Раздел V. Аналитические и численные методы исследований в математике и их 155 приложения

у2 Табл. 2							
	y1	y2	y3	y4	y5		
u1	1	0	0	1	0		
u2	0	1	1	0	0		
u3	0	1	0	0	1		
u4	1	0	1	0	0		
u5	0	0	0	_1_	1		
u6	1	0	0	0	1		
u7	0	1	0	1	0		
u8	0	0	1	0	1		
		4					
	Ta6 u1 u2 u3 u4 u5 u6 u7 u8	Табл. 2 y1 u1 1 u2 0 u3 0 u4 1 u5 0 u6 1 u7 0 u8 0	Табл. 2 y1 y2 u1 1 0 u2 0 1 u3 0 1 u4 1 0 u5 0 0 u6 1 0 u7 0 1 u8 0 0	Табл. 2 y1 y2 y3 u1 1 0 0 u2 0 1 1 u3 0 1 0 u4 1 0 1 u5 0 0 0 u6 1 0 0 u7 0 1 0 u8 0 0 1	Табл. 2 y1 y2 y3 y4 u1 1 0 0 1 u2 0 1 1 0 u3 0 1 0 0 u4 1 0 1 0 u5 0 0 0 1 u6 1 0 0 0 u7 0 1 0 1 u8 0 0 1 0		

Рис. 2

Преобразуем матрицы так, чтобы можно было сказать, равны ли они (заметим, что строки и столбцы матрицы можно переставлять, матрицы от этого не изменят своего смысла). Отсортируем слева направо столбцы по убыванию мощности вершин. Если мощность вершин совпадает, поступим следующим образом: будем сравнивать столбцы сверху вниз по строкам. Если элементы равны, опускаемся на одну строку вниз, если не равны, левее ставится тот столбец, элемент в котором больше (например в табл. 1 из двух конкурирующих столбцов х1 и х2 левее станет х2). После этого аналогично преобразуем строки матриц. В таблицах 3 и 4 представлены матрицы после преобразования, их эквивалентность очевидна.

	x2	x1	х3	x4	x5		y5	y1	y4	y2	у3
u1	1	1	0	0	0	u 6	1	1	0	0	0
u2	1	0	1	0	0	u5	1	0	1	0	0
u3	1	0	0	1	0	u3	1	0	0	1	0
u4	1	0	0	0	1	u8	1	0	0	0	1
u8	0	1	1	0	0	u1	0	1	1	0	0
u7	0	1	0	0	1	u4	0	1	0	0	1
u5	0	0	1	1	0	u7	0	0	1	1	0
u6	0	0	0	1	1	u2	0	0	0	1	1
Табл.4							Табл. 5				

Преобразованные матрицы дают также возможность найти однозначные соответствия множества вершин X и множества вершин Y.

Таким образом, данный алгоритм позволяет за 2(M+N) операций установить изоморфизм графов, где М - число вершин, N – число дуг.

Литература

1. А. Н. Мелихов Ориентированные графы и конечные автоматы. - М., «Наука», 1971.

ОПЕРАТОРНЫЙ МЕТОД ИССЛЕДОВАНИЯ СВОБОДНЫХ КОЛЕБАНИЙ СТРУНЫ ПРИ ПОМОЩИ СТЕПЕННЫХ РЯДОВ

Филиппович М. М., Густова Г. В., БНТУ, Минск

Рассмотрим задачу о колебании струны, которому удовлетворяет дифференциальное уравнение в частных производных

$$u_{tt} - C^2 u_{xx} = 0$$
 (1)

с начальными и граничными условиями двух видов:

 $u(x,0) = \phi(x),$ $u_{t}(x,0) = \psi(x)$ $0 < x < \infty,$ u(0,t) = 0, t > 0; $u(x,0) = \phi(x),$ $u_{t}(x,0) = \psi(x)$ $0 \le x \le l,$ $u(0,t) = \mu_{1}(t),$ $u(l,t) = \mu_{2}(t)$ $t \ge 0.$

Здесь C= $\sqrt{\frac{T_0}{\rho}}$, где T₀- натяжение струны, ρ - плотность.

Решение уравнения (1) запишем в виде:

$$U = [A_1(d_x)sh(tCd_x)] * f_1(X) + [A_2(d_x)ch(tCd_x)] * f_2, \qquad (4)$$

(2)

(3)

где $d_x = \frac{d}{dx}$, t – время.

Построенное таким образом решение тождественно удовлетворяет уравнению (1) при произвольных бесконечно дифференцируемых функциях $f_1(x)$ и $f_2(x)$. Звёздочкой обозначено операторное дифференцирование.

