Черноиван В.Н., Черноиван Н.В.

АНАЛИЗ КОНСТРУКТИВНО-ТЕХНОЛОГИЧЕСКИХ РЕШЕНИЙ ДОПОЛНИТЕЛЬНОЙ ТЕПЛОЗАЩИТЫ СТЕН ЭКСПЛУАТИРУЕМЫХ ЗДАНИЙ

Энергосбережение является генеральным направлением технической политики всех государств. Большое значение в энергосбережении отводится повышению теплозащиты ограждающих конструкций зданий. Особое место в решении данной проблемы отводится не только новому строительству, но и эксплуатируемому фонду жилых и общественных зданий, теплотехнические характеристики которых не удовлетворяют действующим нормам.

Снижение энергопотребления эксплуатируемых зданий может быть достигнуто путем повышения теплотехнических характеристик ограждающих конструкций, а также созданием отопительных систем с управляемыми тепловыми режимами.

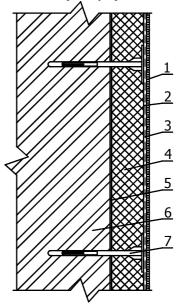
В практике зарубежных стран восстановление и, особенно, повышение теплозащитных качеств наружных ограждений имеет широкое распространение. Это связано с постоянным пересмотром нормативных документов в сторону ужесточения требований и немедленной их реализацией. За последние 20...30 лет в странах Западной Европы сложилась целая подотрасль стройиндустрии, в задачу которой входит устройство теплозащиты стен эксплуатируемых зданий. На сегодня известно почти 400 видов конструктивных решений теплозащиты наружных стен эксплуатируемых зданий.

Все известные конструктивно-технологические решения дополнительной теплозащиты стен, применяемые в мире, классифицируются следующим образом:

- способ штукатурки по слою теплоизоляции;
- облицовка на относе;
- облицовка из защитно-декоративных панелей;
- теплоизоляционные покрытия (штукатурные, легкие бетоны, напыляемые композиции).

На сегодня основной объем (65%) дополнительной теплозащиты стен выполнен способом штукатурки по слою теплоизоляции (рис. 1)

Следует отметить, что в нашей Республике по такой технологии («Термошуба») [1] выполнено более 95% дополнительной теплозащиты стен эксплуатируемых зданий.


В настоящее время применение способа оштукатуривания по слою теплоизоляции в странах Западной Европы значительно снизилось. Это связано с тем, что комплексный технологический процесс по устройству «Термошубы» базируется в основном на ручных операциях. Кроме того, для способа штукатурки по слою теплоизоляции имеются ограничения технологического регламента по температуре и влажности наружного воздуха [2], что делает данную технологию мало эффективной.

Основные технико-экономические показатели по устройству 1 м² «термошубы» на объектах г. Бреста следующие: трудозатраты – 5 чел.×час; стоимость – около 30 у.е. Гарантийный срок эксплуатации – до пяти лет.

Согласно имеющейся информации [6], в зданиях доутепленных по методу «термошуба» и оборудованных стеклопакетами наметилась устойчивая тенденция к повышению влажности в квартирах (особенно на верхних этажах), что отнюдь не способствует качеству жилой среды. Для поддержания качественных параметров воздуха (совокупность его температурных, влажностных и химических характеристик) в помещениях доутепленных по методу «термошуба» необходима установка системы принудительной вентиляции.

На основании изложенного можно сделать заключение,

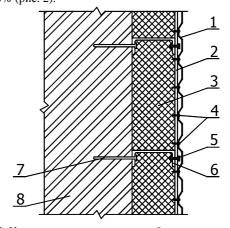

что дополнительная теплозащита стен способом штукатурки по слою теплоизоляции достаточно трудоемка и заложенные в ней конструктивные решения позволяют обеспечить повышение теплозащитных качеств наружных ограждений только после полного демонтажа ранее устроенной теплозащиты.

Рис. 1. Конструктивное решение «способ штукатурки по слою теплоизоляции»:

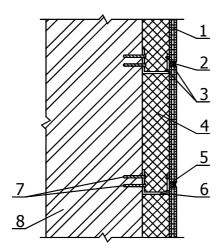
1 — декоративно-защитный слой; 2 — армирующий слой; 3 — армирующий материал; 4 — теплоизоляционный слой; 5 — клеевой слой; 6 — утепляемая стена; 7 — дюбель-анкер для крепления плит утепления.

Объем дополнительной теплозащиты стен способом «облицовка на относе» в странах Западной Европы составляет около 25% (рис. 2).

