Оборудование данного типа широко представлено на рынке отечественными и зарубежными производителями. Газовые отопительные и водогрейные котлы, серийно выпускаемые промышленностью, обладают хорошими эксплуатационными характеристиками и приемлемой ценой. В то же время недостаточно развито производство оборудования средней мощности для таких потребителей, как сельскохозяйственные предприятия, коммунально-бытовое хозяйство, небольших промышленных предприятий (зерносушилки, бассейны, бани, прачечные и т. п.). Хорошие перспективы имеет создание топливосжигающего оборудования средней мощности, работающего по принципу пульсирующего горения. Внедрение газоиспользующего оборудования особенно перспективно в области энергосбережения и охраны окружающей среды, а также сулит значительный экономический эффект.

Природный газ является также практически единственным видом топлива, используемого для контактного нагрева воды. В связи с отсутствием при сжигании природного газа потерь теплоты в результате механической и химической неполноты сгорания и весьма небольшими потерями тепла в окружающую среду, единственной потерей теплоты в котлах, о дальнейшем снижении которой может идти речь, является потеря тепла с уходящими газами. По отношению к низшей теплоте сгорания газа потеря тепла с уходящими газами составляет 5 – 6 %. Эффективность метода контактного нагрева

достигается за счет минимальных потерь тепла с уходящими газами при охлаждении продуктов сгорания ниже точки росы. При охлаждении уходящих газов до низких температур можно максимально использовать «скрытую» теплоту, выделяющуюся при конденсации водяного пара.

Использование в качестве топлива водорода ${\rm H_2}$ является одним из перспективных направлений. Во многих государствах проводятся программы по развитию водородной энергетики.

Исследование контактных водонагревателей на базе установок пульсирующего горения, использующих слоевое пульсирующее горение природного газа, имеет в перспективе создание оборудования, которому присущи преимущества обоих вышеописанных методов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Республиканская программа энергосбережения на 2001 2005 г., Мн. 2001
- Черноусов С. В. Перспективы развития мировой энергетики на период до 2020 г // Энергоэффективность №№ 4-5 2002 г
- 3. Северянин В.С. Котлы с пульсирующим горением. // Энергетика № 1 2001г., стр. 79 85.
- 4. Аронов И.З. Контактный нагрев воды продуктами сгорания природного газа. Л.: Недра, 1990, стр. 6 8.

УДК 621.438

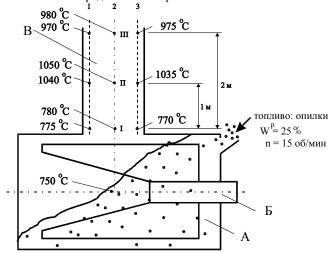
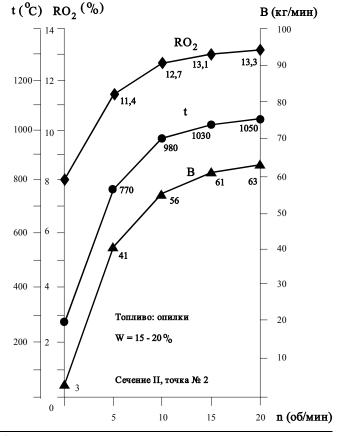

Черников И.А.

СХЕМА ПРЕДЛАГАЕМОГО КОТЛА С ТОПКОЙ НОВОГО ТИПА


Предлагаемая схема котла предусматривает использование роторной топки и прерывистой подачи воздуха на горение.

Роторный топочной процесс – это ворошение массы топлива в топочной камере в вертикальной плоскости специальными лопастями. При ворошении топлива мелкой фракции (например, опилки), за счет образования падающего потока частиц с находящейся наверху лопасти, за счет переворачивания слоя топлива между лопастями, образуются новые поверхности контакта топлива с окислителем, что ведет к интенсификации процесса горения.

Для экспериментальной проверки нового метода сжигания топлива, изложенного в работе [1], использовался лабораторный макет роторной топки с габаритами $0.5 \times 0.5 \times 0.5$ м. Схема макета представлена на рис. 1.

Puc. 1. Схема экспериментальной роторной топки.

Черников Игорь Анатольевич. Инженер НИС Брестского государственного технического университета. Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.

Рис. 2. Параметры работы топки.

Римскими цифрами I, II, III обозначены сечения, в которых замерялись температуры газов после топки в точках № 1, 2, 3 (т.е., по краям и по осевой линии трубы); \boldsymbol{A} - топочный объем, \boldsymbol{E} - ротор с лопастями, \boldsymbol{B} - дымовая труба.

