#### Вестник Брестского государственного технического университета. 2008. №5

#### DERECHENNIK A.S. The stochastic model of the multiparticle disordered system for study of the topological properties of dispersed structures

The 2D disordered dispersed structures synthesis algorithm was developed and tested on model samples, based on the filling method. Density coefficient is about 0.80 for received models of random packs of mono- and polysized particles in a disc approach. Synthesized structures models are compactly presented for further topological study in terms of stochastic connectivity matrixes. Results are applicable for disperse systems and composite materials simulation modeling, purposed to structural and topological properties study, including distinctive features in the non-homogeneous porous mediums.

### УДК 539.3

## Босяков С.М.

# МОДЕЛИРОВАНИЕ ТРЕХМЕРНЫХ ФРОНТОВ ВОЛН ДЕФОРМАЦИЙ, РАСПРОСТРАНЯЮЩИХСЯ В НЕУПРУГИХ СРЕДАХ ОТ ТОЧЕЧНОГО ИСТОЧНИКА ВОЗМУЩЕНИЙ

Введение. Анализ закономерностей распространения одномерных и двумерных волновых движений в неупругих материалах, работающих при динамических нагрузках за пределами упругих состояний, рассматривались в работах [1, 2]. В настоящей работе представлены результаты исследования трехмерных волновых движений, распространяющихся от сосредоточенного источника возмущений для сред, описываемых определяющими соотношениями в форме произвольных перекрестных зависимостей между первыми инвариантами тензоров и вторыми инвариантами девиаторов напряжений и деформаций. В качестве конкретных примеров таких зависимостей рассматриваются неупругие материалы с малыми упругопластическими деформациями и среды, обладающими внутренними трением.

Координаты точек волновых фронтов. Определяющие соотношения для неупругих сред имеют форму произвольных перекрестных зависимостей между первыми инвариантами тензоров и вторыми инвариантами девиаторов напряжений и деформаций:

$$T = T(\Gamma, \theta), \sigma = \sigma(\Gamma, \theta),$$

где *T* - интенсивность касательных напряжений (второй инвариант девиатора напряжений), *σ* - среднее напряжение (первый инвариант тензора напряжений), *Γ* - интенсивность деформаций сдвига (второй инвариант девиатора деформаций), *θ* - объемная деформация (первый инвариант тензора деформаций).

Динамические уравнения равновесия в отсутствие массовых сил представим в виде [2]:

$$\sum_{j=1}^{3} \left[ \left( \frac{\partial \sigma}{\partial \theta} + \frac{T}{3\Gamma} \right) \frac{\partial^2 u_i}{\partial x_j \partial x_i} + \frac{2e_{ij}}{\Gamma} \left( \frac{\partial T}{\partial \theta} \sum_{k=1}^{3} \frac{\partial^2 u_k}{\partial x_j \partial x_k} + \frac{2}{\Gamma} \left( \frac{\partial T}{\partial \Gamma} - \frac{T}{\Gamma} \right) \sum_{k=1}^{3} \sum_{m=1}^{3} e_{km} \frac{\partial^2 u_k}{\partial x_m \partial x_j} \right] +$$
(1)

$$+\frac{2}{\Gamma}\frac{\partial\sigma}{\partial\Gamma}\sum_{m=1}^{3}e_{jm}\frac{\partial^{2}u_{j}}{\partial x_{m}\partial x_{i}}+\frac{T}{\Gamma}\frac{\partial^{2}u_{i}}{\partial x_{j}^{2}}\right)=\rho\frac{\partial^{2}u_{i}}{\partial t^{2}}, i=\overline{1,3}.$$

Начальные данные к системе (1) зададим на поверхности  $Z(x_1, x_2, x_3, t) = 0$  и перейдем к новым переменным  $g = Z(x_1, x_2, x_3, t)$ ,  $g_i = z_i(x_1, x_2, x_3, t)$ ,  $i = \overline{1, 3}$ . После преобразования системы (1), приравняв нулю определитель, составленный из коэффициентов при частных производных второго порядка по g, получим следующее характеристическое уравнение:

$$\frac{q_0 p_0^6}{c_2^6} + \frac{q_1 p_0^4}{c_2^4} + \frac{q_2 p_0^2}{c_2^2} + q_3 = 0.$$
 (2)

