$$m \leq 1 + \frac{(2s+1)b \|z\|^{2/(2s+1)}}{2e(b_1 - 1)^{2/(2s+1)} \delta^{2/(2s+1)}},$$

$$\|x_{m,\delta} - x\| \leq [(b_1 + 1)\delta]^{2s/(2s+1)} \|z\|^{1/(2s+1)} + \frac{1}{\sqrt{2b}} \left[1 + \frac{b(2s+1) \|z\|^{2/(2s+1)}}{2e(b_1 - 1)^{2/(2s+1)} \delta^{2/(2s+1)}}\right]^{\frac{1}{2}} \delta.$$

(19)

Доказательство.

Из (9) и [1] при n = m - 1 имеем $\|A(E - A)\|_{\infty} = \|A^{2s+1}(E)\|_{\infty}$

$$\|A(E - Ag_{m-1}(A))x\| = \|A - (E - Ag_{m-1}(A))z\| = \|A - (E - Ag_{m-1}(A))$$

Воспользовавшись (18), получаем

$$(b_1-1)\delta \leq \left[\frac{(2s+1)b}{2(m-1)e}\right]^{\frac{2s+1}{2}} \|z\|.$$

Отсюда

$$m \le 1 + \frac{(2s+1)b \|z\|^{2/(2s+1)}}{2e(b_1-1)^{2/(2s+1)}} \delta^{2/(2s+1)}$$

При помощи неравенства моментов и (16) оценим $\left\| (E - Ag_m(A))x \right\| = \left\| A^{2s} (E - Ag_m(A))z \right\| \le$

$$\leq \left\| A^{2s+1}(E - Ag_m(A)) z \right\|^{\frac{2s}{2s+1}} \left\| (E - Ag_m(A)) z \right\|^{\frac{1}{2s+1}} \leq \frac{1}{2s+1} < \frac{1}{2s+1} \leq \frac{1}{2s+1} < \frac{1}{2s+1} < \frac{1}{2s+1}$$

$$\leq \|A(E - Ag_m(A))x\|^{\frac{1}{2s+1}} \|z\|^{\frac{1}{2s+1}} \leq [(b_1 + 1)\delta]^{\frac{2s}{2s}} \|z\|^{\frac{1}{2s+1}} \|z\|^{\frac{1}{2s+1}}$$

Torga
$$\|x_{m,\delta} - x\| \leq \|(E - Ag_m(A))x\| + \|g_m(A)(y_{\delta} - y)\| \leq$$

УДК 536.413

Кушнер Т.Л.

$$\leq \left[(b_{1}+1)\delta \right]^{\frac{2s}{2}(2s+1)} \|z\|^{\frac{1}{2}(2s+1)} + \frac{1}{\sqrt{2b}} m^{\frac{1}{2}} \delta \leq \\ \leq \left[(b_{1}+1)\delta \right]^{\frac{2s}{2}(2s+1)} \|z\|^{\frac{1}{2}(2s+1)} + \\ \frac{1}{\sqrt{2b}} \left\{ 1 + \frac{b(2s+1)\|z\|^{\frac{2}{2}(2s+1)}}{2e\left[(b_{1}-1)\delta \right]^{\frac{2}{2}(2s+1)}} \right\}^{\frac{1}{2}} \delta, \text{ y.t.g.}$$

<u>Замечание 1</u>. Порядок оценки (19) есть $0(\delta^{2^{s}/(2s+1)})$ и, как следует из [4], он оптимален на классе решений $x = A^{2s}z_{s}$, s > 0.

<u>Замечание 2</u>. Знание порядка 2s > 0 истокопредставимости точного решения, используемое в теореме 2, не потребуется на практике, так как при останове по невязке автоматически делается нужное число итераций для получения оптимального по порядку решения.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Савчук В.Ф. Сходимость одного метода решения линейных уравнений в гильбертовом пространстве // Известия АН БССР, серия физ.-мат. наук, №4, 1981.
- 2. Емелин И.В., Красносельский М.А. К теории некорректных задач // Докл. АН СССР. Т.244, №4, 1979.
- Вайникко Г.М., Веретенников А.Ю. Итерационные процедуры в некорректных задачах. – М.: Наука, 1986.
- Вайникко Г.М. Оценки погрешности метода последовательных приближений для некорректных задач // Автоматика и телемеханика, №3, 1980.
- Люстерник Л.А., Соболев В.И. Элементы функционального анализа. – М.: Наука, 1955.
- Kożuch I., W. Sawczuk. O pewnej metodzie rozwiązywania niepoprawnie zbudowanych zadan // Krajowa konferencja naukowa "Sztuczna inteligencja, 2000", Siedlce, 2000.

ОБЗОР РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЙ СТРУКТУРЫ ТРОЙНЫХ СОЕДИНЕНИЙ CuIn₃Se₅, CuGa₃Se₅, CuIn₅Se₈ И CuGa₅Se₈

введение

Развитие полупроводниковой электроники и микроэлектроники связано с поиском и исследованием новых соединений, позволяющих расширить и дополнить спектр свойств уже освоенных материалов. В последнее время сложные полупроводниковые соединения привлекают всё возрастающее внимание.

Тройные соединения $A^{I}B^{III}_{3}C_{5}^{VI}$ и $A^{I}B_{5}^{III}C_{8}^{VI}$ с атомами Cu в позиции A, In или Ga – в B, и Se в позиции C являются перспективными материалами для изготовления солнечных элементов и светодиодов линейно поляризованного излучения. Тройные соединения CuIn₃Se₅ обладают большим коэффициентом фотоэлектрического поглощения и относительно узкой шириной запрещенной зоны. CuGa₃Se₅ является полупроводником с большей шириной запрещённой зоны, чем CuIn₃Se₅. В настоящее время широко используются как объёмные, так и тонкопленочные материалы, хотя устойчивое получение качественных образцов затруднительно. В связи с этим предъявляются высокие требования к качеству и степени совершенства используемых кристаллов. Соединения $CuIn_5Se_8$ и $CuGa_5Se_8$ являются мало изученными материалами. Это связано, скорее, с трудностью получения качественных гомогенных образцов.

