

Рис. 5. Кинетика накопления объемных $\Sigma \omega_{\sigma}$ и поверхностных $\Sigma \omega_{\tau}$ повреждений в силовой системе при моделях накопления повреждений: 1, 5 — разупрочнения (α = 2,0, β = 1,0); 2, 6 — линейной (α = 1,0, β = 1,0); 3, 7 - упрочнения-разупрочнения (α = 2,0, β = 2,0); 4, 8 — упрочнения (α = 1,0, β = 2,0).

Из выполненного в примере анализа вытекает практическая важность установления для конкретной силовой системы с учетом условий ее эксплуатации законов накопления ИУП (т.е. значений параметров α_{σ} , β_{σ} , α_{τ} , β_{τ}).

В заключение отметим, что предложенную гипотезу можно использовать и для оценки долговечности при других видах ИУП — контактно-механической усталости, фреттингусталости. Удельная сила трения $\mathbf{T}_{_{\! W}}$ в этих случаях может быть вычислена по формулам:

• при контактно-механической усталости

$$\boldsymbol{\tau}_{\boldsymbol{\mu}} = \boldsymbol{f}_{\boldsymbol{p}} \cdot \boldsymbol{p}_{\boldsymbol{0}} , \qquad (22)$$

 $oldsymbol{ au}_{_{oldsymbol{w}}} = oldsymbol{f}_{_{oldsymbol{R}}} \cdot oldsymbol{p}_{0} \;\;,$ ullet при фреттинг-усталости

$$\mathbf{\tau}_{w} = f_{\phi} \cdot \mathbf{q}_{m} \quad , \tag{23}$$

где p_0 и q_m максимальное и среднее давление на площадке контакта; f_R и f_{ϖ} — коэффициенты трения при качении и фреттинге соответственно.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Сосновский Л.А. Статистическая механика усталостного разрушения. – Минск: Наука и техника, 1987. – 288 с.
- Болотин В.В. Ресурс машин и конструкций. М.: Машиностроение, 1990. 448 с.

- 3. Когаев В.П., Махутов Н.А., Гусенков А.П. Расчеты деталей машин на прочность и долговечность: Справочник. М.: Машиностроение, 1985. 224 с.
- 4. Когаев В.П., Дроздов Ю.Н. Прочность и износостойкость деталей машин: Учебное пособие для вузов. М.: Высш. школа, 1991. 319 с.
- Лавринович М.Ф., Шустерняк М.М. Повышение износостойкости деталей автомобилей. – Минск: Беларусь, 1985. – 142 с.
- 6. Крагельский И.В., Добычин М.Н., Комбалов В.С. Основы расчетов на трение и износ. М.: Машиностроение, 1977. 526 с
- 7. Иванова В.С. Усталостное разрушение металлов. М.: Металлургия, 1963. –272 с.
- 8. Трощенко В.Т. Усталость и неупругость металлов. Киев: Наук. думка, 1971. 268 с.
- Трощенко В.Т., Сосновский Л.А. Сопротивление усталости металлов и сплавов: Справочник. – Киев: Наукова думка, 1987. – Т. 1. – 511 с., Т. 2. – 825 с.
- 10. Сосновский Л.А., Махутов Н.А., Шуринов В.А. Фрикционно-механическая усталость: основные закономерности (обобщающая статья) // Заводская лаборатория. 1992. N 9. С. 46 63.
- 11. Сосновский Л.А., Махутов Н.А., Шуринов В.А. Фреттингусталость: основные закономерности (обобщающая статья) // Там же. 1992. № 8. С. 45 62.
- 12. Сосновский Л.А., Махутов Н.А., Шуринов В.А. Контактномеханическая усталость: основные закономерности (обобщающая статья) // Там же. 1992. № 11. С. 44 61.
- 13. Богданович А.В., Тюрин С.А., Сенькова Е.Л. Закономерности накопления повреждений стали 45 при контактномеханической усталости // Завод. лаборатория. 1996. № 2.-C.42-45.
- 14. Сосновский Л.А., Шуринов В.А., Богданович А.В. Гипотеза накопления износоусталостных повреждений // Механическая усталость металлов: Тр. XI Междунар. коллоквиума / Отв. Ред. В.Т. Трощенко: В 2-х т. Киев, 1992. Т.1. С. 179 184.
- 15. Сосновский Л.А., Богданович А.В. Сопротивление усталости алюминиевого сплава Д16Т при программном нагружении в воздухе и в коррозионной среде // Пробл. прочности. -1991. № 5. С. 50 55.
- 16. Износоусталостные повреждения и их прогнозирование (трибофатика). Науч. ред. Сосновский Л.А. / Авт.: Л.А. Сосновский, В.Т. Трощенко, Н.А. Махутов, Гао Ван-Чжэн, А.В. Богданович, С.С. Щербаков. – Гомель, Киев, Москва, Ухань, 2001. – 170 с.
- 17. Богданович А.В. Методика прогнозирования долговечности силовых систем по критериям износоусталостного повреждения // Завод. лаборатория, 2002. № 6. С. 47 51.
- 18. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1965. 464 с.
- Когаев В.П. Расчеты на прочность при напряжениях, переменных во времени. М.: Машиностроение, 1977. 232 с.