Рис. 2. Конструктивное решение «облицовка на относе»: 1 — облицовка фасада («сайдинг»); 2 — крепежная пластина для облицовки фасада; 3 — теплоизоляционный слой; 4 — самонарезающий винт; 5 — болт; 6 —элемент, обеспечивающий

Черноиван Вячеслав Николаевич, кандидат технических наук, профессор, зав. кафедрой технологии строительного производства Брестского государственного технического университета.

Черноиван Николай Вячеславович, кандидат технических наук, доцент кафедры строительных конструкций Брестского государственного технического университета.


Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.

фиксацию утеплителя в проектном положении; 7 – дюбельанкер; 8 – утепляемая стена.

В Республике Беларусь по такой технологии (известна, как система «Радекс») [3] выполнено около 5% дополнительной теплоизоляции стен. Основным недостатком способа «облицовка на относе» является его высокая материалоемкость и трудоемкость. А отсюда и высокая стоимость. Стоимость 1 м² дополнительной теплозащиты стен облицовкой на относе составляет более 47 у.е.

Конструктивное решение дополнительной теплозащиты стен способом «облицовка на относе» не приспособлено к быстрой модернизации и в случае пересмотра нормативных документов в сторону повышения теплозащитных качеств наружных ограждений потребуется демонтаж облицовки фасадов (это, как правило, «сайдинг») и замена или установка новых слоев теплоизоляционного материала.

Анализ литературных источников [5] показывает, что на сегодня в странах Западной Европы наблюдается устойчивый рост объемов теплозащиты наружных стен эксплуатируемых зданий с применением облицовки из защитно-декоративных панелей. Это конструктивное решение базируется на механическом креплении защитного слоя утеплителя на специальных опорах – кронштейнах или направляющих (рис. 3).

Рис. 3. Конструктивное решение «облицовка из защитнодекоративных панелей»:

1 — облицовочная панель; 2 — герметизирующая мастика; 3 — петли облицовочной панели; 4 — теплоизоляционный слой из плитного утеплителя; 5 — жгут из пороизола; 6 — несущий кронштейн; 7 — дюбеля-анкеры; 8 — утепляемая стена.

Крепление плитных теплоизоляционных материалов к стене осуществляется с помощью дюбелей или клеящего состава. Использование механического крепления защитного слоя утеплителя позволяет существенно снизить затраты на модернизацию дополнительной теплозащиты наружных стен в случае пересмотра нормативных документов в сторону повышения их теплозащитных качеств.

Использование теплоизоляционных покрытий (штукатурные, легкие бетоны, напыляемые композиции) для устройства дополнительной теплозащиты стен зданий носит экспериментальный характер и часто связано с рекламными акциями фирм, производящих краски. Во Франции крупнейшими из них являются фирмы «Seiqneurie» и «Zolpan», в Германии – фирма «Arge Strabag Polytrade», в Америке – фирма «Senergy» [5]. Качество этих покрытий оценивается их долговечностью.

Массовое их применение для устройства дополнительной теплозащиты стен эксплуатируемых зданий, при изменяющихся значениях их нормативного сопротивления теплопередачи, малоэффективно.

Анализ известных и применяемых в мире решений дополнительной теплозащиты стен позволяет сделать заключение, что конструктивное решение их построено по одной модели:

- слой теплоизоляционного материала, соединенный (штукатурка по слою теплоизоляции; облицовка из защитнодекоративных панелей; теплоизоляционные покрытия) или примыкающий без зазора (облицовка на относе) к поверхности утепляемой стены;
- защитный слой для предохранения теплоизоляционного материала, как правило, от увлажнения и возможного механического воздействия.

Авторы статьи предлагают применить для дополнительной теплозащиты стен эксплуатируемых зданий «термический экран» (рис. 4).

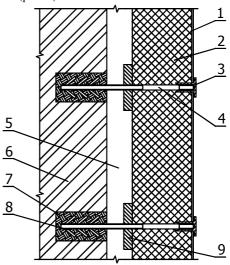


Рис. 4. Конструктивное решение «термический экран»: 1 — защитное покрытие; 2 — теплоизоляционный слой из плитного утеплителя; 3 — полиэтиленовая втулка-заглушка; 4 — стеклопластиковый анкер-кронштейн; 5 — воздушная прослойка; 6 — утепляемая стена; 7 — цементно-песчаный раствор; 8 — анкеровочная шайба; 9 — установочная шайбаограничитель.

Отличительной особенностью данного конструктивного решения от известных решений является наличие воздушной прослойки между теплоизоляционным материалом и поверхностью утепляемой стены.

Выполненные теплотехнические расчеты показали, что наличие замкнутой воздушной прослойки толщиной 0,20...0,30 м позволяет увеличить сопротивление теплопередачи стен более чем на 10%.

