Игнатюк В.И., Игнатов А.Ю.

ОБ УЧЕТЕ УПРУГОЙ ПОДАТЛИВОСТИ УЗЛОВЫХ СОЕДИНЕНИЙ В РАСЧЕТАХ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ ПРОСТРАНСТВЕННЫХ СТЕРЖНЕВЫХ СИСТЕМ

В реальных сооружениях соединение стержней в узлах чаще всего не является идеально жестким либо шарнирным, а имеет определенную упругую податливость, которая обычно не учитывается в расчетах, но может существенно влиять на распределение усилий в системе. Для учета этого фактора необходимо в методике расчета учитывать возможность упругой податливости узловых соединений, что и предлагается в полученных авторами зависимостях для метода конечных элементов (МКЭ).

Разрешающие уравнения МКЭ имеют вид [1, 3]

$$[K] \cdot \{\Delta\} = \{P\}, \tag{1}$$

где [K] – матрица жесткости системы; $\{\Delta\}$ – вектор перемещений узлов системы; $\{P\}$ – вектор внешних нагрузок. При учете упругой податливости присоединения стержней (конечных элементов) к узлам должны быть внесены соответствующие изменения в матрицу жесткости системы [K] и в вектор внешних нагрузок $\{P\}$. Матрица жесткости системы формируется [1, 3] из матриц жесткости отдельных конечных элементов (стержней), поэтому учет упругой податливости их присоединения к узлам может быть выполнен на уровне определения матриц жесткости конечных элементов.

Пространственный стержневой конечный элемент имеет 12 степеней свободы (рис. 1), и матрица жесткости его будет иметь размер 12x12, в которой каждый из ее коэффициентов r_{ik} (i = 1...12, k = 1...12) представляет собой реакции на концах КЭ в направлении *i*-ой связи от единичного перемещения k-ой (рис. 2, 3). Выражения для коэффициентов r_{ik} в местной системе координат можно получить из анализа внутренних усилий в таком элементе от действия единичных перемещений соответствующих связей. Заметим при этом, что внутренние усилия $M_x = M_{\kappa p}$, M_y , M_z , N в пространственном стержневом конечном элементе являются независимыми друг от друга, и поэтому соответствующие каждому из них перемещения не будут вызывать деформаций и усилий других представленных видов. Например, перемещение одного из концов стержня вдоль оси x' (что соответствует продольной деформации стержня и появлению продольной силы в нем) не будет вызывать усилий $M_x = M_{\kappa p}, M_y, M_z$. Поэтому соответствующие коэффициенты в матрице жесткости элемента будут нулевыми. Рассмотрим пространственный стержневой конечный элемент, присоединяющийся к узлам дискретной модели МКЭ с помощью упругих связей (рис. 1, 2), жесткости которых равны: *С*₁, *С*₂, *С*₃ и *С*₇, *С*₈, *С*₉ – жесткости линейных упругих связей по направлениям осей x', y' и z' соответственно в начале и конце стержня; c_4 , c_5 , c_6 и c10, c11, c12 - жесткости угловых упругих связей, работающих относительно осей x', y', z', соответственно в начале и конце стержня. На рис.4, 5, 6 показаны внутренние усилия и

реакции связей для такого стержневого КЭ от перемещений $\delta'_2 = 1$, $\delta'_4 = 1$, $\delta'_6 = 1$, полученные при его расчете методом сил аналогично тому, как это сделано для плоского стержня в работе [2]. Аналогично получаются усилия и реакции связей для рассматриваемого КЭ и от перемещений $\delta'_1 = 1$, $\delta'_3 = 1$, $\delta'_5 = 1$. Матрица жесткости КЭ в местной системе координат в результате будет иметь вид (1), где обозначено:

$$k_{N} = \frac{1}{t_{1}}; \qquad k_{G} = \frac{1}{t_{5}}; \qquad k_{1} = \frac{t_{4}}{t_{2}t_{4} - 3t_{3}^{2}}; \\ k_{2} = \frac{t_{3} + t_{4}}{t_{2}t_{4} - 3t_{3}^{2}}; \qquad k_{3} = \frac{1}{3t_{4}} + \frac{t_{3}}{t_{4}}k_{2}; \\ k_{4} = \frac{t_{4} - t_{3}}{t_{2}t_{4} - 3t_{3}^{2}}; \qquad k_{5} = \frac{1}{3t_{4}} - \frac{t_{3}}{t_{4}}k_{4}; \\ k_{6} = \frac{t_{8}}{t_{6}t_{8} - 3t_{7}^{2}}; \qquad k_{7} = \frac{t_{7} + t_{8}}{t_{6}t_{8} - 3t_{7}^{2}}; \qquad (2)$$

$$k_8 = \frac{1}{3t_8} + \frac{t_7}{t_8}k_7; \quad k_9 = \frac{t_8 - t_7}{t_6t_8 - 3t_7^2}; \quad k_{10} = \frac{1}{3t_8} - \frac{t_7}{t_8}k_9,$$