Если в (4) положить A_1 и A_2 = const, то с учетом

 $\exp(\pm tCd_x)^*f(x) = f(x \pm tC),$

получим известное решение Даламбера [l.c.52] для бесконечной струны:

$$u(\mathbf{x}, \mathbf{t}) = \frac{\varphi(x+Ct) + \varphi(x-Ct)}{2} + \frac{1}{2C} \int_{x-Ct}^{x+Ct} \psi(\alpha) d\alpha$$

Если в (4) положить A₁ (d_x) = $\frac{A_n l}{\pi n} d_x$, A₂ (d_x) = B_n, то получим решение Фурье [l.c.86] для закреплённой (0 ≤ x ≤ l; u(0,t) = u(l,t) = 0) струны:

$$\mathbf{u}[\mathbf{x},\mathbf{t}] = \sum_{n=1}^{\infty} \left(A_n \cos \frac{\pi n}{l} Ct + B_n \sin \frac{\pi n}{l} Ct \right) \sin \frac{\pi n}{l} x,$$
$$\mathbf{A}_n = \frac{2}{l} \int_0^l \varphi(\xi) \sin \frac{\pi n}{l} \xi d\xi, \ \mathbf{B}_n = \frac{2}{\pi nC} \int_0^l \psi(\xi) \sin \frac{\pi n}{l} \xi d\xi.$$

где

Проведём исследование нового решения, когда

$$f_1(\mathbf{x}) = \sum_{k=-\infty}^{\infty} a_k x^k \text{ in } f_2(\mathbf{x}) = \sum_{k=-\infty}^{\infty} b_k x^k$$

в нашем случае оно имеет следующий вид:

$$U=(tCd_{x}^{2}+\frac{1}{3!}t^{3}C^{3}d_{x}^{4})(a_{3}x^{3}+a_{5}x^{5})+(1+\frac{1}{2!}t^{2}C^{2}d_{x}^{2})(b_{1}x+b_{3}x^{3}).$$

Данное решение

 $U(x,t)=6a_{3}tCx+20a_{3}tCx^{3}+20a_{5}t^{3}C^{3}x+b_{1}x+b_{3}x^{3}+3b_{3}t^{2}C^{2}x$

тождественно удовлетворяет уравнению (1).

Для первого случая получим:

$$U(x,0) = b_1 x + b_3 x^3,$$

$$U_t(x,0) = 6Ca_3 x.$$

$$O_{t}(x,0) = 000$$

Для второго случая получим:

 $U(0,t) = \mu_1(t) = 0,$

 $U(I,t) = \mu_{2}(t) = b_{1}I + b_{3}I^{3} + 2(3a_{3}I + 10a_{5}I^{3})tC + 3b_{3}C^{2}It^{2} + 20a_{5}C^{3}It^{3}.$

Итак, получим новое решение известной задачи, удобное для проведения численного анализа.

Литература

1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. Изд. 5-е, -М.: Наука, 1977. -736 с.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ РОБАСТНОСТИ ДВУХ АЛГОРИТМОВ МНОГОМЕРНОГО БАЙЕСОВСКОГО ПРОГНОЗИРОВАНИЯ

Шлык П. А., БГУ, Минск

В данной работе приводятся результаты сравнительного численного анализа робастности двух алгоритмов байесовского прогнозирования [1] при искажениях априорной плотности распределения вектора параметров, введённых в рассмотрение П.Густафсоном (1994). Компоненты прогнозируемого вектора могут быть стохастически зависимыми.

Математическая модель байесовского прогнозирования. Характеристики робастности прогнозирования

Пусть на вероятностном пространстве (Ω, F, P) заданы три случайных элемента:

I. Наблюдаемый вектор параметров θ , истинное значение которого неизвестно и является случайным с априорной гипотетической плотностью распределения вероятностей (п.р.в.) $\pi^0(\theta), \theta \in \Theta \subseteq R^m$;

II. Стохастически зависящий от θ вектор наблюдений $x = (x_t)_{t=1}^T \in X \subseteq R^{n \times T}$ с гипотетической условной п.р.в. $p^0(x|\theta)$;

III. Неизвестный, подлежащий прогнозированию, вектор $y \in Y \subseteq R^n$, стохастически зависящий от x и от θ , с гипотетической п.р.в. $g^0(y|x,\theta)$.

Рассмотрим модель искажений, предложенную П.Густафсоном [2]. Пусть п.р.в. вектора параметров θ равна $\tilde{\pi}(\theta)$ из множества $\Gamma_{\varepsilon}^{p}(\pi^{0})$: