УДК 621.326

Овсянников Г.Н.

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЛАМПАХ НАКАЛИВАНИЯ

Известно [1,2],что свыше 80% ламп накаливания теряют работоспособность в момент включения или выключения. Анализ переходных процессов позволяет наметить и осуществить ряд мер по улучшению конструкции тела накала и самой лампы, а также технологию изготовления и режимов работы в момент включения (выключения), что может увеличить срок службы.

Тело накала в лампах накаливания представляет собой биспираль, изготовленную из вольфрамовой проволоки. С точки зрения элемента электрической цепи, оно представляет преимущественно активное, нелинейное, инерционное сопротивление. При включении (выключении) лампы в цепь переменного тока параллельно идут два вида переходных процесса. Один обусловлен индуктивностью тела накала, второй – изменением сопротивления при нагреве тела накала.

При наличии индуктивности в спирали, схему ее замещения можно представить в виде рисунка 1.

Рисунок 1 - Схема замещения тела накала.

Если принять, что напряжение источника изменяется по известному закону $u = U_m \cdot sin(\omega t + \psi_n)$, то уравнение цепи будет

$$u = iR + L\frac{di}{dt}$$

Ток i_n в переходном процессе: $i_n = i_{ycm} + i_{cs}$, где

 i_{ycm} - установившийся ток цепи при $t \to \infty$, $i_n \to i_{ycm} = I \cdot sin(\omega t + \psi_n - \varphi)$,

$$I_m = \frac{U_m}{\sqrt{R^2 + (L \cdot \omega)^2}}, \ \varphi = \arctan \frac{L \cdot \omega}{R}.$$

Свободный ток i_{cs} определяется из решения однородного дифференциального уравнения

$$\frac{di_{c_{\theta}}}{dt} + \frac{R}{L}i_{c_{\theta}} = 0 , \qquad (1)$$

которое представим в виде
$$i_{cs} = A \cdot e^{-\frac{t}{\tau}}$$

где $\tau = \frac{L}{R}$ - постоянная времени цепи;

А – постоянная интегрирования.

$$i_n = I_m \cdot sin(\omega t + \psi_u - \varphi) + Ae^{-\tau}.$$

По первому закону коммутации [3],
$$A = -I \cdot sin(\psi - \varphi)$$

$$i_n = I_m \cdot \sin(\omega t + \psi_u - \varphi) - I_m \cdot \sin(\psi_u - \varphi) e^{-\frac{t}{\tau}} .$$
(2)

При отключении лампы переходные процессы будут описываться уравнением (для свободного переходного процесса) по типу (1):

$$i_n = I_m \cdot \sin(\psi_u - \varphi) e^{-\frac{i}{\tau}}.$$
 (3)

t

Из уравнений (2) и (3) следует, что наиболее напряженным будет переходный процесс включения, при

$$\psi_i = \psi_u - \varphi = -\frac{2n+1}{2}\pi(n=1,2...)$$

При $\psi_i = 0$ переходный процесс протекает без возмуще-

ний $i_n = i_{ycm}$ (рисунок 2).

Рисунок 2 – Параметры переходного процесса.

Для количественной оценки переходного процесса были выбраны четыре типа ламп накаливания таблицы 1, и измерены на приборе Е4-7 индуктивность тела накала, рассчитаны постоянная времени τ , продолжительность переходного процесса $t_n = 4\tau$ и индуктивное сопротивление ωL .

Сравнение времени t_n с периодом переменного тока f=50Гц (t=0.02 с) показывает, что энергетическое влияние пере-

Овсянников Герман Николаевич. Доцент каф. автоматизации технологических процессов и производств Брестского государственного технического университета.

Беларусь, БГТУ, 224017, г. Брест, ул. Московская 267.

Машиностроение, автоматизация, ЭВМ

Таблица 1

Тип лампы нака- ливания	Индукти-вность тела накала L [<i>тГн</i>]	Посто-янная времени <i>т[µс]</i>	Продол- житель-ность переход-ного процесса <i>t_n</i> [<i>µc</i>]	Индуктив-ное сопротивле-ние тела накала <i>Ф</i>L [<i>т</i> Ω]	Вид тела накала
Б220х150	1,4	0,058	0,225	0,44	биспираль
Б220х100	4,6	0,120	0,466	1,44	биспираль
Б220х15	6,5	0,026	0,104	2,04	моноспираль
HK220x15	3,0	0,020	0,081	0,93	моноспираль

