

Рис. 5. Тангенциальное напряжение элементарных слоев стенки при исходной весовой влажности 5,7%: в начальный момент времени -♦-, после 2 -□-, после 4 -Д-, после 6 -+-, после 8 -ж-, после 10 -0-0-, после 12 -Х-4 часов сушки.

Изменение параметров окружающей среды, физикомеханических и теплотехнических свойств материала стенки приводит к заметным изменениям количественной и качественной стороны изучаемого явления. Так, при снижении температуры сушки на 20°С в увлажненной до 8,4% стенке максимальные растягивающие напряжения на поверхности снижаются более чем в два раза. Если уменьшить ординаты кривой десорбции на 15%, то тангенциальные растягивающие напряжения на поверхности стенки увеличатся примерно в 1,6 раза. Не составляет большого труда оценить влияние и других варьируемых факторов.

ЗАКЛЮЧЕНИЕ

Выполненный вычислительный эксперимент показал, что разработанная модель может быть использована для оценки полей влагосодержания и напряжений в ограждающих конструкциях зданий и сооружений. Варьируя значениями параметров окружающей среды, физико-механическими и теплотехническими свойствами материала имеется возможность получать разнообразные данные о распределении влажности и напряжений по толщине стенки, что создает основу для выработки требований, которые необходимо предъявлять к материалу наружных слоев стен.

Работа выполнена в рамках договора о сотрудничестве между Брестским государственным техническим университетом и Политехникой Белостоцкой.

УДК 624.012.4.35

Леонович С.Н., Аль-Факих О.А.М.

СПИСОК ИСПОЛЬЗОВАНЫХ ИСТОЧНИКОВ

- 1. Александровский С.В. Расчет бетонных и железобетонных конструкций на изменения температуры и влажности с учетом ползучести. Изд. 2-е, переработ. и доп. М.: Стройиздат, 1973 432 с.
- Baroghel-Bouny V., Mainguy M., Lassabatere T., Coussy O. Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials, Cement and concrete research 29 (1999) 1225-1238.
- Kowalski S.J., Rybicki A. Pola temperatury, koncentracji wilgoci i naprężeń w zawilżonej przegrodzie wywołane zmiennymi parametrami powietrza po obu stronach// Materiały konferencyjne IX Polskiej Konferencji Nauowo-Technicrnij "Fizyka Budowli w Teorii i Praktyci", Łódź 2003 – 327 – 340.
- 4. Никитин В.И., Ракецкий В.М., Лапко А., Прусел И.А. Имитация тепло- и влагопереноса в теплоизоляционных материалах// Вестник БГТУ. Водохозяйственное строительство, теплоэнергетика, экология. 2001. №2(8). с. 56-60.
- Тимошенко С.П., Гудьер Дж. Теория упругости: Пер. с англ. /Под ред. Г.С. Шапиро. – 2-е изд. – М.: Наука. 1979, 560 с.
- Никитин В.И., Ракецкий В.М., Лапко А., Прусел И.А. Гигротермические воздействия на цилиндрические стенки железобетонных силосов// "Перспективы развития новых технологий в строительстве и подготовке кадров Республики Беларусь: Сборник трудов VII Международного научнометодического семинара/ Под ред. Блещика Н.П., Борисевича А.А., Пецольда Т.М. – Брест, БГТУ, 2001 – 550 с.

ПРАКТИЧЕСКАЯ МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ ОСТАТОЧНОЙ МОРОЗОСТОЙКОСТИ БЕТОНА, ЭКСПЛУАТИРУЕМЫХ КОНСТРУКЦИЙ

1. Введение.

Работа посвящена актуальной проблеме оценки остаточной морозостойкости железобетонных конструкций, эксплуатируемых в условиях циклического замораживания и оттаивания ЦЗО. Выполнена апробация модели и алгоритма расчетов на реальных конструкциях при ЦЗО.

2. Состояние проблемы.