УДК 620.178.16:620.178.3

Богданович А.В.

ПРИМЕНЕНИЕ ГИПОТЕЗЫ СУММИРОВАНИЯ ИЗНОСОУСТАЛОСТНЫХ ПОВРЕЖДЕНИЙ К ОЦЕНКЕ ДОЛГОВЕЧНОСТИ СИЛОВЫХ СИСТЕМ

В статье [1] была предложена гипотеза суммирования износоусталостных повреждений применительно к силовым системам, работающим в условиях фрикционномеханической усталости, рассмотрены различные формы ее представления в зависимости от характера нерегулярного нагружения и принятого критерия предельного состояния.

В связи с отсутствием опубликованных опытных данных о долговечности элементов силовых систем при нерегулярном нагружении в условиях фрикционно-механической усталости, воспользуемся для проверки предложенной гипотезы результатами программных испытаний конструкционных материалов на фреттинг-усталость, которые можно найти в литературе.

		-	1				
№ блока	σ_{i}	$n_{ie} \times 10^3$,	α	β	$N_{\mathfrak{I}}$	N_p	∆ N, %
	МПа	цикл		-	$\times 10^4$		
1	340	25	1,0	1,0	9,40	9,28	+ 1,3
	400	8					
2	400	10	1,0	1,0	5,17	5,09	+ 1,5
	450	8					
3	340	40	1,0	1,62	26,2	21,4	+ 18,3
	500	6					
4	400	10	1,0	1,62	13,0	15,4	- 18,6
	500	5					
5	440	10	1,0	1,62	12,5	10,6	+ 14,9
	500	6					
6	340	15	1,0	1,62	36,3	40,0	- 10,4
	500	2					
7	400	8	1,0	1,62	18,6	19,0	- 2,0
	500	2					

Таблица 1. Характеристики блоков программного нагружения образцов из сплава BT-14 и расчетная оценка их долговечности по гипотезе накопления износоусталостных повреждений

Так, в работе [2] приведены результаты программных испытаний на фреттинг-усталость образцов из титанового сплава ВТ-14 при отнулевом цикле растяжения в условиях комнатной температуры с частотой 43 Гц. Мостики фреттинга изготавливались из того же материала, что и испытуемый образец. Усилие их прижатия к образцу контролировалось и поддерживалось постоянным в процессе испытаний таким, что контактные напряжения составляли 50 МПа. Предельным состоянием было принято зарождение поверхностной трещины размером 0,1...0,2 мм. Характеристики двухступенчатых блоков программного нагружения приведены в табл. 1.

