ГЕОЭКОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА БОЛОТА «СВЯТОЕ»

Новик А.А.

Белорусский государственный университет, Минск, Республика Беларусь, aliaksei_novik@yahoo.com

The article is devoted to a problem of lakes located within of bog «Svjatoe». At present, the reclamation work connected with production of peat on water catchment areas has led to a lowering of groundwater levels, lake levels drop and alter the shoreline of the reservoir. It is important to preserve unique lakes lowering the impact of reclamation.

Введение

Болото «Святое» (53°48` СШ и 24°20`ВД) расположено в пределах Гродненского и Щучинского районов Гродненской области, представляя собой уникальный природный водно-болотный комплекс. С целью комплексной оценки современного состояния болота «Святое», в мае 2013 года было выполнено геоэкологическое исследование озер и прилегающих водосборных территорий, в рамках научно-исследовательского проекта: «Оценить природноресурсный потенциал Гродненского Понеманья для оптимизации рационального природопользования и устойчивого развития региона», выполняемого БГУ совместно с Гродненским государственным университетом им. Я. Купалы. Данные исследования в виде научных рекомендаций были представлены на общественных слушаниях по вопросу сохранения болота «Святое» в составе земель ландшафтного заказника «Озеры».

Основная часть

Болото «Святое» занимает обширный зандр позерского возраста, вытянутый с севера на юг, относящийся к Озерской водно-ледниковой низине [1]. Днище зандра осложнено поднятиями в виде цепей эоловых гряд. Наиболее крупное из таких поднятий разделяет заболоченный зандр на западную и восточные пониженные части. Поверхность территории плоско-вогнутая, заторфованная с незначительным колебанием относительных высот. Торфяная залежь состоит из торфов низинного типа с максимальной мощностью до 5,6 м. На отдельных участках низинные торфа перекрываются маломощным слоем (до 0,3-0,4 м) переходного и верхового типов торфа. Торф подстилается водно-ледниковыми песками. Среди торфяников отмечаются небольшие минеральные острова. В северо-западной части болотного массива входящей в состав ландшафтного заказника республиканского значения «Озеры» расположены озера Долгое, Глинец, Щучье, Зубровка занимающие наиболее низкие участки. Абсолютные отметки поверхности здесь изменяются от 124 м (на севере) до 119 м (на юге). По гидрологическим характеристикам территория делится на две части: северную и южную. Северная часть является водосбором озера Долгое, южная – водосборной территорией озер Щучье и Глинец. В восточной части болота на северо-восточной границе торфяника расположено озеро Зубровка. Водоемы болота «Святое» характеризуются различной степенью трансформации в результате прямого влияния осушительной мелиорации и добычи торфа. В настоящее время восточная и южная части болота «Святое» осушены и интенсивно эксплуатируются торфопредприятием Вертелишки. По программе развития торфопредприятия Вертелишки в 2015–2020 годах было запланировано освоение площадей северо-западной части месторождения «Святое». Запланированные площади являются частью водосборов озер Долгое, Глинец Щучье и Зубровка. При условии интенсивной осушительной мелиорации и добычи торфа без компенсационных мероприятий, озера Долгое, Глинец Щучье и Зубровка будут под угрозой полного спуска.

Озера Щучье, Долгое и Глинец относятся к системе реки Бервенка, являющейся левым притоком реки Пыранка. Озеро Зубровка, находящееся на северо-восточной окраине болота «Святое», относится к системе реки Котра. Все системы вышеуказанных рек относятся к бассейну реки Неман. Морфометрические показатели озер приведены в таблице 1.