Для выбора условий выращивания объемных монокристаллов из расплава, получения эпитаксиальных слоев и гетероструктур высокого качества, понимания электрических, оптических и других свойств полупроводниковых кристаллов важно знать закономерности кристаллического упорядочения атомов в выше названных соединениях.

В данной работе предпринята попытка обобщить результаты исследований структуры тройных соединений CuIn₃Se₅, CuGa₃Se₅, CuIn₅Se₈ и CuGa₅Se₈. Кроме того, проведён анализ фазовых диаграмм состояния Cu₂Se – In₂Se₃ и Cu₂Se – Ga₂Se₃.

Кушнер Татьяна Леонидовна, ст. преподаватель каф. физики Брестского государственного технического университета. Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.

В завершение приведена таблица с параметрами кристаллической решётки получаемых соединений, представленных различными авторами.

ОБЗОР ЛИТЕРАТУРЫ

Напаda Т. и др. [1] отметили, что полученные ими кристаллы CuIn₃Se₅ не представляли собой моноструктуру, но имели три типа тетраэдров, которые являются подрешётками соединений: CuIn₂Se₄, CuIn₃Se₄ и In₃Se₄ с атомами Se в вершинах. Авторы предложили рассматривать новый тип решётки, относящийся к пространственной группе I $\overline{4}$ 2m. Такая структура (ABIn₂Se₄) представлена соединением Cu_{0.8}In_{0.4}In₂Se₄, где атомы Se и некоторые атомы In занимают узлы с приблизительной координатой 8i и периодом 1/4 по оси х, а также 4d и 1/8 по оси z соответственно. Атомы Cu и остальные атомы In статистически заполняют узлы A(2a) и B(2b). Если сравнивать структуру полученного соединения, то она соответствует скорее структуре с упорядоченными вакансиями, чем дефектного халькопирита. В подтверждение данного предположения были произведены расчёты в работе [2].

Negami T. и др. [3] методом осаждения из трёх источников получили тонкие плёнки CuIn₃Se₅ с очень хорошей гомогенностью и структурой халькопирита с упорядоченными вакансиями. Высокоразрешающая электронная микроскопия показала, что плёнки CuIn₃Se₅ имеют столбчатую микроструктуру с большим количеством двойникований на границах в направлении {112}.

Этой же группой получены осаждением тонкие плёнки $Cu(In_{1-x}Ga_x)_3Se_5$ [4]. При этом поток молекулярных компонентов контролировался из четырёх источников. Содержание Ga изменялось в зависимости от времени осаждения слоёв $CuIn_3Se_5$ и $CuGa_3Se_5$. Подложкой для напыления служило стекло, легированное молибденом. Толщина всей плёнки составляла 2 мкм, а толщина слоёв: $CuIn_3Se_5 - 18$ нм, $CuGa_3Se_5 - 15$ нм. Содержание элементарных компонентов в образцах $CuIn_3Se_5$ составило (в %) для Cu : In : Se = 11,7 : 32,6 : 55,7, для $CuGa_3Se_5 - Cu : Ga : Se = 11,4 : 32,1 : 56,5$. С увеличением процентного содержания Ga изменяется структура от дефектного халькопирита (об этом свидетельствует наличие максимумов дифракции 110,202,114) к кубической (цинковой обманки).

Монокристаллы CuIn₃Se₅ и Cu(In, Ga)₃Se₅ были выращены Кіт С.D. и др. [5] методом химических транспортных реакций. Кристаллы имели структуру халькопирита с упорядоченными вакансиями.

В работе Wang H.P. и др. [6] сообщается, что кристаллы Си(In_{1-x}Ga_x)₃Se₅ выращены горизонтальным методом Бриджмена. Положительные опыты в лабораторных исследованиях показали, что покрытие части внутренних стенок ампулы углеродом позволяет устранить химическое взаимодействие (прилипание) расплава к ампуле, даже если само покрытие не соприкасается с расплавом во время роста кристалла. В процессе выращивания кристаллов с большим содержанием Ga (х > 0,75) режим нагрева необходимо выдерживать особенно осторожно, т.к. достаточно интенсивная реакция может привести к разлому ампулы. Выращенные кристаллы после внешнего осмотра были разделены на три части: первую, среднюю и последнюю зоны. В последней части слитка обнаружен недостаток меди. В [7] сообщалось, что внешне медьобеднённая фаза выглядит как типично слоистая структура. Аналогично выглядела именно последняя часть кристалла. Различия в композиционном составе слитка можно понять, рассмотрев псевдобинарную фазовую диаграмму. Из диаграмм состояния Cu₂Se - In₂Se₃ и Cu₂Se - Ga₂Se₃ видно, что

соединения CuIn₃Se₅ и CuGa₃Se₅ плавятся не конгруэнтно. Таким соединениям соответствует 75 % мольного содержания In₂Se₃ и Ga₂Se₃ на диаграмме. Максимумы ликвидуса находятся в области с большим содержанием Cu₂Se. Поэтому при охлаждении вероятнее затвердеет первой фаза с высоким содержанием Cu. Хотя образование такой фазы более распространено в системе Cu₂Se – In₂Se₃. Это связано с тем, что максимум ликвидуса в Cu₂Se – Ga₂Se₃ расположен намного ближе к 75 % Ga₂Se₃. Кроме того, линия ликвидуса в системе Cu₂Se – Ga₂Se₃ несколько выше, чем в Cu₂Se – In₂Se₃. Следовательно, при охлаждении быстрее кристаллизуется фаза богатая Ga, чем с избытком In.