с учетом того, что:

$$t_{1} = 1 + \left(\frac{1}{c_{1}} + \frac{1}{c_{7}}\right)\frac{EA}{l};$$

$$t_{2} = 1 + \left(\frac{1}{c_{2}} + \frac{1}{c_{8}}\right)\frac{12EJ_{z}}{l^{3}} + \left(\frac{1}{c_{6}} + \frac{1}{c_{12}}\right)\frac{3EJ_{z}}{l};$$

$$t_{3} = \left(\frac{1}{c_{12}} - \frac{1}{c_{6}}\right)\frac{EJ_{z}}{l};$$

$$t_{4} = 1 + \left(\frac{1}{c_{6}} + \frac{1}{c_{12}}\right)\frac{EJ_{z}}{l}; t_{5} = 1 + \left(\frac{1}{c_{4}} + \frac{1}{c_{10}}\right)\frac{GJ_{\kappa p}}{l}; (3)$$

$$t_{6} = 1 + \left(\frac{1}{c_{3}} + \frac{1}{c_{9}}\right)\frac{12EJ_{y}}{l^{3}} + \left(\frac{1}{c_{5}} + \frac{1}{c_{11}}\right)\frac{3EJ_{y}}{l};$$

$$t_{7} = \left(\frac{1}{c_{11}} - \frac{1}{c_{5}}\right)\frac{EJ_{y}}{l}; t_{8} = 1 + \left(\frac{1}{c_{5}} + \frac{1}{c_{11}}\right)\frac{EJ_{y}}{l}.$$

Задав величины жесткостей всех связей $c_1 \dots c_{12}$ равными бесконечности, получим матрицу жесткости пространственного КЭ с жестким присоединением его концов к узлам. Если же жесткости c_4 , c_5 , c_6 либо c_{10} , c_{11} , c_{12} принять равными нулю, то получим матрицу жесткости для пространственного КЭ с шарнирным соединением соответственно на левом либо правом его концах.

Игнатюк Валерий Иванович, к.т.н., доцент, зав. каф. строительной механики Брестского государственного технического университета.

Игнатов Алексей Юрьевич, студент строительного факультета Брестского государственного технического университета. Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.

Вестник Брестского государственного технического университета. 2004. №1

Строительство и архитектура

Рис. 4. Эпюра усилий и реакции связей в пространственном КЭ от $\delta_2' = 1$

Рис. 5. Эпюра усилий и реакции связей в пространственном КЭ от $\delta'_4 = 1$

Рис. 6. Эпюра усилий и реакции связей в пространственном КЭ от $\delta_6' = 1$

Рис. 7. Равномерно распределенные нагрузки на КЭ

Аналогично могут быть получены и вектора узловых нагрузок для пространственного стержневого КЭ, загруженного распределенными нагрузками. Например, при действии на рассматриваемый стержень с 12-ю упругими связями равномерно распределенных нагрузок, представленных на рис.7, вектор узловых сил и моментов по направлениям, показанным на рис. 1, будет иметь вид Вестник Брестского государственного технического университета. 2004. №1

$$\left\{ P_{q}^{\prime} \right\} = \begin{cases} P_{q1}^{\prime} \\ P_{q2}^{\prime} \\ P_{q3}^{\prime} \\ P_{q3}^{\prime} \\ P_{q4}^{\prime} \\ P_{q5}^{\prime} \\ P_{q6}^{\prime} \\ P_{q7}^{\prime} \\ P_{q8}^{\prime} \\ P_{q10}^{\prime} \\ P_{q11}^{\prime} \\ P_{q12}^{\prime} \end{cases} = \begin{cases} \frac{q_{1}l}{2} \left(1 - f_{q2} \right) \\ \frac{q_{3}l^{2}}{2} \left(1 - f_{q4} \right) \\ \frac{q_{3}l^{2}}{2} \left(1 - f_{q4} \right) \\ \frac{q_{2}l^{2}}{12} \left(1, 5 - 3f_{q2} - f_{q3} \right) \\ \frac{q_{2}l^{2}}{12} \left(1, 5 - 3f_{q2} - f_{q3} \right) \\ \frac{q_{2}l^{2}}{2} \left(1 + f_{q2} \right) \\ \frac{q_{3}l}{2} \left(1 + f_{q4} \right) \\ \frac{q_{3}l^{2}}{12} \left(1, 5 + 3f_{q4} - f_{q5} \right) \\ - \frac{q_{3}l^{2}}{12} \left(1, 5 + 3f_{q2} - f_{q3} \right) \end{cases}$$