Здесь коэффициенты *q<sub>k</sub>* имеют вид:

$$\begin{split} q_{0} &= -1, q_{1} = \frac{1}{\Gamma} \sum_{k=1}^{3} p_{k}^{2} (2T + c_{kk}\Gamma), \\ q_{2} &= -\frac{1}{\Gamma^{2}} \Biggl( \sum_{k \neq l \neq m=1}^{3} \left( T p_{k}^{4} \left( T + 2\Gamma c_{kk} \right) + \right) \\ p_{l}^{2} p_{m}^{2} \Biggl( 3T^{2} + \Gamma T (c_{ll} + c_{mm}) - \Gamma^{2} (c_{lm} c_{ml} - c_{ll} c_{mm}) \Biggr) \Biggr), \\ q_{3} &= \left( \frac{T}{\Gamma} \right)^{3} \Biggl( p_{1}^{2} + p_{2}^{2} \Biggr) \Biggl( p_{1}^{2} + p_{3}^{2} \Biggr) \Biggl( p_{2}^{2} + p_{3}^{2} \Biggr) + \\ + p_{1}^{2} p_{2}^{2} p_{3}^{2} (c_{12} c_{23} c_{31} + c_{13} c_{32} c_{21} + c_{11} c_{22} c_{33} \Biggr) + \\ &+ \frac{T}{\Gamma} \sum_{k \neq l \neq m=1}^{3} \left( \frac{T}{\Gamma} c_{kk} p_{k}^{2} \Bigl( p_{k}^{2} + p_{l}^{2} \Bigr) \Bigl( p_{k}^{2} + p_{m}^{2} \Bigr) + \\ \cdot \Bigl( c_{kk} p_{k}^{4} \Bigl( c_{ll} p_{l}^{2} + c_{mm} p_{m}^{2} \Bigr) - c_{lm} c_{ml} p_{l}^{2} p_{m}^{2} \Bigl( p_{l}^{2} + p_{m}^{2} \Bigr) \Bigr) - \\ &- p_{1}^{2} p_{2}^{2} p_{3}^{2} c_{kk} c_{lm} c_{ml} \Biggr), \end{split}$$

где  $p_k = \partial z / \partial x_k$ ,  $p_0 = \partial z / \partial t$ ,  $c_2 = \sqrt{G_0 / \rho}$ ,  $G_0$  - начальный модуль сдвига. Отметим, что характеристическое уравнение (2) получено в предположении, что система координат ( $x_1, x_2, x_3$ ) совпадает с направлениями главных осей деформаций (напряжений) и в этом случае  $e_{ij} = 0$ ,  $i \neq j = \overline{1, 3}$ .

Рассмотрим уравнение характеристик (2) как алгебраическое уравнение третьего порядка относительно  $p_0^2$  и представим его решение в виде:

$$p_0^{(n)} = c_2 \sqrt{2\sqrt{-\frac{p}{3}} \cos\left(\frac{\Lambda + 2\pi(4-n)}{3}\right) - \frac{q_1}{3q_0}},$$

$$\Lambda = \arccos\left(-\frac{q}{2}\sqrt{-\left(\frac{3}{p}\right)^3}\right),$$
(3)

Босяков Сергей Михайлович, доцент каф. теоретической и прикладной механики Белорусского государственного университета. Беларусь, БГУ, 220050 Беларусь, Минск, пр. Независимости, 4.

где 
$$p = -\frac{q_1^2}{3q_0^2} + \frac{q_2}{q_0}; \quad q = \frac{2q_1^3}{27q_0^3} - \frac{q_1q_2}{3q_0^2} + \frac{q_3}{q_0}, \quad n = \overline{1, 3}.$$

Верхний индекс *n* указывает на тип волн деформации: *n* = 1 - квазипродольная волна, *n* = 2, 3 - квазипоперечные волны.

Для построения поверхности разрыва (фронта) волны на основании решения одного из дифференциальных уравнений в частных производных первого порядка (3) построим систему бихарактеристик, определяемую как решения следующих систем обыкновенных дифференциальных уравнений [3]:

$$\frac{dx_{s}^{(n)}}{dt} = \frac{\partial p_{0}^{(n)}}{\partial p_{s}}, n, s = \overline{1, 3}.$$
 (4)