Если рассматривать фазовое разнообразие, то CuIn₃Se₅ (**β**фаза) существует при отношении Cu/In, лежащем в пределах от 0,27 до 0,50, а фаза с недостатком Си (у-фаза) - от 0,11 до 0,22. Части слитка, взятые из первой и средней зоны кристаллизовались в β -фазе, в то время как некоторые кристаллы из последней зоны принадлежали к у-фазе. Дифракционные рентгеновские спектры кристаллов, содержащих $\boldsymbol{\beta}$ -фазу с различным содержанием In очень похожи. С другой стороны у-фаза даёт совсем отличный спектр. Можно увидеть, что он принадлежит кристаллам с гексагональной или тригональной структурой, а также смеси этих структур [7]. При $\boldsymbol{x} = 0$ кристаллы CuIn₃Se₅ имели параметры кристалличекой решётки *а* = 0,5759 нм и c = 1,1524 нм. С увеличением содержания Ga оба параметра уменьшаются. Т.к. кристаллы CuGa₃Se₅ получены не были, то параметры кристаллической решётки можно для них только оценить, аппроксимируя данные, приведённые для соединений с различным содержанием Ga.

В работе Hönle W. и др. [8] более подробно и детально изучена структура и химический состав β -фазы и δ -фазы. Минимальный состав β -фазы 8,69 ат. % Cu, 34,79 ат. % In, 56,52 ат. % Se в двухфазной области. При перитектическом охлаждении смеси осуществляется кристаллизация β -фазы. δ -фаза имеет состав 11,99 ат. % Cu, 34,01 ат. % In, 54,00 ат. % Se. Кроме основной δ -фазы при температуре выше 750 °C существует эвтектическая смесь δ , In₆Se₇ и InSe. Формульно химический состав может быть определён после нормирования по отношению к Se. β -фазе соответствует формула Cu_{0,39}In_{1,20}Se_{2,00}, δ -фазе соответственно Cu_{0,46}In_{1,18}Se_{2,00}. По характеру сколов оба образца можно отнести к монокристаллам. В таблице 1 приведены значения координат атомов компонентов в кристаллические положения атомов в β -фазе с учётом вакансий.

 δ -фаза имеет типично сфалеритную структуру, где в узлах 4с статистически распределены атомы Cu, In и (вакансии). Положения М могут занимать как атомы меди, так и индия. Но вычисленные факторы заполняемости узлов для обоих компонентов показали, что большую величину имеет фактор для Cu. Поэтому нахождение атомов меди в узлах М наиболее Предложенная формула вероятно. соединения Си_{0.54}In_{1.15 0.30}Se_{2.00} хорошо согласуется с данными химического анализа. Определены расстояния между атомами d₁ (Cu-Se) = 0,2450 нм, d₁ (In-Se) = 0,2535 нм. Простая математическая интерполяция для соотношения 32 % Cu 68 % In даёт величину d (In/Cu-Se) = 0,2477 нм, которая хорошо согласуется с величиной d₀ = 0,2495 нм. Для соединений CuInSe₂ приводятся следующие величины: d (Cu-Se) = 0,2430 нм, d (In-Se) = 0,2580 нм, а для In₂Se₃ соответственно d (In-Se) от 0,2540 до 0,2620 нм.

Вестник Брестского государственного технического университета. 2003. №5

Атом	37					
11100	у зел	x	x y			
$oldsymbol{\delta}$ -фаза						
Se	4a	0	0	0		
M (Cu)	4c	1/4	1/4 1/4			
$oldsymbol{eta}$ -фаза						
M1 (Cu)	2b	1/2	0	1/4		
M2 (Cu)	2e	0	0	0		
M3 (In)	2f	1/2	1/2	0		
M4 (In)	2d	0	1/2	1/4		
Se	8n	0,25755	0,23537	0,11783		

Таблица 1. Положения атомов в кристаллической решётке

β-фаза относится к пространственной группе Р 4 2с из-за частичного упорядочения катионов. Для такого вида фазы предложено название Р-халькопирит. Только атомы In могут занимать положения М4, т.к. просчитанный для этого случая фактор заполняемости узлов >1. В узлах М2 наиболее вероятно расположение Сu. Расстояния d (M1–Se) = 0,2470 нм, d (M3–Se) = 0,2473 нм. Позиции М1 и М3 могут быть заняты Cu, In или в приблизительно равных пропорциях. В узлах М1 могут располагаться как атомы In так и атомы Cu.

Таблица 2. Кристаллографические положения атомов в β -фазе

,			
Se	0,9Se		0,1
M1	0,57In	0,02Cu	0,41
M2		0,68Cu	0,32
M3	0,6In	0,02Cu	0,39
M4	1,0In		

Согласно этим данным кристаллическая формула для исследованного образца должна быть Cu_{0,36}In_{1,09} _{0,55}(Se_{0,80} _{0,20}). Положения M1 и M3 имеют наибольшую концентрацию вакансий. В качестве заключения можно сказать, что структура дефектного халькопирита имеет две катионных позиции, одна из которых полностью занята In, другая – Cu, In или . Первая позиция соответствует M4, вторая – M1 + M2 + M3. Но предполагается, что с точки зрения свойств нет различий между фазами β и δ , а есть только различия в построении атомов в кристаллических решётках.

