы согласно Marshalla). Исследования выполняли на образцах, хранившихся испытаний по следующим схемам:

- 7 суток хранения и твердения при комнатной температуре;
- 7 суток хранения и твердения при комнатной температуре, а затем 10 циклов замораживания-оттаивания.

В соответствии с методом Marshalla определяли прочность материала на растяжение образцов при 0^{0} С и 10^{0} С.

Результаты исследований МЦЭ смесей и асфальтовых бетонов представлены в таблице 4.

Результаты исследований стабильности и деформативности согласно метода Marshalla сравнивали с требуемыми показателями для смесей МЦЭ согласно [1]. Согласно требованиям [1] стабильность и деформативность смеси МЦЭ иссле- дуются при температуре 60^{0} C на образцах, уплотненных согласно методики Marshalla и хранящиеся в течение 28 суток. В настоящей работе приведены значения этих параметров, определенных после 7 суток хранения.

На рисунке 3 представлены графические результаты исследования деформативности, определенные методом Marshalla.

Как видно из рисунка 1 только смесь асфальтоцементного бетона с цементно-песчаным раствором 1:2 (после 7 суток хранения) является излишне деформативной и не соответствует требованиям рекомендаций (деформации от 1,0 до 3,5мм). Остальные МЦЭ смеси и асфальто-цементный бетон удовлетворяет требованиям по деформативности для всех категорий движения согласно [1].

На рисунке 4 представлены результаты исследований стабильности, определенной согласно метода Marshalla и представлены граничные значения, требуемые при устройстве основания в зависимости от категории движения [1]. Из рисунка 4 следует, что испытанные смеси МЦЭ уже после 7 суток имеют стабильность, позволяющую использовать их для оснований дорог с нагрузками KR1-KR2 (4.0-20.0 кН), тогда как асфальто-цементные бетоны могут бытьиспользованы для устройства оснований под проезжую часть дорог с нагрузками KR3-KR6 (8.0-20.0 кН).

Результаты исследований морозостойкости, определенные на основе показателей стабильности и прочности при растяжении при температуре 10^{9} С перед и после замораживания (табл. 4) указывают на очень высокое сопротивление (долговечность) всех испытанных смесей на действие воды и морозы (коэффициент морозостойкости от 0,8 до 0,97).

В табл. 4 представлены результаты испытаний на растяжение МЦЭ смесей и асфальтового бетона при температурах 0^{0} С и 10^{0} С. Результаты исследований показывают, что МЦЭ смеси при $T=0^{0}$ С характеризуются прочностью при растяжении, большей, чем показывают образцы асфальто-цементного бетона. При температуре $T=10^{0}$ С МЦЭ и асфальто-цементнык бетоны показывают близкие значения прочности при растяжении. Это свидетельствует о более интенсивном росте жесткости МЦЭ смесей при снижении температуры по сравнению с асфальто-цементными бетонами.

6. ЗАКЛЮЧЕНИЕ

Выполненные исследования позволяют утверждать, что МЦЭ смеси асфальто-цементные бетоны, выполняемые с использованием заполнителей, характерных для северовосточного региона Польши являются пригодными для устройства оснований под дорожные покрытия.

Позитивные прочностные характеристики асфальтоцементных бетонов позволяют прогнозировать их хорошую работу в дорожных покрытиях, воспринимающих большие нагрузки (н.п., стоянки, паркинги, автобусных остановок и т.л.)

Резкое развитие автомобильного транспорта, поврежденные за много лет эксплуатации дороги с битумным покрытием свидетельствует в пользу развития новых экологических технологий, позволяющих использовать при строительстве новых дорог в значительных объемах битумный деструкт от разборки пришедших в негодность конструкций.

Исследования выполнены в рамках работ, проводимых Белостоцкой Политехникой.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Warunki techniczne wykonywania warstw podbudowy z mieszanki mineralno-cemnetowo-emulsyjnej. Wydawnictwo IBDiM, zeszyt nr 61, Warszawa 1999
- Drogowe kationowe emulsje asfaltowe EmA-99. Wydawnictwo IBDiM, zeszyt 60, Warszawa 1999
- Chałabis J., Kukiełka J.: Lubelskie doświadczenia nad zastosowaniem betonów cementowo-asfaltowych w podbudowach i warstwach wiążących nawierzchni przystanków autobusowych. V Międzynarodowa Konferencja "Trwałe i bezpieczne nawierzchnie drogowe", Kielce 1999.