Оценка долговечности образцов из сплава BT-14 выполнена по выражению [1]:

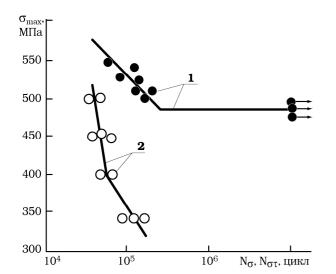
$$N_{\sigma t \Sigma} = \frac{N_B}{\sum_{i=1}^{s} \left[1 - \left(\frac{\sigma_i}{\sigma_{-1} \cdot \phi_{\sigma}(\tau_w)} \right)^{m_{\sigma} \cdot \phi_m(\tau_w)} \frac{n_i}{N_{\sigma G}} \right]^{\sigma_{\sigma}}}, (1)$$

где N_B — суммарное число циклов в одном блоке нагружения; σ_i — уровень циклических напряжений на i-той ступени программного блока; n_i — число циклов на i-той ступени блока; s — число ступеней в одном блоке; σ_{-1} — предел выносливости образца при механической усталости (без фреттинга); m_{σ} $N_{\sigma G}$ — показатель наклона и абсцисса точки перелома кривой механической усталости, построенной в двойных логарифмических координатах; $\phi_{\sigma}(\tau_w)$, $\phi_m(\tau_w)$ — функции, позволяющие определить характеристики сопротивления разрушению (предел фреттинг-выносливости σ_{-1q} и показатель наклона $m_{\sigma q}$ кривой фреттинг-усталости) по соответствующим характеристикам σ_{-1} и m_{σ} при обычной механической усталости; σ_{-1q} и показатель наклона σ_{-1} и σ_{-1q} при обычной механической усталости; σ_{-1q} и показатель наклона σ_{-1q} и σ_{-1q}

Значения входящих в (1) параметров определялись по экспериментальным кривым механической усталости и фреттингусталости (рис. 1). При этом было принято значение коэффициента трения $f_{\boldsymbol{C}}$, равное 0,5, поэтому удельная сила трения

$$\tau_{w} = f_{C} \cdot q_{m} = 0.5 \cdot 50 = 25 \text{ (M\Pia)}.$$

Результаты расчетной оценки долговечности образцов из сплава BT-14 представлены в табл. 1. Как видно из таблицы,


при реализации программных блоков 1 и 2 линейное суммирование износоусталостных повреждений (параметры В упрочнения и а разупрочнения равны 1,0) в среднем хорошо согласуется с опытом: погрешность расчетной оценки N равна нулю. При реализации программных блоков 3 - 7 долговечность $N_{\Sigma} = N_{P}$, вычисленная по выражению (1) в предположении справедливости правила линейного суммирования износоусталостных повреждений (т.е. при $\alpha = \beta = 1,0$) оказывается значительно (в 2,4...3,4 раза) заниженной. Как показано в статье [2], это несоответствие вызвано тем, что блоки 3 – 7 содержат ступень с уровнем напряжений $\sigma = 500 \ \mathrm{M\Pi a}, \ \mathrm{пре-}$ вышающим предел выносливости исследуемых образцов при обычной (механической) усталости. Этот уровень напряжений обеспечивает, по мнению автора [2], своеобразную тренировку материала (путем создания в поверхностном слое остаточных напряжений сжатия). Таким образом, при нагружении блоками 3 - 7 (см. табл. 1) происходит циклическое упрочнение сплава ВТ-14, приводящее к росту долговечности испытуемых образцов. Следовательно, можно принять модель упрочнения в гипотезе накопления износоусталостных повреждений и соответственно в формуле (1) назначить $\mathbf{\alpha} = 1,0,$ а значения $\beta > 1,0$ выбирать для каждого из блоков 3 – 7 нагружения из некоторых соображений априори. Поскольку обоснованные рекомендации по выбору значений параметров α и β отсутствуют, в рассматриваемом случае величина β находилась из опыта и принимала значения в интервале 1,5...1,75.

