Таблица 3. Изменение водопоглощения и показатели пористости образцов

Кол-во цик- лов	Серия 1		Серия 2		Серия 3	
	W м,%	λ	W м,%	Λ	W м,%	λ
0	5,60	1,60	4,30	1,10	4,90	1,30
5	5,64	-	4,32	-	5,02	-
10	5,65	-	4,33	-	5,04	-
15	5,66	-	4,34	-	5,05	-
20	5,67	-	4,36	-	5,14	-
25	5,69	-	4,38	-	5,16	-
30	5,71	-	4,39	-	5,18	-

характер изменения коэффициентов интенсивности напряжений при нормальном отрыве (K_{1c}) и поперечном сдвиге (K_{2c}) при циклических испытаниях является тождественным, т.е. изменение величины K_{1c} (увеличение-уменьшение) ведет к изменению величины K_{2c} и наоборот.

Результаты по определению скорости распространения ультразвуковых колебаний, динамического модуля упругости и изменения водопоглощения в процессе циклических испытаний показали, что прочностные и структурные характеристики бетонов при испытании на теромовлагостойкость, находятся во взаимосвязи с характеристиками трещиностойкости бетонов, изготовленных на обычном протландцементе.

Изложенное выше позволяет сделать вывод о том, что наряду с общепринятыми критериями для оценки и прогнози-

рования морозостойкости бетонов по структурным и прочностным характеристикам материала, в качестве параметров, характеризующих энергетическое состояние материала, при циклических испытания, возможно использование коэффициентов интенсивности напряжений.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Гузеев Е.А., Леонович С.Н., Пирадов К.А. Механика разрушения бетона: вопросы теории и практики. Брест: БПИ, 1999. 215 с.
- 2. Леонович С.Н.Трещиностойкость и долговечность бетонных и железобетонных элементов в терминах силовых и энергетических критериев механики разрушения. Минск.: Тыдзень, 1999. -264с.

УДК 624.94:69.057.122

Мухин А.В., Зинкевич И.В., Драган В.И., Луговской М.А.

МНОГОЭТАЖНОЕ СТАЛЕЖЕЛЕЗОБЕТОННОЕ СБОРНОМОНОЛИТНОЕ ЗДАНИЕ

Необходимость применения сталежелезобетонных сборномонолитных каркасных зданий определяется стесненными условиями при действующем производстве, требованиями ускоренного монтажа, повышенной огнестойкости конструкций, экономией строительных материалов, меньшей стоимостью по сравнению с цельнометаллическими каркасами. В предлагаемой конструкции здания на стадии монтажа каркас является цельнометаллическим, в процессе эксплуатации сталежелезобетонным. Перекрытия состоит из сборных желе-

зобетонных пустотных плит, монолитных вставок с жесткой и гибкой арматурой. Ригели на стадии эксплуатации – сборномонолитные. Предлагаемое конструктивное решение позволяет также включить в совместную работу с ригелями пустотные железобетонные плиты перекрытий. Рассматриваемое здание запроектировано как лабораторно-складской корпус ОАО «Брестгазоаппарат» и примыкает длинной стороной к корпусу №1 (рис. 1).

Puc.1. Общий вид здания.

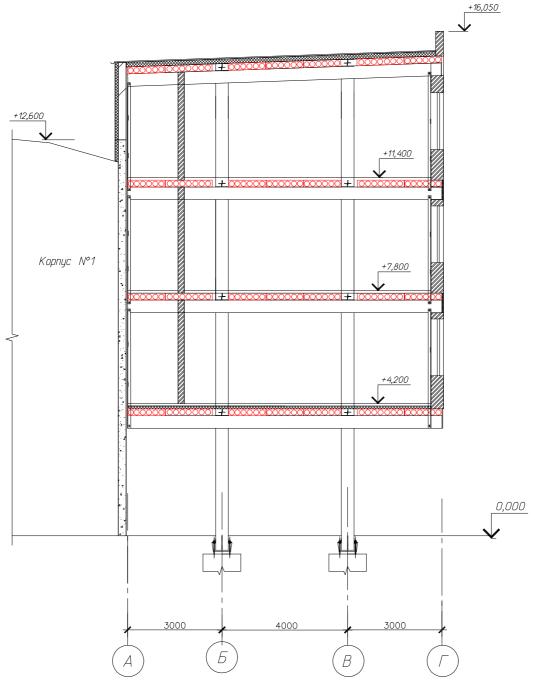


Рис. 2. Поперечный разрез.

