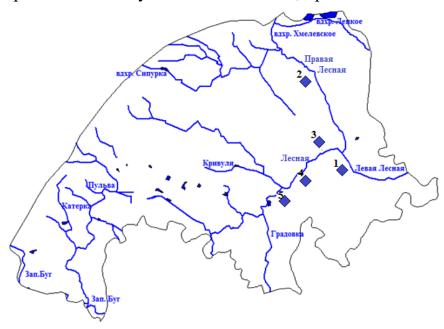
КЛИМЧУК Ю.А.

Брест, БрГУ имени А.С. Пушкина Научный руководитель – Шелест Т.А., канд. геогр. наук, доцент


СОВРЕМЕННОЕ СОСТОЯНИЕ ВОД РЕКИ ЛЕСНАЯ

Качество вод — характеристика состава и свойств воды, определяющая пригодность её для конкретного вида водопользования (ГОСТ 17.1.1.01-77. «Охрана природы. Гидросфера. Использование и охрана вод. Основные термины и определения»).

Исследуемая р. Лесная является правым притоком Западного Буга. Длина реки составляет 85 км, площадь водосбора — 2650 км². Средняя ширина реки — 25 м, высота берега — 1,5 м, местами достигает 3—4 м. Река образуется в результате слияния двух рек — Правая Лесная и Левая Лесная в 1 км на восток от д. Угляны Каменецкого района. Устье реки расположено в 0,5 км на запад от д. Теребунь Брестского района [1].

Целью исследования является анализ качества воды р. Лесная и её главных притоков по данным мониторинга за 2017 г.

В бассейне р. Лесная мониторинг поверхностных вод по гидрохимическим показателям проводился в 5 пунктах наблюдений, представленных на рисунке.

 $1-\partial$. Чемери 1, $2-\partial$. Чернаки, $3-\partial$. Угляны, $4-\partial$. Голый Борок, $5-\varepsilon$. Каменец

Рисунок – Сеть пунктов мониторинга в бассейне р. Лесная в пределах Каменецкого района

В таблице представлены средние концентрации основных загрязняющих веществ в воде р. Лесная за 2017 г.

Таблица – Средние показатели химических веществ в бассейне р. Лесная за 2017 г.

Точка отбора	рН	Растворенный кислород	Взвешенные вещества	Аммоний- ион	Нитрит- ион	Нитрат- ион	Фосфат- ион	Нефте- продукты	Железо общее
ПДК	<i>6,5- 8,5</i>	6	25	0,39	0,024	9,03	0,066	0,05	0,135
Левая Лесная (д. Чемери 1)	7,55	6,080	8,5	0,12	0,018	1,74	0,076	0,01	0,775
Правая Лесная (д. Чернаки)	7,50	6,085	10,9	0,10	0,032	2,22	0,062	0,01	0,515
Лесная (д. Угляны)	7,45	6,170	7,7	0,10	0,029	3,18	0,060	0,01	0,465
Лесная (д. Голый Борок)	7,45	7,870	6,9	0,16	0,028	3,00	0,058	0,01	0,295
Лесная (г. Каменец)	7,55	6,735	13,2	0,12	0,027	2,31	0,063	0,02	0,465

Представленные в таблице данные позволяют проанализировать, как изменяются показатели качества воды при движении вниз по течению реки.

Кислотность существенно не изменяется на всём протяжении реки, изменяясь от 7,45 до 7,55 при норме 6,5-8,5.

Содержание растворенного кислорода в воде р. Лесная увеличивается вниз по течению реки, достигая максимума в створе у д. Голый Борок, после чего несколько уменьшается (в створе у г. Каменец). Во всех пунктах наблюдений выявлено превышение ПДК, которое в районе д. Голый Борок превышает ПДК на 31 %. Кислород является одним из важнейших растворенных газов, постоянно присутствующих в поверхностных водах, режим которого в значительной степени определяет химико-биологическое состояние водоемов. Растворенный кислород в поверхностных водах находится в виде молекул О2. Растворимость его растет с понижением температуры, минерализации и повышением давления. В поверхностных водах содержание растворенного кислорода может колебаться от 0 до 14 мг/дм³ и подвержено значительным сезонным и суточным колебаниям. Суточные колебания в основном зависят от соотношения интенсивности процессов его продуцирования и потребления и могут достигать 2,5 мг/дм³ растворенного кислорода.