В табл. 1 приведено среднее арифметическое значение $\pmb{\beta}$, которое использовалось при оценке N_P . Как можно видеть, расчетная долговечность N_P по предложенной гипотезе удовлетворительно согласуется с экспериментальной N_9 — погрешность не превышает 18,6% (см. табл. 1).

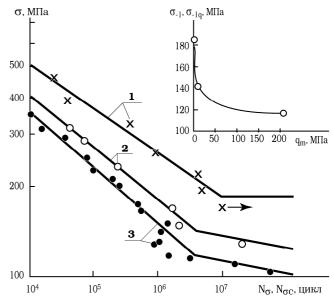
Ниже выполнена проверка справедливости гипотезы накопления износоусталостных повреждений по результатам проведенных автором программных испытаний стальных образцов на фреттинг-усталость. Силовая система включала плоские образцы прямоугольного сечения 5×20 мм из стали 20 в состоянии поставки и контробразцы из закаленной стали 45 в виде мостиков фреттинга базой 48 мм и площадкой контакта размером 6×20 мм. В качестве предельного состояния было принято зарождение магистральной трещины глубиной 0,4...0,6 мм в образце.

T-6	~		спытаниях на фреттинг-усталость
TOOTHOU Z X ADAKTEDUCTUKU (OHOKOR HALDVÆFHUÐ ODDAZHOR	стани до при программных и	CHEITAHUSIX HA MDETTUHI-VCTAHOCTE
1 thousand 2. Tapakiepheimkii	олоков пагружения образцов	Clasin 20 liph lipot panimibix h	clibitalitiza na aperimi yeranoerb

Тип блока	Номер	$q_{_m}$	$\sigma_{_1}$	$\sigma_{\!_2}$	$\sigma_{_3}$	$\sigma_{_{\!4}}$	$\sigma_{\scriptscriptstyle 5}$	
нагружения	образца	МПа						
	1	10	113	141	192			
т	2	208	122	156	214			
I	2 3	208	122	165	328			
	4	208	113	145	203			
	5	10	217	145	114			
II	6	208	211	161	135			
	7	208	181	151	114			
	8	10	194	289	145			
	9	208	177	195	145			
111	10	208	136	159	116			
III	11	208	110	191	142			
	12	208	95	252	162			
	13	208	148	264	184			
	14	10	161	130	234			
	15	10	154	129	206			
	16	208	233	160	169			
IV	17	208	198	122	154			
	18	208	255	161	199			
	19	208	145	110	318			
	20	208	174	150	318			
V	21	208	161	234	132	0	220	
VI	22	208	198	131	195	134	143	
VII	23	208	161	126	223	123	223	
VIII	24	208	136	159	185	136	185	

Рис. 1. Экспериментальные кривые механической усталости (1) и фреттинг-усталости (2) образцов из титанового сплава BT-14 [2].

Предварительно были проведены испытания на механическую усталость и фреттинг-усталость исследуемой силовой системы при регулярном нагружении (рис. 2). Полученная на базе 10^7 циклов кривая 1 (см. рис. 2,а) механической усталости образцов из стали 20 описывается уравнениями (напряжения в МПа):


$$N_{\sigma} = 10^7 \cdot (186/\sigma)^{6.8}$$
 npu $\sigma \ge \sigma_{-1} = 186$ MIIa, (2)
 $N_{\sigma} = \infty$ npu $\sigma < \sigma_{-1}$

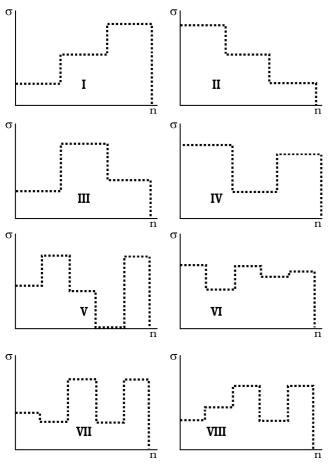
Для кривых 2,3 (см. рис. 2,а) фреттинг-усталости образцов из стали 20 получены следующие уравнения (напряжение в МПа):