Таблица 1 – Морфометрические показатели озер болота «Святое»

Показатели/Название озер	Долгое	Глинец	Щучье	Зубровка
Абсолютная высота уреза, м	121,2	121,4	119	121,8
Площадь, км ²	0,45	0,14	0,02	0,10
Объем млн м ³	0,51	0,13	0,03	0,09
Глубина максимальная, м	2,70	1,70	0,40	2,70
Глубина средняя, м	0,90	0,90	0,20	0,90
Длина, км	1,25	0,52	0,22	0,58
Ширина максимальная, км	0,65	0,35	0,14	0,20
Ширина средняя, км	0,37	0,27	0,09	0,17
Длина береговой линии, км	3,10	1,52	0,58	1,32
Площадь водосбора, км ²	2,90	1,55	2,29	4,50

Берега озер преимущественно сплавинные (в среднем 30 метров). Надводные склоны озерных котловин плохо выражены, заболоченны. У озера Зубровка на востоке склоны возвышаются над урезом воды на 2-3 м, заняты строениями и приусадебными участками д. Зубровка. Озерные котловины по происхождению относятся остаточному типу. Озера слабопроточные. В их питании значительная роль принадлежит водам, поступающим с болотного массива, то есть за счет горизонтальной фильтрации верхнего активного слоя торфа. За счет природных особенностей водосбора, сток в озера осуществляется по двум направлениям с севера и запада. Расходная часть водного баланса озер связана с испарением с зеркала озера, кроме того, у озера Зубровка временным стоком по ручью в реку Котра. На момент обследования течение в ручье отсутствовало, в межень ручей полностью пересыхает. На севере в озеро впадает полностью заросшая мелиоративная канава. Расходная часть водного баланса у озера Долгое помимо испарения связана со стоком в реку Бервенка (среднегодовой расход воды составляет 0,3 м³/с). У озера Щучье и Глинец со стоком через активные слои торфа в южном направлении. Ранее сток из озера Щучье осуществлялся по Щучинской канаве. В настоящее время в результате мелиоративных работ предприятия Вертелишки, связанных с разработкой торфяных участков и сооружением дренажной системы находящейся в 280 м к югу от озера (картовых, валовых и нагорных каналов) базис эрозии озера понизился, что вызвало падение уровня воды. Произошло увеличение расхода воды, а поступающей объем воды с водосбора озера оказался недостаточен для подержания стабильного уровня. В настоящее время уровень воды озера Щучье по сравнению с 1948 годом упал на 2,1 м [2]. Площадь озера сократилась более чем в три раза (с 0,05 до 0,02 км²). Объем воды — с 0,018 до 0,003 млн м³. Максимальная глубина упала с 2,5 м до 0,4 м. Современная береговая полоса, бывшая литоральная зона озера, занята водно-болотной растительностью, в настоящее время сильно заболоченна. По всему периметру озера, на обнаженных илистых отмелях, получили развитие надиловые сплавины, формирование которых связано с падением уровня воды в озере. В южной части отмечаются небольшие минеральные острова.

Следует отметить, что морфометрия озер за последние пол столетия значительно изменились и из-за гидротехнических работ на реке Бервенка, что привело к изменению морфологических и гидрологических параметров русла. Так, по сравнению с 1948 годом, уровень воды в озере Долгое упал на 0,5 м, площадь озера сократилась с 0,55 км² до 0,45 км², объем водной массы с 0,69 до 0,51 млн м³, средняя глубина с 1,3 м до 0,9 м [2]. Изменился характер береговой линии: максимальная ширина сплавин в 1948 г не превышающая 50 м, в настоящее время достигает 180 м. На акватории озера в настоящее время отмечаются сплавинные острова. У озера Глинец максимальная глубина по сравнению с 1948 годом уменьшилась с 3 до 1,7 м, средняя с 1,8 до 0,9 м, при сократившейся площади в полтора раза [2].

Гидрохимический режим водной массы озер определяется их водосборной территорией и морфометрическими показателями котловины. По химическому составу вода озер относится к водоемам гидрокарбонатного класса, кальциевой группы, как видно из таблицы 2. Химический состав водной массы озера (низкая минерализация, высокая цветность, кислая реакция воды) соответствует уровню дистрофных водоемов и показывает, что в приходной части водного баланса водоемов значительную роль играют болотные воды, поступающие через верхние слои торфа (соответствуют торфяникам переходного типа) [3]. Отмечается превышение ПДК для рыбохозяйственных водоемов в азоте аммонийном почти в 2–4 раза, в железе общем в 1,5 раза. Дно озер выстилают илы и оливковые сапропели.