В статье Marin G. и др. [9] отмечено, что попытки вырастить качественные монокристаллы CuIn₃Se₅ часто заканчиваются неудачей. Для выращивания монокристаллов в их работе применялся вертикальный метод Бриджмена с и без предварительного синтеза, селенизацией стехиометрической смеси Си и In в жидком состоянии при различных температурах и прямом охлаждении. После многих безуспешных попыток, наилучший результат был получен с двухграммовой навеской, помещённой в плоской ампуле в однозонную горизонтальную печь. Процентное соотношение компонентов в разкристалла CuIn₃Se₅ было личных частях Cu:In:Se 9,47:29,24:61,28 и 11,72:31,14:57,12. Для CuGa₃Se₅ соответственно Cu:Ga:Se 11.05:32,27:56,67 и 10,90:32,57:56,35. Рентгеновский анализ показал очень похожие спектры, хотя интенсивность пиков у CuGa₃Se₅ выше. Вероятно, это вызвано большим упорядочением атомов Си и Ga, по сравнению с атомами Си и In. Рентгеновская дифракция лучей, проведённая для обоих образцов, показала, что и CuIn₃Se₅, и CuGa₃Se₅ имеют тетрагональную структуру типа халькопирита.

Группой во главе с С. Manolicas [10] методами электронной микроскопии и электронной дифракции изучена структура соединения Cu_{0.5}In_{2.5}Se₄ с катион-анионным соотношением 3:4. Кристаллы были выращены из расплава исходных компонентов в кварцевой ампуле, путём охлаждения ниже точки плавления. Далее производились сколы в различных частях слитка и исследовались на электронном микроскопе. На сколах можно наблюдать доменную структуру. Размер доменов зависит, как правило, от температуры и продолжительности отжига. Их границы имеют как размытые, так и чёткие очертания. Часто явно выражена кристаллографическая ориентация {110}. С точки зрения строения вещества, за основу может быть взята кубическая объёмно центрированная решётка, со стороной a_0 . Сверхструктура образуется вследствие упорядочения катионов. Таким образом, можно получить тетрагональную структуру с параметрами $a = a_0$ и $c = 2 \cdot a_0$.

Для соединений $(AB)_3X_4$ характерна дефектная структура. В частности структура дефектного халькопирита или тиогалла-

та относится к группе, а дефектного станнита – к **4** 2m. Они имеют одинаковый тип упорядочения вакансий, но различное упорядочение катионов A и B. Как правило отношение A:B = 1:2. При любом другом соотношении часть позиций атомов A займут атомы обоих сортов. В соединении $Cu_{0,5}In_{2,5}Se_4$ A:B = 1:5. Таким образом, возможны расположения атомов, подчиняющиеся двум пространственным группам, описанным выше.

Большинство вышеперечисленных работ посвящено исследованию соединения CuIn₃Se₅ и лишь несколько – CuIn₅Se₈. Так, Merino J.M. и другими [2] были выращены поликристаллы соединений CuIn₂Se_{3,5}, CuIn₃Se₅ и CuIn₅Se₈. Все соединения синтезированы путём нагрева исходных компонентов, взятых в стехиометрическом соотношении, в кварцевой ампуле с избыточным давлением до 1130 °C со скоростью 10 ⁰С/ч. Охлаждение происходило с различной скоростью. Для кристаллизации CuIn₂Se_{3.5}, CuIn₃Se₅ скорость охлаждения составляла 10 °С/ч, а по достижении 900 °С печь выключалась. С целью получить состав, содержащий две фазы, соединение $CuIn_5Se_8$ охлаждалось медленнее (5 $^{0}C/ч$) в интервале температур от 900 °C до 600 °C. При рентгенофазовом анализе использовалась обработка по методу Ритвельда. В настоящей работе приведена следующая структурная формула соединения CuIn₃Se₅: (Cu_{0,79}) _{2e} (In_{0,45})_{2b} (In_{0,88})_{2f} (In_{1.00})_{2d} (Se_{3.6})_{8n}. Рассчитаны параметры кристаллической решётки и межатомные расстояния для обеих структур CuIn₃Se₅. Для структуры типа станнита I **4** 2m: a = 0.57562 нм. c = 1.15301 нм. d (Cu-Se)

= 0.22737 нм, d (In_{2b} -Se) = 0.26766 нм, d (In_{4d} -Se) = 0.25296 нм. Для структуры типа P-халькопирита P $\overline{4}$ 2c: a = 0,57555 нм, c = 1,15303 нм, d (Cu-Se) = 0.2421 нм, d (In_{2b} -Se) = 0.2441 нм, d (In_{2t} -Se) = 0.2491 нм, d (In_{2d} -Se) = 0.2641 нм. Результаты вычислений показывают, что тетраэдры кристаллической решётки в структуре станнита получают значительное искажение в одном из направлений. Расстояния d (Cu-Se) и d (In_{2b} -Se) имеют разницу в 0,04 нм, что маловероятно. Как правило,

расстояния между атомами составляют: для Cu-Se - 0,242-

0,245 нм, для In-Se – 0,256-0,260 нм. Что касается соединения CuIn₅Se₈, то отмечено лишь существенное отличие спектра дифракции рентгеновских лучей. В соответствии с расположением максимумов спектра подтверждено существование γ -фазы в двух модификациях: γ_{μ} – гексагональной и γ_m – тетрагональной. Причём, эти модификации сосуществуют в одном образце, как и в [7,11].

Соединение $CuIn_3Se_5$ может иметь структуру с упорядоченными вакансиями (тиогаллат). Но если нельзя сказать определённо, какие положения в кристаллической решётке занимают вакансии, тогда структуру называют халькопирит-

ной. В работе [11] отмечено, что определить точное расположение вакансий крайне трудно.

Rincon C. и др. [12,13] сообщают, что соедиение с упорядоченными вакансиями CuGa₃Se₅ кристаллизуется в структуре халькопирита, относящейся к пространственной группе

Р42с, точечной группе **4** 2m. Согласно ранее предложенной теории это соединение формируется путем повторения структурной единицы (2 V_{Cu}^{1-} + Ga_{Cu}^{2+}) на каждые 5 элементарных ячеек CuGaSe₂.