• при $q_m = 10 \, \text{М}\Pi a$

$$N_{\sigma q} = 3.8 \cdot 10^6 \cdot (143/\sigma)^{5.6} \ npu \ \sigma \ge \sigma_{-1q} = 143 \ MHa,$$

$$N_{\sigma q} = 3.8 \cdot 10^6 \cdot (143/\sigma)^{22.6} \ npu \ \sigma < \sigma_{-1q};$$
(3)

Рис. 2. Экспериментальные кривые механической усталости (1) и фреттинг-усталости (2, 3) при нормальном давлении $\boldsymbol{q_m}=10$ МПа (2) и $\boldsymbol{q_m}=208$ МПа (3) – a, а также зависимость предела выносливости от величины нормального давления – δ , для образцов из стали 20.


при $\boldsymbol{q}_{m} = 208 \; \mathrm{M}\Pi \mathrm{a}$

$$N_{\sigma q} = 3 \cdot 10^6 \cdot (119/\sigma)^{5.5} \quad npu \quad \sigma \ge \sigma_{-1q} = 119 \quad M\Pi a,$$

$$N_{\sigma q} = 3 \cdot 10^6 \cdot (119/\sigma)^{24} \quad npu \quad \sigma < \sigma_{-1q}.$$
(4)

На рис. 2,б изображена зависимость, характеризующая влияние величины нормального давления \boldsymbol{q}_m на предел выносливости $\boldsymbol{\sigma}_{\boldsymbol{-}\boldsymbol{1}\boldsymbol{q}}$ образцов; она соответствует данным по характеру такой зависимости, известным в литературе [5-8].

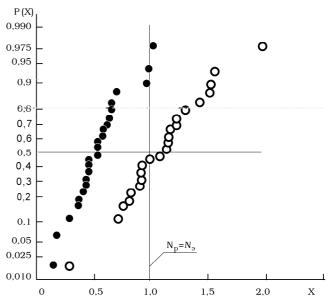

Характеристики программных блоков нагружения для исследуемой силовой системы приведены в табл. 2 и на рис. 3. Всего было сформировано четыре (I – IV) типа трехступенчатого блока и четыре (V – VIII) типа пятиступенчатого блока, которые включали различные комбинации чередования ступеней с разным уровнем изгибающих напряжений \mathbf{G} . При этом на каждой ступени трехступенчатого блока число циклов оставалось неизменным $\mathbf{n_i} = 1 \cdot 10^4$ цикл, а для пятиступенчатого блока - $\mathbf{n_i} = 5 \cdot 10^3$ цикл. Среднее нормальное давление в контакте задавали постоянным ($\mathbf{q_m} = 10$ МПа и $\mathbf{q_m} = 208$ МПа).

Рис. 3. Типы блоков нагружения образцов стали 20 при программных испытаниях на фреттинг-усталость.

Было принято $f_{\mathcal{C}}=0.5$. Долговечность образцов $N_P=N_{\Sigma}$ оценивалась по формуле (1), а погрешность расчета – с помощью отношения $X=N_P/N_3$. При этом на первом этапе было сделано предположение о линейном законе накопления износоусталостных повреждений во времени ($\alpha=\beta=1.0$). Функция распределения величины X на нормальной вероятностной бумаге для этого случая представлена на рис. 4 (зачерненные точки). Как видно из рисунка, правило линейного суммирования дает в среднем почти вдвое заниженную оценку долговечности (X=0.53). Анализ опытных данных показал, что для исследуемой силовой системы необходимо использовать модель упрочнения ($\alpha=1.0$, $\beta>1.0$); при этом следует принять $\beta=1.09$ для данной силовой системы при $q_m=10$ МПа и $\beta=1.27$ для силовой системы при $q_m=208$ МПа. Кроме того,