На выходе продуктов сгорания из камеры дожигания (на 0.1 м ниже верхнего среза трубы) произведен газовый анализ электронным газоанализатором "TESTO 432.3". Данные анализа:

$$C^p = 57$$
 %, $S^p = 0.1$ %, $H_2 = 0$, $CH_4 = 0$, $CO_2 = 12$ %, $SO_2 = 0$, $CO = 0.48$ %, $O_2 = 3$ %

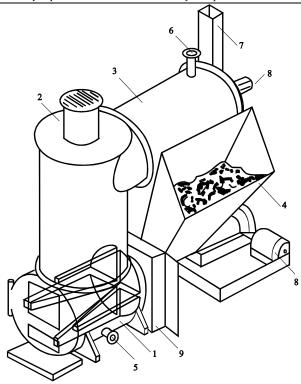
Рис. 2 показывает изменение температуры газов t, расхода топлива B и содержания RO_2 при изменении скорости вращения ротора. В качестве топлива использовались опилки, с влажностью на рабочую массу 15-20%.

Интересны данные по температурам среды в зоне вращающегося ротора. Низкое значение температуры объясняется расходом теплоты на предварительную подготовку топлива для горения (подогрев, сушка, пиролиз, газификация). Несмотря на низкий уровень температур, воспламенение и дальнейшее горение происходило устойчиво. Дожигание топлива осуществлялось в объеме выше ротора (над топкой). При этом механический недожог практически отсутствовал, а химический недожог был относительно мал.

Для оценки эффективности топочного устройства часто используется величина удельного теплонапряжения топочного объема q_v . В зависимости от вида топочного устройства значения q_v составляют:

- для камерных топок с организацией факельного горения $q_{\mathcal{V}} = 0.15 0.25 \, \text{MBm/m}^3$, [2];
- циклонные топки отличаются более высокой эффективностью топочного процесса, но для его организации необходимы дополнительные затраты (предварительная подготовка топлива, высоконапорное дутье и т.д.). Для них $q_{v} = 0.3 0.5 \ MBm/m^{3}$, [3].

Для нового топочного устройства при: расходе топлива ${\pmb B}=60~\kappa {\it E}/{\it u}$, (из эксперимента); низшей теплоте сгорания опилок ${\pmb Q}_{\it h}^{\it p}=8.37~\it MДж/\kappa {\it e}$, [3]; топочном объеме с камерой дожигания ${\pmb V}=0,3~\it m^3$. получим:


$$q_{V} = \frac{Q}{V} = \frac{B \cdot Q_{n}^{p}}{V} = 0.46 \text{ MBm/m}^{3},$$

из чего видно, что q_{v} роторной топки находится в промежутке между факельными и циклонными топочными устройствами, при минимальных топочных потерях.

Результаты огневых испытаний опытного образца, говорят о высокой эффективности данного топочного устройства.

На рис. З представлена принципиальная схема водогрейного котла малой мощности на базе роторной топки. Составные части котла: 1 - топка с ротором в сборе; 2 - камера дожигания с взрывным клапаном; 3 - теплообменник; 4 - топливозагрузочный бункер со шнековой подачей; 5 — патрубок для подачи теплоносителя; 6 - патрубок для отвода теплоносителя; 7 - труба для удаления уходящих газов; 8 - дымосос; 9 - воздушный короб с механизмом прерывистой подачи воздуха.

Для использования положительных качеств прерывистого потока [4] в роторной топке была разработана физикоматематическая модель прерывистой подачи воздуха, которая описана в работе [5].

Рис. 3. Общий вид котла.

Рис. 4 отображает один из возможных вариантов организации прерывистой подачи воздуха в роторную топку, где: 1 - загрузочный бункер; 2 - шнек; 3 - вал шнека; 4 - топочный объем; 5 - воздушный патрубок; 6 - заслонка; 7 - рычаг; 8 - ось рычага; 9 - лопасти ротора; 10 - груз; 11 - подвеска; 12 - направляющие; 13 - толкатель; 14 - скоба.

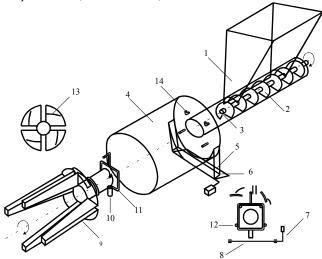


Рис. 4. Прерыватель воздушного потока.