Образцы CuIn₅S_{8-x}Se_x с различным $0 \le x \le 8$ получались Наеиseler. Н. и др. [14] при различных температурах охлаждения. Слитки с x = 7 имели гексагональную структуру кристаллической решётки с параметрами a = 0,40152 нм и c = 1,62352 нм. При x = 8 образец получился многофазным.

Группа под руководством Marin G. сообщает о получении кристаллов соединений $CuGa_5Se_8$ со структурой халькопирита и $CuIn_5Se_8$ с гексагональной структурой [13].

В таблице 3 приведены значения параметров кристаллической решётки для соединений CuIn₃Se₅, CuGa₃Se₅, CuIn₅Se₈ и CuGa₅Se₈. В случае успешного получения монокристаллов строка таблицы помечена буквой «м».

СТРУКТУРА СОЕДИНЕНИЙ А¹В^Ш₃С₅^{VI} и А¹В₅^ШС₈^{VI}

По сравнению со своими бинарными аналогами $A^{II}B^{VI}$ соединения $A^{I}B_3^{III}C_5^{VI}$ имеют ряд структурных особенностей. Структура халькопирита имеет две катионные подрешётки, что приводит к различиям в длине химических связей "металл – халькоген", т.е. $l_{AC} \neq l_{BC}$. Вследствие разности электроотрицательностей катионов A и B, окружающих анион C в кристаллической решётке, структура халькопирита характеризуется тетрагональным искажением ($\delta = 2 - c/a \neq 0$). Атомы халькогена смещаются со своих идеальных позиций с тетраэдрической координацией. В связи с этим вводится позиционный параметр $\sigma = 1/4$ для сфалерита и $\sigma \neq 1/4$ – для халькопирита.

Структура сфалерита относится к пространственной группе $\bar{4}$ 3m. К пространственной группе $\bar{4}$ 2m относятся структуры халькопирита и станнита. В частности структура дефектного халькопирита или тиогаллата относится к группе $\bar{4}$, а дефектного станнита – к $\bar{4}$ 2m. Они имеют одинаковый тип упорядочения вакансий, но различное упорядочение катионов А и В. Как правило отношение A:B = 1:2. При любом другом соотношении часть позиций атомов A займут атомы обоих сортов. β -фаза CuIn₃Se₅ имеет тетрагональную структуру, относящуюся к пространственной группе P $\bar{4}$ 2c. Для такого вида фазы предложено название P-халькопирит. Пространственные группы I $\bar{4}$ 2m и P $\bar{4}$ 2c не являются подгруппами I $\bar{4}$ 2d. Структуру, относящуюся к пространственной группе I $\bar{4}$ 2d, называют дефектным халькопиритом. Именно в такой модификации кристаллизуется соединение CuInSe₂. К ней же

может относиться и CuIn₃Se₅. Соединение CuIn₃Se₅ может иметь структуру с упорядоченными вакансиями (тиогаллат). Но если нельзя сказать определённо, какие положения в кристаллической решётке занимают вакансии, тогда структуру называют халькопиритной. Mizutani I. и др. [15] отмечают, что структуру с упорядоченными вакансиями можно определить по наличию пиков

(202) и (114) на рентгендифрактограмме [16]. О тетрагональ-

ной структуре образцов можно судить по наличию пиков (112), (204)(220) и (116)(312).

ДИАГРАММЫ СОСТОЯНИЯ Cu₂Se – In₂Se₃ и Cu₂Se – Ga₂Se₃

Система Cu₂Se – In₂Se₃. Данная система была исследована методами ДТА и РФА в работах [17,18]. В работе [19] проведено уточнение и обобщение. Данные литературы показывают, что тройная система Cu – In – Se изучена далеко не полностью. Результаты исследований приводятся, как правило, для бинарных разрезов Cu₂Se – In₂Se₃.

В области гомогенности при 750 °C образуется соединение CuInSe₂ со структурой халькопирита (α-фаза) и соответствует 47,5-55,0 % мольного содержания In₂Se₃. Стехиометрическое соединение CuInSe₂ при 810 ⁰С трансформируется в разупорядоченную модификацию со сфалеритной структурой (δ -фаза). $\boldsymbol{\beta}$ -фаза соответствует 66.5–79,0 % мольного содержания In₂Se₃ при 750 °C, причём она не претерпевает никаких фазовых превращений и плавится при 880 °С. При 930 °С β -фаза, соответствующая 66 % мольного содержания In₂Se₃ перитектически разлагается в δ -фазу (65 % мольного содержания In₂Se₃) и плавится (80 % мольного содержания In₂Se₃). Согласно данным литературы в интервале 67.6-75,0 % мольного содержания In₂Se₃ обнаружены соединения Cu₂In₄Se₇ и CuIn₅Se₈. Палатник описывает данную область как псевдокубическую фазу. Имеются также соединение с кубической структурой (Cu₈In₁₈Se₃₂) и тетрагональное, описываемое как β -фаза, Cu₇In₁₉Se₃₂. Между 82,0 и 90,0 % мольного содержания In₂Se₃ при 750 ⁰С наблюдается у-фаза. Она представляет собой типично слоистую структуру, которая видна невооружённым глазом. На сколах можно различить области с различным коэффициентом отражения и различной твёрдостью. Анализ дифракции рентгеновских лучей показывает, что у-фаза существует в двух модификациях: у_н – гексагональной и у_m – тетрагональной. Эти модификации могут сосуществовать в одном образце, но ут-фаза образуется преимущественно в случае недостаточного содержания In₂Se₃ в гомогенной области. Модификация у-фазы с избытком In₂Se₃ начинает плавиться при 865 °C. При 880 °C у-фаза 82 % мольного содержания In₂Se₃ разлагается перитектически в β-фазу (78 % мольного содержания In₂Se₃) и плавится (92,5 % мольного содержания In₂Se₃). **б**-фаза представляет собой гомогенную область с разупорядоченной структурой CuInSe2. При рентгеновских исследованиях в области высоких температур хорошо подтверждается переход структуры халькопирита в сфалерит. Определить образование δ -фазы на разрезе Cu₂Se – In₂Se₃ невозможно. Хотя при комнатной температуре о существовании такой фазы в растворе CuInSe2 – In0,42Se0,58 при содержании Cu в пределах 11,0-15,5 % сообщается в [7]. Эта область соответствует недостаточному содержанию Си по отношению к стехиометрическому составу и дефициту Se в сравнении с β фазой. Существование δ -фазы в области комнатных температур близко к разрезу Cu₂Se - In₂Se₃ говорит о том, что этот разрез является квазибинарным. Многофазная область, расположенная между однофазными областями α, β и δ не может быть определена точно. Во-первых, как показывают рентгенодифрактограммы, эти фазы очень похожи. Во-вторых, электронный микрофазовый анализ также не может дать достаточно точный результат из-за малой разницы в составах. Кроме того δ -фаза крайне не устойчива. По сравнению с двумя другими lphaфаза имеет типичную эвтектическую структуру.

Вестник Брестского государственного технического университета. 2003. №5

Соединение	Источник	Параметры кристаллической решётки				
	[1]	а = 0,57539 нм	с = 1,15191 нм			
	[2]	а = 0,57555 нм	с = 1,15303 нм			
	[3]	а = 0,5742нм	с = 1,1486 нм			
	[4]	<i>a</i> = 0,575 нм	<i>с</i> = 1,148 нм			
CuIn ₃ Se ₅	[5]	<i>a</i> = 0,5742 нм	с =1,1450 нм	«M»		
	[6]	а = 0,5759 нм	с = 1,1524 нм	«M»		
	[8]	а = 0,57553 нм	с = 1,15204 нм	«M»		
		а = 0,57624 нм		«M»		
	[9]	<i>a</i> = 0,57542 нм	с = 1,15383 нм	«M»		
	[22,23]	а = 0,57557 нм	с = 1,1514 нм	«M»		
	[24]	а = 0,5756 нм	<i>с</i> = 1,1514 нм	«М»		
	[28,29,34]	а = 0,57623 нм	с = 1,15174 нм	«M»		
	[31,32]	а = 0,57657 нм	<i>с</i> = 1,14995 нм	«М»		
Cu(In, Ga) ₃ Se ₅	[5]	а = 0,5702 нм	<i>с</i> =1,1421 нм	«M»		
	[4]	а = 0,551 нм				
	[6*]	а = 0,54903 нм	с = 1.09676 нм			
CuGa ₂ Se ₅	[9]	а = 0,54996 нм	с = 1,09463 нм	«M»		
	[12]	а = 0,54996 нм	с = 1,09463 нм			
	[25,26,33]	а = 0,5496 нм	с = 1,0993 нм	«М»		
	[30,34]	а = 0,54935 нм	с = 1,09501 нм	«M»		
	[31,32]	а = 0,54934 нм	с = 1,09505 нм	«М»		
	[13]	а = 1,20794 нм	с = 4,59729 нм			
CuIn ₅ Se ₈	[13]	а = 0,54733 нм	с = 1,09316 нм			
	[27]	а = 0,54683 нм	с = 1,08916 нм	«M»		
CuGa ₅ Se ₈	[32,35]	а = 0,54682нм	с = 1,09116 нм	«M»		

Таблин	a 3 1	Папамети	NI 1 21	ристаллинеской	nemëtru	соепинений	CuIn-Se-	CuGa.Se.	CuIn-Se	- H CuGa-S	e
таолиц	<i>a 5.</i> 1	парамен	лы к	ристаллическои	решетки	соединении	Cum3565,	CuOa3565,	Cumpor	8 n CuOa55	5

*) Значения параметров получены аппроксимацией приведенных в [6] данных

Система Cu₂Se – Ga₂Se₃. В области гомогенности образу-

ется соединение CuGaSe₂ со структурой халькопирита (β фаза) и соответствует 50-58 % мольного содержания Ga2Se3. В данной системе β -фаза упорядочена и разлагается по перитектической реакции при 1050 ± 5 °С. При отклонении от стехиометрического состава CuGaSe₂ возникает двухфазная область ($\beta + \gamma$), а при понижении температуры ($\beta + \delta$). Температура конца плавления сплавов с 40-50 % мольного содержания Ga₂Se₃ повышается монотонно, а в интервале 50-80 % – практически не изменяется (1090–1094 ⁰C). При 65 % мольного содержания Ga₂Se₃ наблюдается максимум температуры солидуса, равный 1092 °С. Линии ликвидуса и солидуса в интервале 55-75 % мольного содержания Ga₂Se₃ имеют очень пологий максимум. **б**-фаза представляет собой гомогенную область с 72-88 % мольного содержания Ga₂Se₃. Соединения с содержанием 75-88 мол. % Ga₂Se₃ разлагаются по перитектической реакции при 1068 °С. После синтеза они как правило оказываются неравновесными [20]. 90-100 % мольного содержания Ga_2Se_3 соответствует ε -фаза на основе $B_2^{III}C_3^{VI}$. Концентрационный интервал существования *є*-фазы в системе Cu₂Se - Ga₂Se₃ значительно меньше, чем аналогичной уфазы в системе Си2Те - Ga2Te3.

В работе [21] было предсказано существование тройных фаз $A^{I}B_{5}^{III}C_{8}^{VI}$ с тетраэдрической координацией атомов. Особенность такого состава состоит в том, что на две элементарные ячейки кристаллической решётки приходится одна молекула соединения. Поэтому такой состав удобен для упорядочения.