было установлено, что образцы №№ 3, 18-20 (см. табл. 2), нагружавшиеся блоками, включающими ступень с уровнем напряжений, существенно превышающим предел текучести стали (~ 250 МПа), в эксперименте демонстрировали долговечность, значительно (более, чем в два раза) превышающую расчетную по линейной модели. Для этих образцов было принято ${\bf \beta}=6,73$. Функция распределения величины ${\bf X}={\bf N}_P/{\bf N}_3$, где ${\bf N}_P$ оценивалась по формуле (1) с учетом указанных значений параметров упрочнения ${\bf \beta}$ и разупрочнения ${\bf C}$, представлена на рис. 4 (не зачерненные точки). Как можно видеть, в среднем результаты расчета долговечности почти совпадают с экспериментом (${\bf X}=1,1$ при ${\bf P}=0,5$), а с вероятностью 97,5% ошибка расчета не превышает двукратную, что считается приемлемым [9].

Рис. 4. Эмпирические функции распределения величины $X = N_p/N_3$ для образцов стали 20, построенные на нормальной вероятностной бумаге в предположении линейного накопления повреждений (1) и в предположении справедливости модели упрочнения (2).

Таким образом, результаты анализа экспериментальных данных блок-программных испытаний исследованных металл-металлических силовых систем при фреттинг-усталости с помощью разработанной гипотезы суммирования износоусталостных повреждений можно считать удовлетворительными. Апробацию гипотезы на иных силовых системах при фреттингусталости, а также при контактно-механической и фрикционномеханической усталости еще предстоит выполнить.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Богданович А.В. Гипотеза суммирования износоусталостных повреждений // Вестник Брестского государственного технического университета. 2004.
- Драган В.И. Влияние перегрузок на накопление повреждений при фреттинг-усталости // Завод. лаборатория. 1995. – № 3. – С. 37 – 40.
- 3. Износоусталостные повреждения и их прогнозирование (трибофатика). Науч. ред. Сосновский Л.А. / Авт.: Л.А. Сосновский, В.Т. Трощенко, Н.А. Махутов, Гао Ван-Чжэн, А.В. Богданович, С.С. Щербаков. Гомель, Киев, Москва, Ухань, 2001. 170 с.

- Богданович А.В. Методика прогнозирования долговечности силовых систем по критериям износоусталостного повреждения // Завод. лаборатория, 2002. - № 6. – С. 47 – 51.
- Сосновский Л.А., Махутов Н.А., Шуринов В.А. Фреттингусталость: основные закономерности (обобщающая статья) // Там же. 1992. № 8. С. 45 62.
- 6. Уотерхауз Р.Б. Фреттинг-коррозия. Л.: Машиностроение, 1976. 271 с.
- 7. Филимонов Г.Н., Балацкий Л.Г. Фреттинг в соединениях судовых деталей. Л.: Судостроение, 1973. 296 с.
- 8. Фреттинг-усталость металлов / В.В. Шевеля, Г.С. Калда. Хмельницкий: Поділля, 1998. – 299 с.
- 9. Когаев В.П. Расчеты на прочность при напряжениях, переменных во времени. М.: Машиностроение, 1977. 232 с.

УДК 621.9.08

Костюк Д.А., Раткевич А.В.

ПРИМЕНЕНИЕ АКУСТИЧЕСКОЙ СПЕКТРОСКОПИИ ДЛЯ ДИАГНОСТИКИ ПЛЕНОЧНЫХ ПОКРЫТИЙ

Введение

Во многих процессах технологической переработки имеет место изменение агрегатного состояния исходных материалов, в частности их отвердевание. В работах [1-3] на основе развитой в [4] теории предлагается высокочувствительный метод ультразвуковой диагностики процессов агрегатного, фазового и другого изменения состояния вещества, заключающийся в измерении спектральных характеристик акустического импульсного сигнала, отраженного от границы твердотельного звукопровода с диагностируемой сильно диссипативной средой (СДС), т.е. веществом, поглощение ультразвука в котором достаточно велико [5].