После решения дифференциальных уравнений (4), в предположении, что волновое возмущение возникло в момент времени t = 0 в начале координат, получаем:

$$\frac{x_{s}^{(n)}}{c_{2}t} = \frac{1}{v_{n}} \left( \frac{1}{2\sqrt{-3\hat{\rho}}} \left( \frac{2\hat{q}_{1}q_{1s}}{3q_{0}^{2}} - \frac{q_{2s}}{q_{0}} \right) \cos\left(\frac{\hat{\Lambda} + 2\pi(4-n)}{3}\right) - \frac{1}{3}\sqrt{-\frac{\hat{\rho}}{3}} \sin\left(\frac{\Lambda + 2\pi(4-n)}{3}\right) \sqrt{\frac{\hat{\rho}^{3}}{4\hat{\rho}^{3} + 27\hat{q}^{2}}} \times (5) \\ \times \left( \left( \frac{2\hat{q}_{1}^{2}q_{1s}}{9q_{0}^{3}} - \frac{\hat{q}_{2}q_{1s} + \hat{q}_{1}q_{2s}}{3q_{0}^{2}} + \frac{q_{3s}}{q_{0}} \right) \sqrt{\left(-\frac{3}{\hat{\rho}}\right)^{3}} - \frac{9\hat{q}\sqrt{3}}{2} \sqrt{\left(-\frac{1}{\hat{\rho}}\right)^{5}} \left( \frac{2\hat{q}_{1}q_{1s}}{3q_{0}^{2}} - \frac{q_{2s}}{q_{0}} \right) \right) \right).$$

Здесь коэффициенты  $q_{1i}$ ,  $q_{2i}$  и  $q_{3i}$  имеют следующий вид:

$$\begin{aligned} q_{1i} &= \frac{2}{\Gamma} (2T + c_{ii}\Gamma) n_i, \\ q_{2i} &= 2n_i \left( n_i^2 \left( c_{il}c_{li} - c_{ii}c_{ll} \right) + \right. \\ &+ n_m^2 \left( c_{im}c_{mi} - c_{ii}c_{mm} \right) - \\ &- \frac{T}{\Gamma} \Big( 4c_{ii}n_i^2 + n_i^2 \left( c_{ii} + c_{ll} \right) + \\ &+ n_m^2 \left( c_{ii} + c_{mm} \right) - \left( \frac{T}{\Gamma} \right)^2 \left( 3 - n_i^2 \right) \Big), \end{aligned}$$

$$\begin{aligned} q_{3i} &= 2n_i \left( \frac{T}{\Gamma} \bigg( \bigg( \frac{T}{\Gamma} \bigg)^2 \left( 1 - n_i^2 \right) \bigg( 1 + n_i^2 \bigg) + \right. \\ &+ \frac{T}{\Gamma} \bigg( 2n_i^2 c_{ii} + \sum_{k=1}^3 c_{kk} n_k^4 + n_i^2 n_m^2 \sum_{k=1}^3 c_{kk} \bigg) + \\ &+ n_i^2 \left( 2n_i^2 + n_i^2 \right) (c_{ii}c_{ll} - c_{il}c_{li} \right) + \\ &+ n_m^2 \left( 2n_i^2 + n_m^2 \right) (c_{ii}c_{mm} - c_{im}c_{mi} ) \bigg) + \\ &+ n_i^2 n_m^2 \left( c_{11}c_{22}c_{33} + c_{12}c_{23}c_{31} + \right) + \\ &+ c_{13}c_{21}c_{32} - \sum_{k\neq l\neq m=1}^3 c_{kk}c_{lm}c_{ml} \bigg) \bigg], \end{aligned}$$

Физика, математика, информатика

$$i \neq I \neq m = \overline{1, 3}.$$

Выражения  $v_n$  для фазовых скоростей волн получаем из соотношений для  $p_0^{(n)}$  заменой  $\Lambda$ , p и  $q_1$  на  $\hat{\Lambda}$ ,  $\hat{p}$  и  $\hat{q}_1$ ; выражения для  $\hat{p}$  и  $\hat{q}$  - из соотношений для p, q заменой  $q_i$  на  $\hat{q}_i$ ; выражение для  $\hat{\Lambda}$  - из формулы для  $\Lambda$  заменой p, q на  $\hat{p}$  и  $\hat{q}$ ; выражения для  $\hat{q}_i$  - из соотношений для  $q_i$  заменой параметров  $p_k$  на направляющие косинусы нормали к характеристической поверхности  $n_k = \cos \alpha_k (\alpha_k -$ угол между нормалью к фронту волны и координатной осью  $x_k$ ). Далее выполним построение волновых поверхностей для неупругих материалов, описываемых теорией малых упругопластических деформаций (пластичные металлы) и для сред, обладающих внутренним трением (грунты).