Проблема определения морозостойкости бетона в эксплуатируемых железобетонных конструкциях подобно оценке прочности неразрушающими методами еще ожидает своего решения. Это объясняется, с одной стороны, отсутствием приемлемых экспериментальных методик, с другой стороны, отсутствием инновационных моделей морозной деструкции бетона и корректных критериев ее оценки. Оценка морозо-

стойкости по потере прочности на сжатие возникла более века назад в эпоху первых шагов в развитии портландцементного бетона и прочно укоренилась в нормативной базе СНГ до сегодняшнего дня. Эта методика удобна для производственного контроля морозостойкости бетона ввиду унификации опытных образцов и прессового оборудования, как и для прочностных испытаний. Огромную ценность представляет накопленный за многие годы экспериментальный и производственный материал по морозостойкости бетона, определенной по вышеуказанной методике. Однако в последние три-четыре десятилетия эта методика совершенствовалась исключительно путем изменения (ужесточения) количественного критерия потери прочности при циклическом замораживанииоттаивании (25%, 15 %, 5%), хотя каждое изменение приводило к потере значимости предыдущего экспериментального материала. В последние годы большинство исследований сфокусировалось на ускоренной оценке морозостойкости, основанной на реальной или мнимой корреляции предлагаемых критериев с критерием потери прочности. При этом не развиваются физические модели морозной деструкции и физические критерии ее оценки, а значит не решается столь актуальная для Республики Беларусь проблема требуемой стойкости бетона при воздействии циклического замораживанияоттаивания в водонасыщенном состоянии.

3. Рабочая гипотеза.

Конструктору для расчета несущей способности эксплуатируемой железобетонной конструкции относительно бетона достаточно знать прочность бетона на сжатие. Для оценки прочности бетона конструкции, подвергающейся циклическому замораживанию и оттаиванию, сделать выбор приемлемого неразрушающего метода не просто. Методы пластической деформации и упругого отскока дают завышенные значения прочностных характеристик замороженного бетона. Ультразвуковой импульсный метод завышает прочность водонасыщенного бетона. Одновременно, разрушенная под воздействием ЦЗО поверхность затрудняет качественный контакт ультразвуковых датчиков с бетоном, что может искажать оценку. Целесообразно в такой ситуации использовать метод отрыва со скалыванием с последующей корректировкой полученных значений прочности с учетом параметров отрицательной температуры и влажности бетона конструкций. Серьезным аргументом в пользу отрыва со скалыванием является возможность одновременного определения этим методом коэффициента интенсивности напряжений - силового параметра, характеризующего способность бетона сопротивляться образованию и развитию трещин. Это идеальный параметр для оценки остаточной морозостойкости бетона, поскольку учитывает структуру бетона и особенности развития трещин при морозной деструкции.

4. Экспериментальные данные.

4.1. Объект исследования.

Выполнена диагностика железобетонных конструкций холодильника Минского хладокомбината №1 в осях 1-12. Комплекс инженерных обследований проводился при эксплуатационной отрицательной температуре в помещениях и холодильных камерах.

Уровень морозной деструкции за время эксплуатации определяется тем, что железобетонные конструкции в холодильных камерах эксплуатируются перманентно при отрицательной температуре (от - 22 °C до - 27 °C) с очень редкими и короткими периодами оттаивания. Дефекты, зафиксированные в вестибюлях, проявились более значительно. Причиной этого является частое и резкое изменение температуры и влажности (циклическое замораживание и оттаивание) ввиду частого перемещения продукции из холодильных камер к лифтам и обратно.

Таким образом, конструкции в холодильных камерах и вестибюлях подвергались различному, однако достаточно точно определенному за весь период эксплуатации количеству циклов замораживания и оттаивания. Этим объект исследования положительно отличается от достаточно неопределенных знакопеременных температурных воздействий при экспозиции железобетонных конструкций при атмосферных условиях.

4.2. Методика экспериментальных исследований.

Комплекс экспериментальных исследований включал следующие мероприятия: определение трещиностойкости и прочности бетона методом отрыва со скалыванием прибором ГПНС; отбор проб бетона для определения степени его водонасыщения и особенностей микро- и макроструктуры; высверливание кернов на различной глубине колонн и перекрытий (от сильно поврежденного ЦЗО на периферии, до практически неразрушенного в середине массива бетона) и их последующие климатические и прочностные испытания.

В данной работе определение прочности производилось в соответствии с [1] методом отрыва со скалыванием.

При испытании методом отрыва со скалыванием участки располагались в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.