ЗАКЛЮЧЕНИЕ

Уже на протяжении нескольких лет заведующим кафедрой химии профессором д.х.н. И.В. Боднарем выращиваются кристаллы соединений CuIn₃Se₅, CuGa₃Se₅, CuIn₅Se₈ и CuGa₅Se₈ в Белорусском государственном университете информатики и радиоэлектроники. Данные соединения были исследованы в институте физики твёрдого тела и полупроводников АН Республики Беларусь. Руководство исследованиями осуществляет старший научный сотрудник лаборатории физики высоких давлений к.ф.-м.н. Н.С. Орлова. Я выражаю глубокую признательность этим людям, а также другим соавторам, за помощь, доверие и большую научную школу. Хочу выразить свою благодарность заведующему кафедрой физики БГТУ к.ф.-м.н. А.А. Гладыщуку за понимание и поддержку.

В данной работе в качестве обобщения приведены ранее опубликованные параметры кристаллической решётки соединений CuIn₃Se₅, CuGa₃Se₅ и CuGa₅Se₈. Методы получения кристаллов и исследования различных их свойств описаны в [22-35].

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Hanada T., Yamana A., Nakamura Y., Nittono O., Wada T. Crystal-Structure of CuIn₃Se₅ Semiconductor Studied Using Electron and X-Ray Diffraction // Japanese Journal of Applied Physics. Part 2 – Letters. – 1997. – Vol. 22, Iss 11B. – P. L1494–L1497.
- Merino J.M., Mahanty S., Leon M., Diaz R., Rueda F., Martin de Vidales J.L. Structural characterization of CuIn₂Se_{3,5}, CuIn₃Se₅ and CuIn₅Se₈ compounds // Thin Solid Films. – 2000. – № 361–362. – P. 70–73.

- Negami T., Kohara N., Nishitani M., Wada T. Preparation of Ordered Vacansy Chalcopyrite-Type CuIn₃Se₅ Thin-Films // Japanese Journal of Applied Physics. Part 2 – Letters. – 1994. – Vol. 33, Iss 9A. – P. L1251–L1253.
- Negami T., Kohara N., Nishitani M., Wada T., Hirao T. Preparation and Characterization of Cu(In_{1-x}Ga_x)₃Se₅ thin films // Appl. Phys. Lett. – 1995. –Vol. 67, № 6. – P. 825–827.
- Kim C.D., Jin M.S., Kim W.T. Growth and Characterization of Ordered Vacancy Chalcopyrite CuIn₃Se₅ and Cu(In, Ga)₃Se₅ Single-Crystals // Journal of Korean Physical Society. – 1998. –Vol. 32, Iss 5. – P. 750–753.
- Wang H.P., Lam W.W., Shih I. Crystal growth of Cu(In₁, _xGa_x)₃Se₅ by horizontal Bridgman method // Journal of Crystal Growth. – 1999. – Vol. 200. – P. 137–142.
- Boenke U.-C., Kühn G. Phase relations in the ternary system Cu - In - Se // Journal of materials science. - 1987. - Vol. 22. - P. 1635-1641.
- Hönle W., Kühn G., Boehnke U.-C. Crystal Structures of Two Quenched Cu - In - Se Phases // Cryst. Res. Technol. - 1988.
 Vol. 23, № 10/11. - P. 1347-1354.
- Marin G., Tauleigne S., Guevara R., Delgado J.M. et al. Crystal Growth, Structural Characterization and Room Temperature Band Gap of CuIn₃Se₅ and CuGa₃Se₅ // 11th International Conference on Ternary and Multinary Compounds: Book of Abstracts Salford, 8 – 12 September 1997 / Salford, 1997. – P. 573–577.
- 10. C. Manolicas, J. van Landuyt, R. de Ridder, S. Amelinckx. Electron Microscopic Study of the Domain Structure and of the Transition State in $Cu_{0.5}In_{2.5}Se_4$ // Phys. stat. sol. 1979. Vol. 55(a). P. 709–722.
- Tseng B.H., Wert C.A. Defect-ordered phases in a multiphase Cu-In-Se material // Journal of Applied Physics. – 1989. – Vol. 65, № 6. – P. 2254–2257.
- Schmid D., Ruckh M., Grunwald F., Schock H.W. Chalcopyrite/defect chalcopyrite heterojunctions of the basis of CuInSe₂ // Journal of Applied Physics. – 1993. – Vol. 73, № 6. – P. 2902–2909.
- Rincon C., Wasim S.M., Marin G., Hernandez E., Sanchez Perez G., Galibert J. Photoluminescence, infrared reflectivity and Raman spectra of the ordered vacancy compound Cu-Ga₃Se₅ // Journal of Applied Physics. – 2000. – Vol. 87, № 5. – P. 2293–2296.
- Marin G., Marquez R., Guevra R., Wasim S.M. et al. Crystal Growth and Optical Characterization of Ordered Vacancy Compounds of the I-III₃-VI₅ and I-III₅-VI₈ Families // Jpn. J. Appl. Phys. – 2000. – Vol. 39, Suppl. 39-1. – P. 44–45.
- 15. Haeuseler. H., Elitok. E., Memo. A., Osnowsky A. Materials with layered structures: X-ray powder diffraction investigation in the system $CuIn_5S_8$ - $CuIn_5Se_8$ and $AgIn_5S_8$ - $AgIn_5Se_8$ // Materials Research Bulletin. 2001. Vol. 36. P. 737–745.
- Mizutani I., Nakanishi H., Chichibu S. Growth and Band-gap Estimation of CuIn₃Se₅ Polycrystalline Thin Films // Jpn. J. Appl. Phys. – 2000. – Vol. 39, Suppl. P1–95.
- Hayakawa A., Mizutani T., Nacanishi H., F. Chichibu S. Growth and Band-gap Estimation of CuIn₃Se₅ Polycrystalline Thin Films // Jpn. J. Appl. Phys. – 2000. – Vol. 39, Suppl. 95-1. – P. 162–163.
- Палатник Л.С., Белова Е.К. Исследование закономерностей в полупроводниковых системах типа A₂^IC^{VI}– B₂^{III}C₃^{VI}// Известия АН СССР. Неорганические материалы. – 1967. – Т.3, № 12. – С. 2194–2202.
- Палатник Л.С., Рогачёва Е.И. Диаграмма равновесия и структуры некоторых полупроводниковых сплавов А₂¹C^{VI} – В₂^{III}C₃^{VI}// Доклады АН СССР. – 1967. – Т.174, № 1. – С. 80–83.
- 20. Конешова Т.И., Бабицына А.А., Калинников В.Т. Исследование взаимодействия в тройной системе Cu₂Se In₂Se₃