Пластичные металлы. Интенсивность касательных напряжений и среднее напряжение в соответствии с теорией малых упругопластических деформаций имеют вид [2]:

$$T = \Gamma G(\Gamma), \ \sigma = K \theta,$$
 (6)

где  $G(\Gamma)$  - секущий модуль диаграммы зависимости T от  $\Gamma$ , K модуль объемной деформации. С учетом соотношений (6) для коэффициентов  $c_{jj}$  в формулах (5) получаем следующие выражения [2]:

$$c_{ij} = K + \frac{G}{3} \left( 1 + \delta_{ij} \right) + \frac{4}{\Gamma} \frac{dG}{d\Gamma} e_{ii} e_{jj}$$

Следуя [2], зависимость между T и  $\Gamma$  примем в форме примем  $T = G_0 \Gamma(1-r)$ ,  $G = G_0 (1-r)$ . (7)

Здесь  $r = \Gamma/(2\Gamma_S)$ ,  $\Gamma_S$  - предельное значение интенсивности деформаций сдвига, соответствующее точке диаграммы, в которой  $dT/d\Gamma = 0$ . Здесь и далее  $\varepsilon_i = \theta/3 + e_{ii}$  и  $\Gamma = \sqrt{\frac{2}{3} \left( (\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2 + (\varepsilon_3 - \varepsilon_1)^2 \right)}$  [4]. Учтем выражения (7) в формулах для коэффициентов  $q_{ik}$ , и выполним

выражения (7) в формулах для коэффициентов  $Q_{ik}$ , и выполним построение безразмерных трехмерных фронтов квазипродольной и квазипоперечной волн деформаций. Волновые поверхности для случая равномерной двухосной деформации ( $\varepsilon_1 = \varepsilon_2$ ,  $\varepsilon_3 = 0$ ) представлены на рис. 1. При построении принимаем r = 2 и  $K = 5G_0/3$ .



#### Вестник Брестского государственного технического университета. 2008. №5





Из рис. 1 видно, что распространение квазипоперечной волны деформации со скоростью  $v_3$  сопровождается образованием двух лакун в виде конусов, осью которых является координатная ось  $0x_3$ , а также лакуны в виде кольца, центр которого также находится на оси  $0x_3$ . Волновые поверхности при одноосной деформации ( $\epsilon_1 \neq 0$ ,  $\epsilon_2 = \epsilon_3 = 0$ ) и при том же значении r можно получить, повернув фигуры, представленных на рис. 1, на угол 90° относительно координатной оси  $0x_2$ . Для чистого сдвига ( $\epsilon_1 = -\epsilon_2$ ,  $\epsilon_3 = 0$ ) трехмерные фронты квазипродольной и квазипоперечной волн соответственно, представлены на рис. 2. При построении принимаем r = 3/2.





Рис. 2. Фронты волн деформаций, распространяющихся в условиях чистого сдвига, в материале, описываемом теорией малых упругопластических деформаций, со скоростями V<sub>1</sub> (1) и V<sub>3</sub> (2)

Из рис. 2 видно, что при распространении квазипоперечной волны со скоростью  $V_3$  возникают четыре лакуны в виде полос, вытянутых вдоль оси координат  $0x_3$ . При уменьшении значения r трехмерные фронты волн деформаций, распространяющиеся от точечного источника в материале с малыми упругопластическими деформациями, в рассмотренных случаях двухосной, одноосной деформации и чистого сдвига принимают вид сфер. Трехмерный фронт квазипоперечной волны, распространяющейся со скоростью  $V_3$ , является сферой независимо от значения r.

Среды с внутренним трением. Для сред, обладающих внутренним трением, используем модель сжимаемой жесткоупругопластической среды, определяющие соотношения которой имеют следующий вид [2]:

$$T = G_0 \Gamma - f K \theta, \ \sigma = K \theta, \tag{8}$$

где  $G_0$  - модуль сдвига при чистом сдвиге ( $\sigma = 0$ ), K - модуль объемной деформации, f < 1 - коэффициент внутреннего трения. Выражения для коэффициентов  $C_{ij}$  из формул (5) с учетом соотношений (8) принимают следующий вид [2]:

$$c_{ij} = K + \frac{1}{3} \left( 1 + \delta_{ij} \right) \left( G_0 - f K \frac{\theta}{\Gamma} \right) - \frac{2}{\Gamma} f K \left( 1 - \frac{2\theta}{\Gamma^2} e_{jj} \right) e_{ij}.$$

Подставим соотношения (8) в коэффициенты  $q_{ik}$  и выполним построение волновых поверхностей для сред, обладающих внутренним трением. На рис. 3 и 4 представлены безразмерные трехмерные фронты волн деформаций, распространяющиеся в условиях равномерного двухосного укорочения ( $\varepsilon_1 = \varepsilon_2 < 0$ ,  $\varepsilon_3 = 0$ ) и в условиях одноосного укорочения ( $\varepsilon_1 < 0$ ,  $\varepsilon_2 = \varepsilon_3 = 0$ ) соответственно. При построении принимаем модуль объемной деформации  $K = (2G_0)/\sqrt{3}$ . Коэффициент внутреннего трения в первом случае f = 1/2, во втором случае - f = 3/4.