Испытания проводились в регламентированной последовательности. Поскольку, анкерное устройство не было установлено до бетонирования, в бетоне сверлились шпуры, размер которых был выбран в соответствии с инструкцией по эксплуатации прибора в зависимости от типа анкерного устройства; в шпуре закреплялось анкерное устройство на глубину, предусмотренную инструкцией по эксплуатации прибора, в зависимости от типа анкерного устройства; прибор соединялся с анкерным устройством; нагрузку увеличивали со скоростью 1,5 - 3,0 кН/с; были зафиксированы показания силоизмерителя прибора и глубина вырыва с точностью не менее 1 мм.

Если наибольший и наименьший размеры вырванной части бетона от анкерного устройства до границ разрушения по поверхности конструкции отличались более чем в два раза, а также если глубина вырыва отличалась от глубины заделки анкерных устройств более чем на 5%, то результаты испытаний не учитывались.

Использовался прибор ГПНС-4 с анкерным устройством III типа. Глубина заделки анкера: 35 - 42 мм в соответствии с [1]. Испытания производились при отрицательных температурах (1 этаж : -20 °C; 3 этаж : -25°C; 5 этаж: -27 °C).

5. Анализ результатов экспериментальных исследований.

Градуировочная зависимость для расчета прочности имеет вил

$$\mathbf{R} = \mathbf{m}_1 \cdot \mathbf{m}_2 \cdot \mathbf{P} \,, \tag{1}$$

где m_1 - коэффициент, учитывающий максимальный размер крупного заполнителя в зоне вырыва;

 m_2 - коэффициент пропорциональности при переходе от усилия вырыва, кН, к прочности бетона, МПа;

 ${\it P}$ - усилие вырыва анкерного устройства, кН.

Задаемся распределением главных напряжений по длине образующей конуса разрушения в виде параболы пятой степени, нормальные напряжения $\mathbf{\sigma}_r$ при старте трещины определяется из [2]

$$\sigma_{r} = \frac{3P(\cos^{2}(90 - \alpha) - \sin 2(90 - \alpha))}{2\pi l^{3}(1 + \frac{r}{ltg\alpha})},$$
 (2)

где P - усилие вырыва; α - угол между образующей конуса разрушения и осью шпура; $\alpha = arctg(R/l)$.

Таблица 1. Прочность бетона колонн, определенная методом отрыва со скалыванием бетона в замороженном состоянии и коэффициент интенсивности напряжений

эффициент интененьности наприжении									
Этаж	Оси	Прочность в заморо- женном состоянии, МПа	Температура; ⁰ С	Весовая влажность, %	Коэффициент интенсивности напряжения, МПа√м				
1 этаж	E/4	42.3	-20 °C	От 1.5	0.64				
1 этаж	E/6	64.7	-20°C	До 5.5	0.98				
1 этаж	Γ/6	54.8	-20 °C		0.83				
1 этаж	Д/4	59. 8	-20 °C		0.90				
1 этаж	B/4	64.7	-20 °C		0.98				
1 этаж	Б/6	-	-20 °C		_				
1 этаж	Б/10	49.8	-20 °C		0.75				
3 этаж	Д/5	44.8	-25 °C		0.68				
3 этаж	Γ/5	39.8	-25 °C		0.6				
3 этаж	Д/6	39.8	-25 °C		0.6				
3 этаж	Γ/6	49.8	-25 °C		0.75				
5 этаж	E/6	44.8	-27 °C		0.68				
5 этаж	E/4	34.9	-27 °C		0.53				

Таблица 2. Влажность бетона и показатели пористости

№ образца	<i>W_{max}</i> , % по массе	$W_{\it o m{o} min}, \%$	W_{max} , %	X_1	λ	α	
1-1	5.5	3.0	3.7	1.05	1.0	0.3	
1-2	1.5	0.6	0.66	0.5	0.5	0.01	
1-3	4.1	2.3	2.3	0.85	0.85	0.01	
1-4	2.8	1.3	1.3	0.6	0.6	0.01	
1-5	2.6	1.5	1.6	0.95	0.6	0.1	

Примечание: X_1 - показатель среднего размера пор; λ - показатель пор с учетом α ; α - степень однородности пор по размерам.