Таблица 2 – Гидрохимические показатели озер болота «Святое»

Показатели/Название	Долгое	Глинец	Щучье	Зубровка
pH	7,06	6,29	6,07	6,42
HCO _{3−} (мг/дм ³)	85,43	48,82	30,51	36,61
Cl ⁻ (мг/дм ³)	4,89	4,89	6,52	4,89
SO ₄ ²⁻ (мг/дм ³)	1,5	1,1	1,5	1,1
NO_3^- (мгN/дм ³)	1,2	0,8	1,1	1,5
NO ₂ - (мгN/дм ³)	<0,02	<0,02	<0,02	<0,02
PO ₄ ³⁻ (мгР/дм ³)	0,045	<0,005	0,099	0,03
NH ₄ ⁺ (мгN/дм ³)	1,04	0,78	1	1,53
Ca ²⁺ (мг/дм ³)	14,43	12,83	6,41	12,82
Mg ²⁺ (мг/дм ³)	2,92	2,92	3,89	3,89
Na ⁺ (мг/дм ³)	1,2	0,8	0,4	1,4
К ⁺ (мг/дм ³)	0,3	0,3	0,2	0,2
Общее Fe (мг/дм ³)	0,7	0,39	1,06	0,52
Цветность (град)	246	154	410	325
Прозрачность (м)	0,9	1,1	0,4	0,8
Минерализация (мг/дм ³)	113,65	73,63	52,69	64,49

Флора водных и прибрежно-водных фитоценозов насчитывает а настоящее время 127 видов, при доминирующих семействах Осоковых, Злаковых, Вересковых и Ивовых. Растительный покров водоемов и малых водотоков болота «Святое» сформирован 20 ассоциациями, доминирующая часть который является охраняемыми в Европе по Берской конвенции. Водная растительность представлена 3 группами (надводной, погруженной и с плавающими листьями). Среди надводной растительности выявлены: тростник обыкновенный, рогоз широколистный и узколистный, осоки, ежеголовник прямостоячий, хвощ, иногда образующих сплошную полосу, шириной до 20—30 м (оз. Глинец). Растения с плавающими листьями — кубышкой желтой, рдестом плавающим, водокрасом и ряской. Погруженные макрофиты — урутью, телорезом и водяным мхом. Последний отмечен на озеро Долгом, распространяясь до глубины 1,2 м.

В результате анализа геоботанических данных описаний озер в пределах болота «Святое», выявлено, что сплавинные сообщества вокруг изученных озер слагаются 54 видами сосудистых растений, относящихся к 42 родам и 16 видами мохообразных из 11 родов. Количество видов сосудистых растений изменяется от 6 до 25, мохообразных — 2—7 видов. Выявлены 2 новых местопроизрастания охраняемых видов растений (сем. Орхидные): ладьян трехнадрезной и лосняк Лезеля [4]. Данные виды в Беларуси имеют ІІ категорию охраны. Изученные фитоценозы сформированы на переходных болотах, которые имеют охранный статус в Европейском Союзе и являются потенциальными претендентами на включение в Зеленую книгу Беларуси [5].

Анализ исследований наиболее уязвимого озера Щучье расположенного в непосредственной близости от торфоразработок позволил выявить, что в настоящее время проведение мелиоративных работ на прилегающих к границам заказника территориях, привело к понижению уровня грунтовых вод, падению уровня водоема и изменению береговой линии озера Щучье. В водоеме произошли значительные негативные изменения гидрологических параметров, гидрохимического режима и биологических показателей. Это выразилось в снижении прозрачности, уменьшении проточности, увеличение кислотности воды, значительном сокращении содержания кислорода в зимний период, увеличении анаэробной среды с высоким содержанием сероводорода. Вышеперечисленные условия привели к заморным явлениям и полному исчезновению рыбных запасов в озере Щучье.