Che BBEARCHM OGO3HAUCHUS: (4)

где введены ооо. *4*

$$f_{q1} = \frac{t_{q1}}{t_1}; \quad f_{q2} = \frac{3t_{q2}t_4 - t_{q3}t_3}{6t_3^2 - 2t_2t_4}; \quad f_{q3} = 3f_{q2}\frac{t_3}{t_4} + \frac{t_{q3}}{2t_4};$$

$$f_{q4} = \frac{3t_{q4}t_8 - t_{q5}t_7}{6t_7^2 - 2t_6t_8}; \quad f_{q5} = 3f_{q4}\frac{t_7}{t_8} + \frac{t_{q5}}{2t_8}, \quad (5)$$

в которых учтено, что
$$t_{q1} = 1 + \frac{2EA}{c_1 l};$$

$$t_{q2} = \frac{EJ_z}{l} \left(\frac{1}{c_{12}} - \frac{1}{c_6} \right) + \frac{8EJ_z}{l^3} \left(\frac{1}{c_8} - \frac{1}{c_2} \right);$$

$$t_{q3} = 1 + \frac{3EJ_z}{l} \left(\frac{1}{c_6} + \frac{1}{c_{12}} \right);$$

$$t_{q4} = \frac{EJ_y}{l} \left(\frac{1}{c_{11}} - \frac{1}{c_5} \right) + \frac{8EJ_y}{l^3} \left(\frac{1}{c_9} - \frac{1}{c_3} \right);$$

$$t_{q5} = 1 + \frac{3EJ_y}{l} \left(\frac{1}{c_5} + \frac{1}{c_{11}} \right);$$

$$t_1, \quad t_2, \quad t_3, \quad t_4, \quad t_6, \quad t_7, \quad t_8 - cM. \quad (3).$$

Вектор узловых сил и моментов при действии на стержень распределенных нагрузок, изменяющихся по треугольным законам (рис. 8), имеет вид

$$\{P_{4}'\} = \begin{cases} \frac{q_{1}l}{6}(3-s_{q1}) \\ \frac{q_{2}l}{20}(10-u_{q1}) \\ \frac{q_{3}l}{20}(10-u_{q4}) \\ 0 \\ -\frac{q_{3}l^{2}}{120}(20+u_{q5}-6u_{q4}) \\ \frac{q_{2}l^{2}}{120}(20+u_{q2}-6u_{q1}) \\ \frac{q_{2}l^{2}}{120}(20+u_{q2}-6u_{q1}) \\ \frac{q_{3}l}{6}s_{q1} \\ \frac{q_{3}l}{20}u_{q1} \\ \frac{q_{3}l}{20}u_{q4} \\ 0 \\ \frac{q_{3}l^{2}}{120}u_{q5} \\ -\frac{q_{2}l^{2}}{120}u_{q2} \end{cases}$$
(7)

где введены обозначения:

$$u_{q1} = \frac{8s_{q2}u_3 - 5s_{q3}u_2}{4u_1u_3 - 3u_2^2}; u_{q2} = \frac{3u_2u_{q1} - 5s_{q3}}{u_3};$$
$$u_{q4} = \frac{8s_{q5}u_6 - 5s_{q6}u_5}{4u_4u_6 - 3u_5^2}; u_{q5} = \frac{3u_5u_{q4} - 5s_{q6}}{u_6}$$
(8)
с учетом

(6)

Рис. 8. Нагрузки на КЭ, распределенные по треугольным законам

$$\begin{split} s_{q1} &= \frac{t_0}{t_1}; \quad s_{q2} = 1 + \frac{15EJ_z}{c_2 l^3} + \frac{5EJ_z}{c_6 l}; \quad s_{q3} = 1 + \frac{4EJ_z}{c_6 l}; \\ s_{q5} &= 1 + \frac{15EJ_y}{c_3 l^3} + \frac{5EJ_y}{c_5 l}; \quad s_{q6} = 1 + \frac{4EJ_y}{c_5 l}; \\ u_1 &= 1 + \frac{3EJ_z}{l^3} \left(\frac{1}{c_2} + \frac{1}{c_8}\right) + \frac{3EJ_z}{c_6 l}; \quad u_2 = 1 + \frac{2EJ_z}{c_6 l}; \\ u_3 &= 1 + \left(\frac{1}{c_6} + \frac{1}{c_{12}}\right) \frac{EJ_z}{l}; \quad u_4 = 1 + \frac{3EJ_y}{l^3} \left(\frac{1}{c_3} + \frac{1}{c_9}\right) + \frac{3EJ_y}{c_5 l}; \\ u_5 &= 1 + \frac{2EJ_y}{c_5 l}; \quad u_6 = 1 + \left(\frac{1}{c_5} + \frac{1}{c_{11}}\right) \frac{EJ_y}{l}; \\ t_0 &= 1 + \frac{3EA}{c_1 l}; \quad t_1 \to CM. \quad (3). \end{split}$$

УДК 539.319

Кофанов В.А., Никитин В.И.