В здании в ряде осей отсутствуют помещения первого этажа, так как в этих зонах расположено большое число надземных и подземных инженерных сетей, большинство из которых невозможно вынести, а также транспортных внутризаводских коммуникаций. Эти проблемы обусловили применение буронабивных свай и рамной двухконсольной системы для каркаса. Каркас здания состоит из 4-х этажных однопролетных двухконсольных рам, причем консоли по всем этажам связаны стальными подвесками (рис.2). Крайние рамы имеют по одной консоли со стороны примыкания к существующему зданию. Ригеля имеют жесткие сопряжения с колоннами, а колонны защемлены в фундаментах в плоскости рам и вдоль здания (рис.3). Устойчивость каркаса здания во время монтажа обеспечивается защемлением в фундаментах поперечных рам с жесткими узлами, а в продольном направлении системой продольных связей в виде стальных распорок по колоннам и портальных связей в рамах, охватывающих лифтовую

шахту, а также лестничными клетками со сборными железобетонными маршами с площадками по серии 1.020. В стадии эксплуатации дополнительную устойчивость каркасу придают железобетонные диски перекрытий из пустотных плит, включающие омоноличенные стальные распорки. Внешние стены здания выполнены из газосиликатных блоков. Статические расчеты каркаса здания выполнялся в несколько этапов: на стадии монтажа стального каркаса и плит перекрытий и выполнения бетонных работ по омоноличиванию ригелей, на стадии эксплуатации с учетом приведенной жесткости сталежелезобетонных сечений. К особенностям работы каркаса является наличие изгибающих моментов одного порядка действующих в двух плоскостях в стойках рам и крутящих моментов в ригелях вследствие разных шагов смежных рам и вариациями временной нагрузки в складских и лабораторных помешениях.

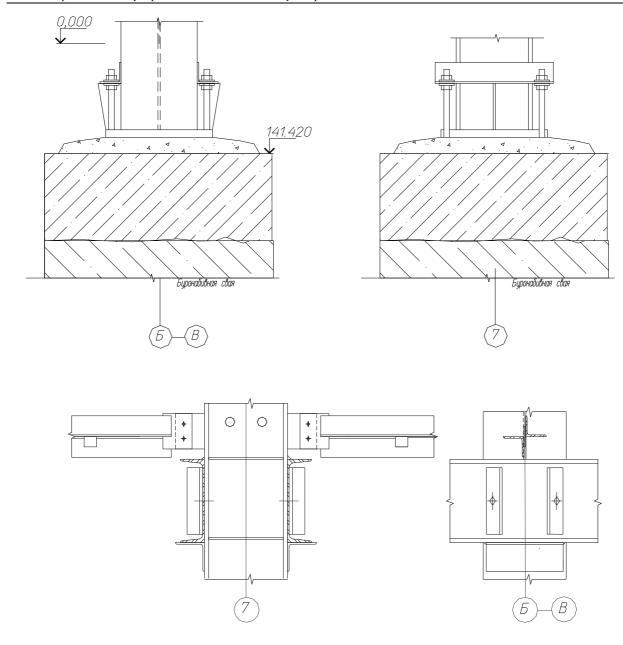
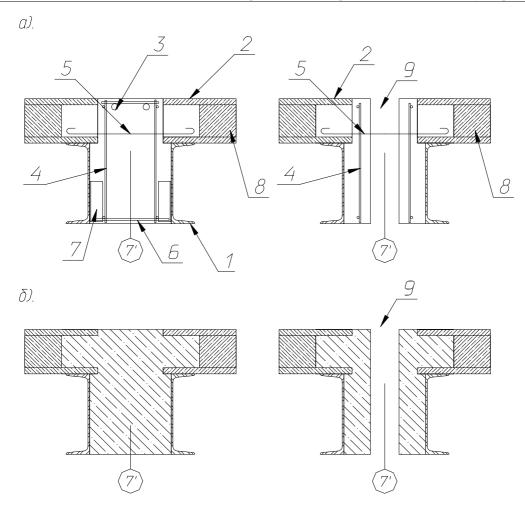