Величину K_{lc} рекомендуется [2, 3] определять на основе решения о полукруговом диске с краевой трещиной, когда круговая граница защемлена, по зависимости

$$K_{lc} = \sigma_r \sqrt{2\pi l} [0, 8/((R/l)^3 - 1) + 0, 7].$$
 (3)

Определены «эксплуатационные» прочностные и деформационные характеристики бетона в замороженном и оттаявшем состоянии. Произведен пересчет этих характеристик при фиксированных значениях температуры и влажности, что позволяет идентифицировать реальное напряженнодеформированное состояние в конструкциях при эксплуатационных условиях (реальной степени водонасыщения бетона и отрицательной температуре) и при оттаивании.

Результаты испытаний по определению прочности методом отрыва со скалыванием и рассчитанные по (3) коэффициенты интенсивности напряжений сведены в табл. 1.

По отобранным в конструкциях опытным образцам были выполнены: определение влажности бетона; анализы пористости бетона. в том числе по кинетике его волопоглошения.

Результаты лабораторных испытаний бетона сведены в табл. 2.

6. Методика экспериментальной оценки остаточной морозостойкости бетона на основе фундаментальных положений механики разрушения.

Морозостойкость определяется структурой бетона, интегральными характеристиками которой являются силовые и энергетические параметры механики разрушения - критические коэффициенты интенсивности напряжений (КИН) при нормальном отрыве K_{lc} и поперечном сдвиге K_{llc} , а также энергия разрушения G_c . Так как все дефекты в структуре бетона представляют собой трещины (с различными параметрами и радиусами кривизны в вершинах), то каждый такой дефект характеризуется своим значением K_l и K_{ll} .

Существующие методы определения морозостойкости бетона требуют проведения объемных и, самое главное, длительных экспериментальных исследований, в обязательном

порядке в условиях лаборатории. Сегодня при огромных объемах производства бетона и изделий из него это неприемлемо. Необходимо в производственных условиях оценивать качество изделий или конструкций с позиции обеспечения требуемой морозостойкости, т.е. нужен такой критерий, который корректен при его определении и позволяет судить о стойкости бетона к циклическим низкотемпературным воздействиям. Выполненные экспериментальные исследования показали, что морозостойкость может быть спрогнозирована теоретически по результатам определения критического коэффициента интенсивности напряжений K_{lc} .

В условиях эксплуатации возможно определение K_{lc} на основе существующего метода испытаний на отрыв со скалыванием. Используя собственные экспериментальные данные, а также некоторые результаты НИИЖБ, в том числе К.А.Пирадова можно предложить, как пробную, зависимость (4) прогнозируемой морозостойкости бетона эксплуатируемых конструкций от значений коэффициентов интенсивности напряжений, полученных методом отрыва со скалыванием (табл. 3).

$$K_{lc}(200)/K_{lc} = -0.86K_{lc}^2 + 1.44K_{lc} - 0.18$$
 (4)

Таблица 3. Ожидаемая морозостойкость бетона в зависимости от значения коэффициентов интенсивности напряжений, полученных методом отрыва со скапыванием

Φ	Ожидаемая марка по морозостойкости F									
Наименование показателя	F25	F35	P50	52J	F100	F150	F200	F300	F400	F500
$ extbf{\emph{K}}_{m{lc}},$ МПа \sqrt{M}	0,5		0,6		0	,7	0,8	0	,9	0,95

7. Выводы

- 1. Предложена методика неразрушающего контроля остаточной морозостойкости бетона эксплуатируемых при циклическом замораживании-оттаивании железобетонных конструкций на основе метода отрыва со скалыванием.
- 2. В качестве критерия оценки морозостойкости принят коэффициент интенсивности напряжений при нормальном отрыве, учитывающий структуру бетона и особенности развития трещин при морозной деструкции.
- 3. Методика апробирована на реальных железобетонных конструкциях, эксплуатируемых при ЦЗО.