При задании для выражений векторов (4) и (7) величин жесткостей упругих связей равных бесконечности получим жесткие присоединения КЭ к узлам, а при задании величин C_4 , C_5 , C_6 и C_{10} , C_{11} , C_{12} , равными нулю получим шарнирное соединение стержня слева и справа и соответственно вектора узловых нагрузок для этих соединений.

Полученные выражения позволяют выполнять расчеты пространственных стержневых систем методом конечных элементов с учетом упругой податливости соединений элементов в узлах и оценивать влияние такого соединения на величины и распределение усилий в сооружениях.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Галлагер Р. Метод конечных элементов. Основы. – М.: Мир, 1984. – 423с.

2. Йгнатюк В.И., Богомолов Д.В. О формировании разрешающих уравнений МКЭ в расчетах плоских стержневых систем с учетом упругой податливости узловых соединений // Вестник БГТУ. – 2003. – № 1(19): Строительство и архитектура. – С. 71 – 75.

3. Масленников А.М. Расчет строительных конструкций численными методами. – Л.: ЛГУ, 1987. – 224 с.

ПОЛЯ ВЛАГОСОДЕРЖАНИЯ И НАПРЯЖЕНИЙ В УВЛАЖНЕННОЙ ЦИЛИНДРИЧЕСКОЙ СТЕНКЕ ПРИ ИЗОТЕРМИЧЕСКОЙ СУШКЕ

введение

При воздействии внешней среды капиллярно-пористые материалы ограждающих конструкций зданий и сооружений непрерывно претерпевают изменения температуры и влажности, вызывающие появление в них температурных и влажностных деформаций. Вследствие неравномерного распределения этих деформаций по объему в материалах конструкции возникают внутренние напряжения, которые приводят к появлению микро- и макротрещин.

Свыше сорока лет назад Александровский С.В. в своей монографии [1] указал на необходимость учета температурновлажностных воздействий при расчете бетонных и железобетонных конструкций. В настоящее время за рубежом проявляют все большее внимание к этой проблеме. В подтверждение сказанному можно привести, например, работы [2, 3]. Однако в нашей республике работы в данном направлении практически отсутствуют.

В представленной работе расчетным путем определены поля влагосодержания и напряжений в цилиндрической стенке, внутренняя поверхность которой гидроизолирована, а наружная поверхность контактирует с воздушной средой, имеющей постоянную температуру и относительную влажность.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Для определения полей влагосодержания в цилиндрической стенке из капиллярно-пористого материала использована разработанная нами математическая модель [4]. В рамках этой модели рассматривается осесимметричная задача для стенки единичной высоты, которая разбивается на ряд слоев одинаковой толщины.

При определении напряжений, возникающих в каждом элементарном слое толщиной Δr , значение температуры T, влажности W и модуля упругости E принимаются для средин-

ной изотермической поверхности. С учетом аддитивности температурных и влажностных деформаций радиальные σ_r и тангенциальные σ_{θ} напряжения определяются из соотношений [5]:

$$\sigma_{r} = -E \frac{1}{b^{2}} \int_{a}^{b} (\alpha T + \beta W) r dr + \frac{E}{1 - \nu^{2}} \left[C_{1} (1 + \nu) - C_{2} (1 - \nu) \frac{1}{b^{2}} \right],$$

$$\sigma_{\theta} = E \frac{1}{b^{2}} \int_{a}^{b} (\alpha T + \beta W) r dr - E (\alpha T + \beta W) + \frac{E}{1 - \nu^{2}} \left[C_{1} (1 + \nu) + C_{2} (1 - \nu) \frac{1}{b^{2}} \right],$$
(1)

где E – модуль упругости материала, МПа;

T – приращение температуры стенки во времени, °С;

W – приращение относительной влажности стенки во времени, %;

 \boldsymbol{V} – коэффициент Пуассона;

а – внутренний радиус элементарного слоя, м;

b – наружный радиус элементарного слоя, м;

r – радиус срединной изотермической поверхности слоя, м;

и- коэффициент линейного расширения, 1/град;

 β – коэффициент влажностной усадки, 1/%;

 $C_1, \ C_2$ – постоянные интегрирования, определяемые из граничных условий.

Кофанов Валерий Анатольевич, аспирант каф. строительной механики Брестского государственного технического университета.

Никитин Вадим Иванович, д.т.н., профессор Политехники Белостоцкой (Польша) и Брестского государственного технического университета.

Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.