Рис. 3. Отдельные узлы стального каркаса на стадии монтажа

В стадии эксплуатации изгибающие и крутящие моменты в ригелях воспринимаются развитыми сталежелезобетонными сечениями с жесткой внешней арматурой, объединенной с железобетоном связями в виде упоров из прокатных уголков и приваренных к ним горизонтальных гибких упоров из стальной поперечной арматуры (рис.4). Стойки рам запроектированы из стальных колонных двутавров №40К по ГОСТ 26020. Ригели рам на стадии монтажа запроектированы из спаренных прокатных швеллеров №40 ГОСТ 8240 и являются цельными длиной в 10 метров, что позволяют конструкции узлов сопряжений с колоннами. Полки стальных швеллеров служат опорами для сборных железобетонных плит.

В процессе возведения здания стальные элементы ригелей – стенки швеллеров выполняют роль боковой опалубки. Армирование ригелей выполняется стальными каркасами в пролете и на консолях, а также отдельными стержнями в верхней зоне ригелей на опорах. Жесткое сопряжение железобетонной части ригелей со стальными колоннами обеспечивается свар-

кой рабочей продольной арматуры плоских каркасов с поперечными ребрами колонн, а также тем, что арматурные стержни пропускаются в отверстия в стальных стенках колонн. Для обеспечения совместной работы внешней стальной жесткой арматуры из прокатных швеллеров предусмотрены специальные анкерные устройства, включающие вертикальные упоры из прокатных уголков, приваренных к стенкам швеллеров, и гибкие горизонтальные упоры из стальной арматуры. Гибкие упоры являются также поперечной арматурой пространственных каркасов железобетонной части сечения ригелей здания. Конструкции упоров отличаются от традиционных, которые обычно расположены в верхней сжатой части сталежелезобетонных изгибаемых сечений или в центрально сжатых сечениях. Гибкие упоры расположены перпендикулярно плоскости изгиба ригелей каркаса здания, а упоры из прокатных уголков располагаются в плоскости изгиба. Предлагаемое конструктивное решение ригелей позволяет выполнить в их среднем пролете ряд отверстий сечением

Рис.4. Сечения ригеля: а) на стадии возведения, б) на стадии эксплуатации.

200-250 мм для вентиляции и других коммуникаций. При возведении здания требуется применять специальную последовательность монтажных и бетонных работ обеспечивающую исключение дополнительных нагрузок на сталежелезобетонные конструкции с бетоном, не набравшим проектной прочности.

Выводы

Предлагаемое конструктивное решение увеличивает предел огнестойкости традиционных стальных ригелей степень огнестойкости зданий.

УДК 624.012.45: 666.972.07: 539.4

Алявдин П.В.

Горизонтальные гибкие упоры устанавливаемые в сжатой зоне стальных ригелей, обеспечивают их общую устойчивость в процессе монтажа и эксплуатации.

Включение в работу ригелей на изгиб железобетонных плит с анкерными устройствами в виде шпилек и заполненными бетоном пустотами при выполнении железобетонной части ригелей обеспечивает дополнительную надежность здания, позволяет отказаться от установки дополнительных связей в их плоскости.

НЕСУЩАЯ СПОСОБНОСТЬ СЕЧЕНИЙ ОБОЛОЧЕК 1. ПОВТОРНЫЕ НАГРУЖЕНИЯ ТОЛСТОСТЕННЫХ И ТОНКОСТЕННЫХ СЕЧЕНИЙ

1. Введение

В данной работе сформулирована и решена проблема приспособляемости и несущей способности поперечных сечений однородных изотропных оболочек различной толщины (толстостенных, средней толщины и тонкостенных) при малоцикловом повторно-переменном нагружении, квазистати-

чески изменяющемся во времени. Эта проблема наиболее естественно решается численным путем в трехмерной постановке [1 - 3]; однако здесь основное внимание уделено отысканию решений в квадратурах в двумерной постановке, аналогично подходу [4, 5]. При этом для толстостенных оболочек решения содержат некоторую (допустимую для практических

Алявдин Петр Владимирович, профессор, доктор технических наук. Кафедра строительной механики Политехника Зеленогурской, Зеленая Гура, Польша. E-mail: palawdin@brick.wbis.pz.zgora.pl.