Содержание *взвешенных веществ* на всем протяжении реки соответствовало установленному нормативу качества. Наибольшее содержание их отмечается в створе в г. Каменец.

Концентрация *аммоний-иона* (NH_4^+) по всем пунктам на р. Лесная отличается незначительно и не превышает ПДК. Аммоний-ион в природных водах накапливается при растворении в воде газа — аммиака (NH_3), образующегося при биохимическом распаде азотсодержащих органических соединений. Растворенный аммиак поступает в водоем с поверхностным и подземным стоком, атмосферными осадками, а также со сточными водами. Наличие иона аммония в концентрациях, превышающих фоновые значения, указывает на свежее загрязнение и близость источника загрязнения

(коммунальные очистные сооружения, отстойники промышленных отходов, животноводческие фермы, скопления навоза, азотных удобрений и др.).

Средняя концентрация *нитрит-иона* по всем пунктам наблюдений, кроме пункта на р. Левая Лесная у д. Чемери 1, превышает установленные ПДК, больше всего — у д. Чернаки. Нитриты — промежуточная ступень в цепи бактериальных процессов окисления аммония до нитратов или, напротив, восстановления нитратов до азота и аммиака. Подобные окислительно-восстановительные реакции характерны для станций аэрации, систем водоснабжения и природных вод. Большое количество нитратов может поступать с промышленными и бытовыми сточными водами, особенно со стоками после биологической очистки воды.

По содержанию *нитрат-ионов* и *нефтепродуктов* превышения ПДК не зафиксировано на всем протяжении реки.

Средние концентрации фосфатичина в воде в 2017 г. достигли наибольших значений в пункте, расположенном на р. Левая Лесная у д. Чемери 1, где они превысили ПДК. Во всех остальных пунктах превышение не выявлено. Фосфор является одним из главных биогенных компонентов, определяющих продуктивность водоема. Загрязнение фосфатом-иона способствует широкое применение фосфорных удобрений (суперфосфат и др.) и полифосфатов (как моющих средств). Главными источниками коммунально-бытовые поступления фосфатов реки являются сельскохозяйственных промышленные сточные воды городов, стоки предприятий, воздействие которых приводит к трансформации естественного режима фосфатов, росту концентраций рассматриваемого ингредиента в воде и развитию процессов, способствующих эвтрофикации речных экосистем.

Превышение *общего железа* в водах р. Лесная в 2017 г. фиксируется по всем пунктам наблюдений, уменьшаясь вниз по течению реки. Исключение составил пункт в г. Каменец, где наблюдается повышение. В пункте у д. Чемери 1 содержание железа общего превышает ПДК практически в 6 раз. Железо — неорганическое вещество в водных системах. Железо всегда присутствует в воде, но, как и остальные показатели, отклонения его от нормы влияет на качество воды в целом. Концентрация железа подвержена заметным сезонным колебаниям. Обычно в водоемах с высокой биологической продуктивностью в период летней и зимней стагнации заметно увеличение концентрации железа в придонных слоях воды.

Таким образом, состояние вод р. Лесная в разных пунктах наблюдений несколько различается. По ряду параметров состояние вод является удовлетворительным, однако по некоторым из них (содержание железа общего, растворенного кислорода и нитрит-иона) наблюдаются превышения ПДК, особенно существенные по содержанию железа общего.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Блакітная кніга Беларусі: энцыкл. / рэдкал.: Н. А. Дзісько [і інш.]. – Мінск : БелЭн, 1994. – 415 с.