Из рис. З видно, что при распространении квазипоперечной волны, имеющей скорость  $V_3$ , возникает две конические лакуны, а также кольцевая лакуны, осью которых является координатная ось

x<sub>3</sub>. При увеличении коэффициента внутреннего трения основание конических лакун уменьшается, а ширина кольцевой лакуны возрастает. Также следует отметить, что представленные на рис. 3 фигуры, являются поверхностями вращения, что позволяет предполагать о существовании аналогии между средами, обладающими внутренним трением и трансверсально-изотропными (гексагонально анизотропными) средами.



Рис. 3. Фронты волн деформаций, распространяющихся в условиях равномерной двухосной деформации, в материале, обладающим внутренним трением, со скоростями v<sub>1</sub> (1) и v<sub>3</sub> (2)

Как следует из рис. 4, в условиях одноосной деформации распространение квазипоперечной волны, имеющей скорость  $V_3$ , происходит с возникновением кольцевой лакуны. При возрастании коэффициента внутреннего трения f ширина лакуны возрастает. Отметим, что в случае одноосной и двухосной деформации, фронт квазипоперечной волны, имеющей скорость  $V_2$ , является сферой. При уменьшении fфронты двух других волн также принимают вид сфер.



Рис. 4. Фронты волн деформаций, распространяющихся в условиях одноосной деформации, в материале, обладающим внутренним трением, со скоростями V<sub>1</sub> (1) и V<sub>3</sub> (2)

В условиях чистого сдвига ( $\epsilon_1 = -\epsilon_2$ ,  $\epsilon_1 < 0$ ,  $\epsilon_3 = 0$ ) фронты квазипродольной и квазипоперечной волн деформаций являются эллипсоидом и сферой соответственно и описываются следующими уравнениями (t - время, в течение которого распространяется волновое возмущение):

$$\frac{x_1^2}{K(1+f)+4G_0} + \frac{x_2^2}{K(1-f)+4G_0} + \frac{x_3^2}{3K+4G_0} = \frac{(c_2t)^2}{3G_0},$$
$$x_1^2 + x_2^2 + x_3^2 = (c_2t)^2.$$

Заключение. Результаты, полученные для моделей материалов с малыми упругопластическими деформациями и сжимаемых жесткоупругопластических сред, обладающих внутренним трением, могут быть использованы при решении пространственных и плоских динамических задач, описанных в [2]. Также добавим, что аналогичным образом может быть выполнен анализ поверхностей обратных скоростей и волновых поверхностей для сред, описываемых деформационной теории пластичности бетона, для идеальных жесткопластических сжимаемых и несжимаемых материалов и других сред, описываемых физическими соотношениями в форме произвольных перекрестных зависимостей между первыми инвариантами девиаторов напряжений и деформаций [2].

#### СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- 1. Рахматуллин Х.А., Демьянов Ю.А. Прочность при интенсивных кратковременных нагрузках. М.: Физматгиз, 1961. 398 с.
- Гениев Г.А., Лейтес В.А. Вопросы механики неупругих тел. М.: Стройиздат, 1981. – 160 с.
- Петрашень Г.И. Распространение волн в анизотропных упругих средах. – Ленинград: Наука, 1980. – 284 с.
- Качанов Л.М. Основы теории пластичности. М.: Наука, 1969. -420 с.

Материал поступил в редакцию 24.10.2008

# BOSIAKOV S.M. The modeling of three-dimension wave fronts of deformations, propagating in nonelastic environments from dot source of disturbances

Expressions for point's coordinates of nonelastic environment, which defined geometric forms of deformation's wave fronts, propagating from dot non-stationary source of disturbances, are obtained. Examples of construction of three-dimensional wave fronts for the environments described by the theory small elastoplastic of deformations (plastic metals) and for the environments possessing internal friction (soils) are given.