Заданный режим открытия/закрытия заслонки обеспечивается падением груза 10 и формой толкателя 13. Привод прерывателя - двигатель, общий для шнека 2 и ротора 9.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Черников И.А. Новый способ интенсификации процесса горения. Вестник БрПИ, № 2, Брест, 2000, с. 68-70.
- 2. Теплотехнический справочник, том 2/ Под ред. В.Н. Юренева и П.Д. Лебедева. М.: Энергия, 1976, 367 с.

- 3. Тепловой расчет котельных агрегатов / Под ред. Н.В. Кузнецова и др. М.: Энергия, 1973. с. 201, 164.
- 4. Северянин В.С. Исследования пульсирующего горения как способа интенсификации теплотехнических процес-
- сов: Дис. ... докт. техн. наук: 05.14.04 Саратов, 1987.–126 с.
- Черников И.А. Особенности наддува топок прерывистым потоком воздуха. Вестник БГТУ, № 2, Брест, 2001, с. 52-56

УДК 697.973

Новиков В.М., Мороз В.В., Меженная О.Б.

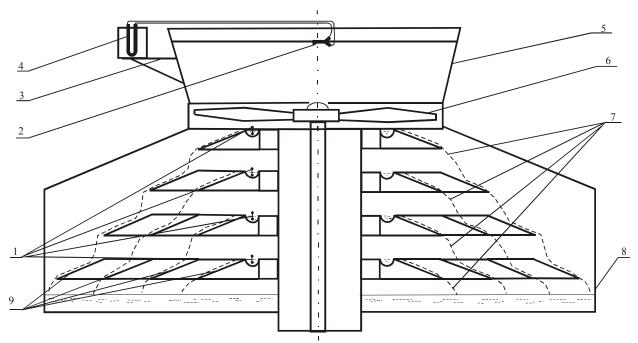
ИССЛЕДОВАНИЕ НЕКОТОРЫХ ЗАКОНОМЕРНОСТЕЙ ПРОЦЕССА ТЕПЛООБМЕНА В ВЕНТИЛЯТОРНЫХ ГРАДИРНЯХ НОВОЙ КОНСТРУКЦИИ С ПЛЕНОЧНЫМ ОХЛАЖДЕНИЕМ

Охлаждение воды в градирнях представляет собой весьма сложный гидроаэротермический процесс. Оно происходит в результате тепло - и массообмена между соприкасающимися потоками воды и воздуха.

При оборотном водоснабжении промышленного объекта охлаждающее устройство должно обеспечить охлаждение циркуляционной воды до температур, отвечающих оптимальным технико-экономическим показателям работы объекта, не зависимо от погодных условий.

Существующие типы градирен имеют следующие основные нелостатки:

- 1) большое гидравлическое сопротивление проточной части градирни;
 - 2) значительные энергетические затраты.


Предлагается принципиально новый тип градирен с пленочным охлаждением, организованным в виде куполообразных жидкостных завес, огибающих одна другую и имеющих вентилируемые прослойки. Реконструированная градирня представляет собой экспериментальную установку, которая представлена на рис. 1.

Экспериментальная установка состоит из ограждения 8, осевого вентилятора 6, вытяжной башни (диффузора) 5 и пленочного охладителя, включающего четыре яруса, огибающих друг друга водосливов, 9 и куполообразных жидкостных завес 7.

Температура воды контролируется термометрами 1, установленными в приемных чашах и на изливе, на уровне бассейна, каждой куполообразной завесы.

Средняя скорость движения воздуха измеряется напорной трубкой Пито-Прандтля 2, соединенной с помощью резиновых шлангов с U – образным манометром 4, который установлен на площадке для выполнения измерений 3.

Использование градирен нового типа, где процесс теплообмена осуществляется между куполообразными жидкостными завесами и встречным потоком воздуха, приводит к следующим положительным результатам, а именно:

Рис. 1. Схема градирни с пленочным охлаждением для изучения процесса закономерностей теплообмена между жидкостными завесами и движущимся потоком воздуха.

Новиков Владимир Макарович. К.т.н., доцент каф. водоснабжения, водоотведения и теплоснабжения Брестского государственного технического университета.

Мороз Владимир Валентинович. Ст. преподаватель каф. водоснабжения, водоотведения и теплоснабжения Брестского государственного технического университета.

Меженная Ольга Борисовна. Аспирантка каф. водоснабжения, водоотведения и теплоснабжения Брестского государственного технического университета.

Беларусь, БГТУ, 224017, г. Брест, ул. Московская, 267.