Таблица 2

Сопротивление тела	Тип лампы					
накала	Б220х150	Б220х100	Б220х15	HK220x15		
R_x – холодного, Ом	25,1	39,5	249	146,4		
<i>R</i>_{<i>H2100 °</i>} – нагрето- го, Ом	354	544	3141	2679		

ходного процесса на режим работы тела накала очень слабое:

 $\Delta P \approx i u t_n < 0.1$ BT

Переходный процесс связанный с изменением сопротивления тела накала таблица 2 в процессе его нагрева характеризуется энергобалансом электрической сети и тела накала, который можно представить в виде:

$$dQ = \Delta P dt = c \ m \ d\Theta + k_{mu} \ S_u \ d\Theta + k_{mn} \ S_{np} \ \Theta dt + k_{mn} \ S_{np} \$$

где *dQ* – приращения тепла, кал

ДР – приращение мощности, Вт

- C удельная теплоемкость тела накала (кал·г / °С)
- *m* масса тела накала, г
- *Θ* приращение температуры, °С

 k_{mu} – коэффициент теплоизлучения (кал·см² / °C)

- S_u поверхность излучения, м²
- k_{mn} коэффициент теплопередачи (кал / м °С)
- S_{пр} площадь сечения элементов
- k_{mo} коэффициент конвективного теплообмена.
- S_{oxn} поверхность охлаждения.

Предварительный анализ показывает, что энергия излучения за период переходного процесса даже для установившегося значения температуры Θ_{ω} не превышает светового КПД,

 $\eta \leq 4\%$. Поэтому этим можно пренебречь.

Энергию теплопроводности и конвективного теплообмена, которые нарастают можно приближенно представить как равные и тогда (4) будет

$$d\boldsymbol{\Theta} = \boldsymbol{\Delta} \boldsymbol{P} dt = \boldsymbol{c} \cdot \boldsymbol{m} \cdot \boldsymbol{d} \boldsymbol{\Theta} + 2\boldsymbol{k}_{mn} \cdot \boldsymbol{S}_{np} \cdot \boldsymbol{\Theta} \cdot \boldsymbol{dt} \,. \tag{5}$$

Очевидно, что при установившемся процессе теплообмена

$$\Delta P dt = 2k_{mn} \cdot S_{np} \cdot \Theta_{\infty} \cdot dt , a \Theta_{\infty} = \frac{\Delta P}{2k_{mn} \cdot S_{np}} .$$
Torga ypabhenue (4) byger

Тогла

 $2k_{mn}\cdot S_{np}\cdot (\Theta_{\infty}-\Theta)dt=c\cdot m\cdot d\Theta.$

Решение получим в виде

$$\boldsymbol{\Theta} = \boldsymbol{\Theta}_{\infty} \left(\boldsymbol{I} - \boldsymbol{e}^{-\frac{t}{T}} \right) + \boldsymbol{\Theta}_{0} \cdot \boldsymbol{e}^{-\frac{t}{T}},$$

где \varTheta – начальная температура окружающей среды. Примем $\Theta_0 = 0$,

$$T = \frac{cm}{2k_{T\Pi} \cdot S_{np}}$$
 - постоянная времени.

Расчеты показывают $T \approx 1$ сек.

Кроме того, если температура, а следовательно и рассеиваемая энергия, изменяются по экспоненте (рисунок 3), то очевидно.

$$i = I_0 \cdot e^{-\frac{t}{T}}$$
, где $I_0 = \frac{u}{R_r}$

В установившемся режиме $i = I_{yCT} = \frac{u}{R_H}$.

Таким образом скачок температуры тела накала вызывает скачок сопротивления и тока более чем в 10 раз.

Экспериментально установлено [4], что отклонения от расчетного тока I_0 дает значительное уменьшение срока службы T относительно расчетного T_{θ}

Можно только предположить, что механизм разрушения тела накала не в полной мере проявляется за время переходного процесса, однако наличие его бесспорно и существенно. Очевидно, в цепи постоянного тока этот эффект будет выражен более сильно.

Вестник Брестского государственного университета. 2001. №4 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

выводы

- Переходный процесс в лампе накаливания из-за наличия малой индуктивности тела накала практически не влияет на режим ее работы.
- Изменение температуры тела накала при переходном процессе существенно влияет на светотехнические характеристики лампы.
- Вугман С.М. и др. О работоспособности ламп накаливания, эксплуатируемых в импульсном режиме. Электрические источники света. Тр. ВНИИИС, Саранск, 1985 г., вып.17. – С. 17-23.
- Киселева Н.П. и др. Срок службы ламп накаливания в режиме частых включений. Светотехника №8, 1989 г. – С.11-12.
- Электротехника. Под ред. В.Г. Герасимова. Изд. В.шк., М., 1985 г. – С. 420.
- Ламехов О.А. и др. Светотехника и светоизмерения. Изд. Машиностроение, М., 1980 г. – С.310.