«Термический экран» предлагается выполнять из комплексных теплоизоляционных плит, выполненных из недефицитных материалов. Для изготовления комплексных теплоизоляционных плит рекомендуется использовать пенополистирольные плиты типа ПСБ-С (ГОСТ 15588-86) или специальные фасадные жесткие плиты из минеральной ваты на синтетическом связующем, защищенные водонепроницаемыми и огнезащитными пленочными или окрасочными покрытиями.

Предлагаемая конструкция «термический экран», благодаря отсутствию облицовки из плитных (листовых) материалов позволяет существенно снизить затраты на модернизацию дополнительной теплозащиты наружных стен в случае пересмотра нормативных документов в сторону повышения их теплозащитных качеств.

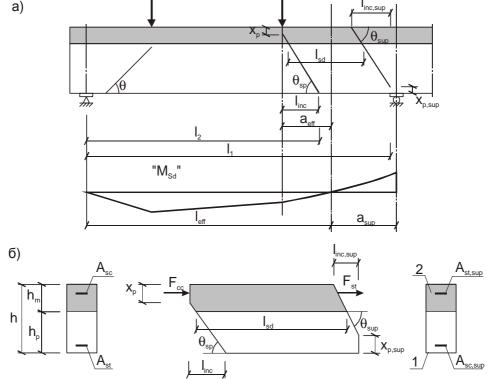
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. П1-99 к СНиП 3.03.01-87. Проектирование и устройство тепловой изоляции наружных стен зданий методом "термошуба". – Мн.: ГП "Белэнергосбережение", 1999. – 56 с.

- 2. ПЗ-2000 к СНиП 3.03.01-87. Проектирование и устройство тепловой изоляции ограждающих конструкций жилых зданий. Мн.: МАиС, 2000. 86 с.
- 3. П5-02 к СНиП 3.03.01-87. Проектирование и устройство тепловой изоляции ограждающих конструкций зданий и сооружений. Система "Радекс". Мн.: МАиС, 2002. 130 с.
- 4. Пб-03 к СНиП 3.03.01-87. Устройство полистиролбетонной теплоизоляции ограждающих конструкций зданий методом торкретирования. Мн.: МАиС, 2003. 24 с.
- 5. Монастырев П.В. Технология устройства дополнительной теплозащиты стен жилых зданий. М.: Изд-во АСВ, 2002. 160 с.
- Потерщук В.А. Пути дальнейшего энергосбережения в жилых зданиях. Белорусский строительный рынок. – 1998. – №5. С. 2...3.

УДК 624.012.3

Щербач А.В.


К УЧЕТУ ПОДАТЛИВОСТИ СТЫКОВОГО СОЕДИНЕНИЯ ПРИ РАСЧЕТЕ ЕПРОЧНОСТИ НАКЛОННЫХ СЕЧЕНИЙ ЖЕЛЕЗОБЕТОННЫХ СБОРНО-МОНОЛИТНЫХ ЭЛЕМЕНТОВ С ДВУЗНАЧНОЙ ЭПЮРОЙ ИЗГИБАЮЩИХ МОМЕНТОВ

Важным элементом, влияющим как на характер трещинообразования, так и на величину предельной поперечной силы, воспринимаемой критическим наклонным сечением сборномонолитной балки является деформативность стыкового соединения. Появление деформативности в стыковом соединении приводит как к изменениям в распределении продольных деформаций по высоте сечения, так и в положении наиболее опасных (критических) сечений по которым происходит разрушение неразрезной балки в приопорной зоне.

Тем не менее, согласно ряду европейских [1, 2, 3] и американо-канадских [4, 5] норм при проектировании сборномонолитных конструкций необходимо выполнять лишь до-

полнительную проверку прочности стыкового соединения, заключающуюся в определении предельных напряжений, действующих в стыковом соединении. Иными словами, при расчете стыка рассматривают диаграмму жесткопластического тела в осях « τ - δ ».

Эти касательные напряжения, действующие в плоскости стыка, определяют методами теории упругости в предположении упругой работы материалов, т.е. без учета податливости связей сдвига. Между тем известно, что даже учет линейной податливости этих связей приводит к существенному перераспределению как сдвигающих усилий по длине поверхности контакта, так и их первообразных.

Рис. 1. К определению положения сечений, наклонных к продольной оси элемента при проверке прочности на действие перерезывающих сил: а) положение расчетных наклонных трещин при загружении сосредоточенными силами; б) приопорный блок, выделенный наклонными трещинами;

Щербач Александр Валерьевич, кандидат технических наук, ассистент каф. технологии бетона и строительных материалов Брестского государственного технического университета. Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.