Заключение

Дальнейшее расширение дренажно-мелиоративной сети, в связи с торфодобычей, которое продолжается на прилегающих территориях, приводит к понижению уровня грунтовых вод в пределах болота «Святое», может вызвать:

- полный спуск воды озера Щучье, превратив его в болото;
- нарушение гидрологического и трофического режима озер Долгое Глинец и Зубровка (как приемника мелиоративных вод) уникальных водоемов верховых и переходных болот северо-запада Беларуси;
- увеличение пожароопасности водосборной территории, в связи с понижением уровня грунтовых вод;
- нарушение гидрологического режима р. Котра, так как болото «Святое» располагается в бассейне среднего течения реки и является регулятором ее стока;
- сокращение растительного и животного видового разнообразия в акватории и водосборных территориях озер болота «Святое», а также исчезновение уникальных водных и прибрежно-водных фитоценозов переходных болот охраняемых в Беларуси и в Европе;

- ухудшить местное водоснабжение деревень расположенных в пределах водосборной территории болота «Святое», понизить уровни и качество питьевой воды в шахтных колодцах.

Общественные и государственные организации приняли активное участие в защите водно-болотного комплекса заказника «Озеры» – болота «Святое». В поселке Озёры Гродненской области 2 ноября 2013 года прошли общественные слушания по вопросу исключения западной части территории болота «Святое» из состава ландшафтного заказника «Озеры», с целью дальнейшего осушения и торфодобычи предприятием «Вертелишки». Были заслушаны мнения всех заинтересованных сторон. Результаты слушаний во многом повлияли на принятие окончательного решения Минприроды о внесении в Совет Министров Республики Беларусь проекта постановления о нерасширении торфоразработки на территории болота «Святое» и неизменении границ заказника «Озеры», в прежних границах.

Список литературы

- 1. Матвеев А.В., Гурский Б.Н., Левицкая Р.И. Рельеф Белоруссии. Минск: Университетское, 1988. 320 с.
 - 2. Якушко, О.Ф., Озероведение. Минск: Выш. школа, 1981–284 с.
- 3. Тюльпанов, А.И. Краткий справочник рек и водоемов БССР. Мн.: Государственное издательство БССР, 1948. 626 с.
- 4. Мойсейчик, Е.В., Созинов О.В. Эколого-ценотическая характеристика местопроизрастания *Corallorhiza trifida* в республиканском ландшафтном заказнике «Озеры» // Мониторинг и оценка состояния растительного мира. Материалы IV Международной научной конференции. Минск, 30 сентября 4 октября 2013 года. Минск: ГУ «БелИСА», 2013. С. 334—335.
- 5. Красная книга Республики Беларусь: Редкие и находящиеся под угрозой исчезновения виды дикорастущих растений. Мн.: БелЭн, 2005. 456 с.

УДК 504.054(539.136:546.36):582.5/.9:476.2

ТЕКУЩАЯ ЗАГРЯЗНЕННОСТЬ CS-137 ТРАВЯНИСТЫХ КОРМОВ ДИКИХ КОПЫТНЫХ В НАЦИОНАЛЬНОМ ПАРКЕ «ПРИПЯТСКИЙ»

Пашук М.В.

ГПУ « Национальный парк «Припятский», а. г. Лясковичи, Беларусь, martochka369@mail.ru

Data of radioactive impurity ¹³⁷Cs various kinds of grassy plants are cited, distinctions of levels of impurity of their underground and elevated parts depending on conditions of their places of growth are defined.

Введение

Экологические последствия Чернобыльской катастрофы определяются двумя основными факторами — облучением природных объектов и радиоактивным загрязнением окружающей среды [1]. На территорию Беларуси выпало 70% всех выброшенных после аварии радионуклидов. Загрязнению радиоактивным ¹³⁷Cs подверглось около 23% территории нашего государства [2].