- Se // Известия АН СССР. Неорганические материалы. - 1982. - Т.18, № 9. - С. 1483-1486.

- 21. Палатник Л.С., Белова Е.К., Атрощенко, Ю.Ф. Комник. Кристаллография. – 1965. – Т.10, С. 474.
- Химия алмазоподобных проводников / под ред. Горюновой Н.А. – Л.: Изд-во ЛГУ. –1963.
- 23. Н.С.Орлова, И.В.Боднарь, Т.Л.Кушнер. Получение и структурные свойства соединения Culn₃Se₅ // Тезисы докладов на X Международной технической конференции "Сложные оксиды, халькогениды и галогениды для функциональной электроники". Ужгородский университет, 26-29 сентября 2000 г. – Ужгород, 2000. – С. 74.
- 24. Т.Л.Кушнер. Выращивание кристаллов и структурные исследования CuIn₃Se₃ // Брест. Вестник БГТУ. Физика. Математика. Химия. 2000. № 5. С. 11—13.
- 25. Кушнер Т.Л., Маркевич Ю.А. Выращивание монокристаллов тройных соединений CuIn₃Se₅ // Тезисы докладов IX республиканской научной конференции студентов, магистров и аспирантов «Физика конденсированных сред». Гродно, 2-4 мая 2001, Гродно, 2001. С. 186–187.
- 26. Кушнер Т.Л. Выращивание кристаллов CuGa₃Se₅ и определение их структуры // Тезисы докладов IX республиканской научной конференции студентов, магистров и аспирантов «Физика конденсированных сред». Гродно, 2-4 мая 2001 г. — Гродно, 2001. — С. 184—185.
- Кушнер Т.Л. Выращивание кристаллов CuGa₃Se₅, исследование их структуры и фотолюминесценции. // Вестник БГТУ. Физика. Математика. Химия. 2001. № 5. С. 30.
- Кушнер Т.Л. Радюш Ю.В. Выращивание кристаллов CuGa₅Se₈ и определение их структуры // Х республиканская научная конференция «Физика конденсированного состояния». Тезисы докладов студентов, магистрантов и аспирантов. — Гродно, 24-26 апреля 2002, — Гродно, 2002. — С. 184—186.
- 29. Н.С.Орлова, И.В.Боднарь, Т.Л.Кушнер. Получение, структура и тепловое расширение соединения CuIn₃Se₅ // Неорганические материалы, 2002. Т. 38, № 1, С. 7–11.
- 30. N.S.Orlova, I.V.Bodnar, T.L.Kushner. Preparation, Structure, and Thermal Expansion of CuIn₃Se₅ // Inorganic Materials. – Vol. 38, № 1. – 2002. – P. 3–7. Translated from Neorganicheskie Materialy. – Vol. 38, № 1. – 2002. – P. 7–11.
- Н.С.Орлова, И.В.Боднарь, Т.Л.Кушнер. Синтез и физикохимические свойства соединения CuGa₃Se₅ // Журнал неорганической химии. — 2002. — Т. 47, № 10. — С. 1450—1453.
- 32. N.S.Orlova, I.V.Bodnar, T.L.Kushner, E.A.Kudritskaya. Crystal Growth and Properties of the Compounds CuGa₃Se₅ and CuIn₃Se₅ // Crystal Res.Technology. 2002. Vol.37, № 6. P.540–550.
- 33. N.S.Orlova, I.V.Bodnar, T.L.Kushner. Stryctural and Physical-Chemical Properties of the Ternary Compounds CuIn₃Se₅, CuGa₃Se₅ and CuGa₅Se₈ // 13th International Conference on Ternary and Multinary Compounds. Book of Abstracts Paris, 14-18 October 2002 / Paris, 2002. – Ecole Nationale Superieure de Chimie de Paris. – P. 175.
- 34. И.В.Боднарь, Т.Л.Кушнер, В.Ю.Рудь, Ю.В.Рудь, М.В.Якушев. Фотоэлектрические свойства структур In/CuIn₃Se₅ и In/CuGa₃Se₅ // Журнал прикладной спектроскопии. – 2002. – Т. 69, № 4. – С. 520–522.
- 35. Н.С.Орлова, И.В.Боднарь, Т.Л.Кушнер. Выращивание монокристаллов и исследование свойств соединений CuIn₃Se₅ и CuGa₃Se₅ // 1-я международная украинская научная конференция по физике полупроводников УНКФП-1. Тезисы докладов. — Одесса, 10-14 сентября 2002, — Одесса, 2002. — Т. 2. — С.230—231.
- 36. N.S.Orlova, I.V.Bodnar, T.L.Kushner Preparation, structure, and thermal properties of CuGa₅Se₈ // Crystal Res. Technology. – 2003. – Vol.38, № 2. – P.125–132.