## УДК 551.492

# Волчек А.А., Гладкий И.И., Махнист Л.П., Парфомук С.И.

# О РЕШЕНИИ ОДНОЙ СТОХАСТИЧЕСКОЙ МОДЕЛИ МНОГОЛЕТНИХ КОЛЕБАНИЙ РЕЧНОГО СТОКА

Рассмотрим марковский процесс для описания колебаний речного стока, используемый в стохастической гидрологии.

Пусть  $\overline{V}$  – среднегодовой расход воды, а  $V_t$  – расход воды в момент времени t. Тогда, полагая  $X_t = (V_t - \overline{V})/\overline{V}$ , процесс многолетних колебаний стока можно описать с помощью стационарного решения стохастического дифференциального уравнения (СДУ) Орнштейна-Уленбека с непрерывным временем [1]:

$$dX_t = -kX_t dt + \sigma dW_t, \qquad (1)$$

где  $X_t = (V_t - \overline{V}) / \overline{V}$ ,  $\sigma = C_V \sqrt{2k}$ ,  $\sigma$  – интенсивность «белого шума»,  $C_V$  – коэффициент изменчивости речного стока,  $W_t$ –

стандартный винеровский процесс,  $k^{-1}$  – время релаксации речного стока.

Заметим, что уравнению (1) соответствует уравнение Фоккера-Планка, т.е. прямого уравнения Колмогорова

$$\frac{\partial p}{\partial t} = k \frac{\partial}{\partial x} (x p) + \frac{\sigma^2}{2} \frac{\partial^2 p}{\partial x^2}, \quad -\infty < x < \infty$$

где коэффициент k определяется по формуле  $k = -\ln r$ , так как

автокорреляционная функция колебаний стока имеет вид  $e^{-kt}$ , а *r* – коэффициент автокорреляции годового стока.

Пусть в начальный момент времени t = 0 сток равен y, а  $X_*$  – некоторое фиксированное значение стока. Выясним, за какой промежуток времени значение V будет находиться в полуинтервале  $[X_*,\infty)$  при условии, что  $y \in [X_*,\infty)$ . Решить эту задачу можно с помощью обратного уравнения Колмогорова. Так как случайные колебания стока, описываемые СДУ (1), однородны по времени, то для двумерной плотности вероятности справедливо соотношение p(x, t/y, 0) = p(x, 0/y, t). Обратное уравнение Колмогорова для процесса (1) имеет вид

$$\frac{\partial}{\partial t}p(x, t/y, 0) = -ky\frac{\partial}{\partial y}p(x, t/y, 0) + \frac{1}{2}\sigma^2\frac{\partial^2 p(x, t/y, 0)}{\partial y^2}.$$
(2)

Пусть *T* – момент времени, в который значение *V* покинет промежуток [*x*∗,∞). Тогда

$$prob(T \ge t) = G(y,t), \ G(y,t) = \int_{x_*}^{\infty} p(x, t/y, 0) \, dx$$

Интегрируя (2) по х на интервале от х∗ до ∞, получаем

$$\frac{\partial G(y,t)}{\partial t} = -ky\frac{\partial G(y,t)}{\partial y} + \frac{\sigma^2}{2}\frac{\partial^2 G(y,t)}{\partial y^2}$$

Учитывая условия отражения на бесконечности и поглощения в точке *у* = *х*\*, получим следующие начальные условия:

$$G(y,t)\Big|_{y=x_*}=0, \quad \frac{\partial G(y,t)}{\partial y}\Big|_{y=\infty}=0.$$

Так как функция 1 - G(y, t) является распределением случай-

ной величины *T*, то среднее время достижения границы *X*\* и его дисперсия определяются соотношениями

$$T_{1} = -\int_{0}^{\infty} t \frac{\partial G(y,t)}{\partial t} dt = \int_{0}^{\infty} G(y,t) dt,$$
$$T_{2} = -\int_{0}^{\infty} t^{2} \frac{\partial G(y,t)}{\partial t} dt = 2\int_{0}^{\infty} t G(y,t) dt.$$

**Волчек Александр Александрович,** д.г.н., профессор кафедры сельскохозяйственных и гидротехнических мелиораций Брестского государственного технического университета.

**Гладкий Иван Иванович,** старший преподаватель кафедры высшей математики Брестского государственного технического университета.

**Махнист Леонид Петрович,** к.т.н., доцент кафедры высшей математики Брестского государственного технического университета. **Парфомук Сергей Иванович,** к.т.н., доцент кафедры информатики и прикладной математики Брестского государственного технического университета.

Беларусь, БрГТУ, 224017, г. Брест, ул. Московская, 267.