УДК 624.012.4.35

Леонович С.Н., Аль-Факих О.А.М.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 22690-88. Определение прочности механическими методами неразрушающего контроля. М.: Изд-во стандартов, 1988. 25с.
- 2. Srivastava K.N., Kumar M. A note on the problem of edge crack in a semi-circular plate // Int. J. Fract. 1976. -12, N4. p.645-646.
- 3. Пирадов К.А., Мамаев Т.Л., Кожабеков Т.А. Новый метод определения морозостойкости бетона на основе фундаментальных положений механики разрушения // Перспективы развития новых технологий в строительстве и подготовке инженерных кадров Республики Беларусь. Сборник трудов VII межународного научно-методического семианара. Посвящается 100-летию со дня рождения профессора В.В. Михайлова. Брест, БГТУ, 2001. С.454-456.

РАСЧЕТ СЖАТЫХ И ИЗГИБАЕМЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПРИ ЦИКЛИЧЕСКОМ ЗАМОРАЖИВАНИИ И ОТТАИВАНИИ

1. Введение.

Под воздействием мороза происходит постепенное разрыхление или фрагментация на составные части бетонных поверхностей, как результат поверхностного замерзания и оттаивания. В условиях увлажнения и замораживанияоттаивания происходит уменьшение прочности бетона, и около поверхности происходит полное разложение на составные части и полная потеря материала.

Бетон разрушается на составные части в результате замерзания воды в капиллярных порах. Одной из причин разрушения является 9%-е увеличение в объеме, которое происходит при замерзании воды. Другой причиной давления, возникающего в бетоне, является рост кристаллов льда при отрицательной температуре и значительной влажности.

Сопротивление бетона морозу является свойством материала. Сопротивление морозу зависит от других свойств бетона, таких, как прочность, плотность, содержание воздуха и т.д. Скорость разрушения зависит, однако, не только от качества бетона, но и от воздействия окружающей среды.

Действие окружающей среды усиливается от воздействия соли, которую применяют для предотвращения обледенения. Типичным для механизма разрушения от соли и мороза является постепенное отслаивание, шелушение тонких слоев бетона.

2. Физическая модель послойного снижения прочности бетона при ЦЗО

Полное разрушение от мороза происходит сначала как уменьшение прочности по краям бетонной конструкции. Модель послойного снижения прочности наилучшим образом описывается формулой [1, 2]:

$$R(d) = R_{\theta} [1 - [1 - (d/H)^{n}]],$$
 (1)

где R(d) - кубиковая прочность на сжатие бетона на глубине d,

 R_{θ} - кубиковая прочность на сжатие неразрушенного бетона

d - глубина от поверхности

 $m{H}$ - глубина воздействия

 \boldsymbol{n} - индекс, относящийся к числу циклов (или время) замерзания и оттаивания.

В расчете конструкций уменьшение прочности бетона в краевых зонах можно представить либо уменьшением прочности по всей площади поперечного сечения бетона, либо уменьшением размеров поперечного сечения. Последний метод наиболее привлекателен для конструктора и реализуется введением понятия потери сечения бетона

На рисунке 1 дано графическое представление уменьшения прочности согласно уравнению в пределах глубины влия-

ния H. Значение индекса n уменьшается от бесконечности (в момент t=0) до 0 (для бесконечно длительного времени). Реальная потеря бетона x показана на рисунке, как расчетная. Если из ширины конструкции a, вычесть значение x, получим ширину конструкции c неразрушенным бетоном. Таким образом, учет реального разрушения бетона производится уменьшением размеров поперечного сечения конструкции. Явной потерей является глубина влияния, деленная на величину n+1, соотнесенную со временем. На рисунках 6.2 и 6.3 приведены зависимости потери бетона от количества циклов замораживания-оттаивания.

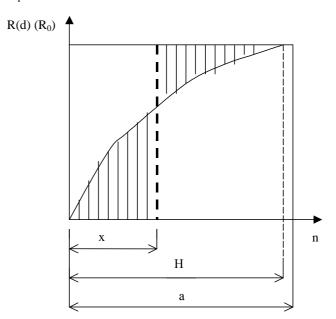


Рис.1. Схема потери сечения бетона.

3. Экспериментальные исследования прочностных и деформационных характеристик обычного, модифицированного и напрягающего бетона при ЦЗО.

Исследования проводили на шести составах бетона. Первые три состава (серия 1, 2 и 3) были изготовлены на обычном портландцементе, а остальные – на напрягающем цементе (серия 4, 5 и 6).