Предлагаемый метод ультразвуковых фазо-временных измерений может использоваться для диагностики тонкой структуры веществ, претерпевающих физико-химические превращения в результате технологических процессов молекулярной и лазерной эпитаксии, электро- и фотолитографии, электрохимии, плазменного и вакуумного напыления, пайки припоем. При этом в большинстве перечисленных случаев имеет место сильный локальный нагрев, фазовые, агрегатные и химические превращения в отдельных областях изделия, которые в таких условиях по своим физическим свойствам являются СДС, поскольку в них возникают изменение плотности, модуля упругости и возрастание поглощения ультразвуковых колебаний [6].

В современном электронном и машиностроительном производстве важным является непрерывный контроль качества и структуры покрытий при их осаждении на подложки. В данной работе обсуждается применение разработанной методики к диагностике пленочных покрытий.

1. Диагностика технологических процессов в электронике

Теория и практика нанесения и получения защитных (электро- и теплоизоляционных, антикоррозийных и т.д.) тонкопленочных покрытий на массивных твердотельных подложках превратилась в одну из важнейших областей технической физики и ее промышленных приложений.

Тонкие пленки находят широкое применение в различных областях науки и техники. Важнейшие задачи, решаемые пленочным материаловедением - получение пленочных материалов с широким спектром свойств (электрофизических, механических), развитие методов синтеза пленочных систем с заданными свойствами.

Будучи особым видом состояния конденсированного вещества, тонкие пленки могут по структуре и свойствам существенно отличаться от своих массивных аналогов. Это обусловлено спецификой процесса их формирования - конденса-

цией молекулярных потоков вещества на поверхности твердотельной подложки. Свойства тонких пленок являются производными их морфологии, атомной структуры, кристалличности и степени ее совершенства, которые, в свою очередь, определяются кинетикой процесса пленкообразования.

Процесс формирования тонких пленок является сложным процессом, включающим такие процессы-компоненты, как адсорбция, образование зародышей новой фазы, их рост, коалесценция и др. Кинетика каждого из этих процессов влияет на структуру образующейся пленки. Получение пленочных систем с заранее заданными свойствами связано с проблемой управления этими процессами [7].

Свойства тонких пленок в значительной степени определяются технологией изготовления. Пленки, имеющие одинаковую толщину, в зависимости от условий их получения могут иметь различные удельные сопротивления, температурные коэффициенты сопротивления, диэлектрические потери, коэффициенты поглощения света и т.д. Поэтому в технологии производства интегральных схем часто оказывается важным измерение толщины пленки после ее получения, а также возможность управлять толщиной в процессе нанесения пленочного покрытия [8].

Рассмотрим вкратце методы, традиционно применяемые для диагностики пленочных покрытий.

• Растровая электронная микроскопия

Принцип действия основан на облучении поверхности объектов тонко сфокусированным пучком электронов (2-40 кэВ) [9]. В результате взаимодействия электронов с образцом генерируются различные сигналы, главным образом поток электронов (отраженных, вторичных, Оже-электронов, поглощенных, прошедших через образец) и излучений (катодолюминесцентного и рентгеновского).

Пучок разворачивается в растр на поверхности образца, формируя изображение сканируемой поверхности. Яркость отдельных наблюдаемых элементов определяется изменениями интенсивности вторичных или отраженных электронов. Интенсивность излучения зависит от толщины образца или пленки, материала образца и радиуса кривизны поверхности образца.

К преимуществам данного метода относятся высокое пространственное разрешение (менее 10 нм), глубина резкости, три типа излучения, несущих полезную информацию о химическом составе вещества: рентгеновские лучи, вторичные электроны, отраженные электроны.

• Просвечивающая электронная микроскопия

Образец в виде тонкой пленки просвечивается электронным пучком (60 - 350 кэВ). Максимальная толщина для исследования просвечивающей электронной микроскопией со-

Костюк Дмитрий Александрович, ассистент каф. «ЭВМ и системы» Брестского государственного технического университета.

Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.