УДК 531.43/46 +539.388.1→539.43

Вавилов О.Т.

КОНЦЕПЦИЯ ОПАСНЫХ ОБЪЕМОВ В КОНТАКТНОЙ ЗАДАЧЕ

1. Модель ТОПО. Представление о том, что прочность деформируемого твердого тела с рабочим объемом V_{ρ} определяется ограниченной областью конечных размеров, общепризнанно [1, 2 и др.]. Затруднения состоят в обосновании критерия ограничения этой области и критерия установления критического уровня напряжений в ней. В работе [3] указанная область трактовалась как объем, в котором действующее напряжение превышает нижнюю границу прочности дефектного элемента структуры тела. Но при расчетах эта нижняя граница условно принималась равной нулю, и тогда искомый объем оказывался просто геометрическим объемом образца. В работе [4] сопротивление усталости связывается с «высоконапряженным» объемом образца – такой его областью, где напряжения превышают произвольно установленный 95%ный порог от максимального напряжения в опасном сечении. Погрешность полученного решения оказалась высокой.

В работах [5, 6] дано обоснованное количественное решение задачи об определении ограниченной области конечных размеров с критическим уровнем нормальных напряжений в образце. Эта область называется опасным объемом. Как указано в работе [7], любое твердое тело представляет собой статистический ансамбль большого количества первичных элементов, каждый из которых в той или иной мере ответственен за прочность тела в целом. Чтобы определить «меру ответственности» каждого из элементарных объемов за прочность деформируемого тела в целом и вводится представление о его опасном объеме [6].

Если деформируемое твердое тело характеризуется таким напряженным состоянием при осуществлении реального комплекса условий испытаний, что, возможно, его усталостное разрушение, то оно состоит из двух областей: объемов с безопасным и опасным состоянием (рисунок 1).

Опасным называют объем $V_{p_{\gamma}}$, в котором с некоторой вероятностью p возможно появление действующих нормальных напряжений σ , превышающих нижнюю границу σ_{-1min} рассеяния пределов выносливости σ_{-1} тела, и наличие предельных напряжений σ_{-1} , меньших, чем верхняя граница σ_{-1max} рассеяния напряжений σ от действующей нагрузки. Как следует из определения, величина p имеет смысл вероятности разрушения тела. Давая ей доверительную оценку с

Рисунок 1 – Деформируемое твердое тело с опасным объемом.

вероятностью $\gamma_0 = 1 - \alpha_0$, где α_0 - нормированный уровень значимости, опасный объем можно вычислить с учетом γ_0 , т.е. определить $V_{p_{\gamma}}$. Величине γ_0 придается смысл вероятности, с которой производится ограничение функции распределения $P(\sigma_{-1})$ для установления минимального значения σ_{-1min} случайной величины σ_{-1} , такого, что практически вероятность $P(\sigma_{-1} < \sigma_{-1min}) = 0$.

Следовательно, опасный объем деформируемого твердого тела должен зависеть от его геометрических размеров, определяющих его рабочий объем V_0 тела, параметров функций распределения $P(\sigma_{-1})$ и $P(\sigma)$ пределов выносливости σ_{-1} и действующих напряжений σ с учетом вероятностей p и γ_0 , градиента G_{σ} действующих напряжений, как по диаметру, так и по длине тела:

$$V_{p_{\gamma}} = F_{V}[p(\sigma_{-I}), p(\sigma), G_{\sigma}, V_{0}P, \gamma, \vartheta_{V}]. \quad (1.1)$$

Здесь \mathcal{O}_V описывает влияние на величину предела выносливости формы тела и схемы его нагружения при усталостных испытаниях.

Граница между объемами с опасным и безопасным состоянием, как следует из выражения (1.1), в общем случае раз-

Вавилов Олег Трофимович. Научный сотрудник лаборатории трибофатики научного центра проблем механики машин Национальной академии наук Беларуси (НЦ ПММ НАНБ).

Беларусь, г. Минск, пр. Ф. Скорины 12.

Машиностроение, автоматизация, ЭВМ