УДК 539.3

К РЕШЕНИЮ ТРЕХМЕРНЫХ КРАЕВЫХ ЗАДАЧ ТЕРМОУПРУГОСТИ ИЗОТРОПНЫХ НЕПРЕРЫВНО-НЕОДНОРОДНЫХ ТЕЛ МЕТОДОМ ГРАНИЧНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ

А. И. Веремейчик¹, В. М. Хвисевич²

1 К. физ.-мат. н., доцент, старший научный сотрудник испытательного центра УО «Брестский государственный технический университет», Брест, Беларусь, e-mail: vai_mrtm@bstu.by

² К. т. н., доцент, профессор кафедры прикладной механики УО «Брестский государственный технический университет», Брест, Беларусь, e-mail : vmhvisevich@bstu.by

Реферат

Статья посвящена исследованию напряженно-деформированного состояния непрерывно-неоднородных тел с использованием метода граничных интегральных уравнений. С помощью метода возмущений трехмерная краевая задача термоупругости изотропных непрерывно-неоднородных тел сводится к последовательности краевых задач термоупругости и теории упругости однородных тел. Построены сингулярные интегральные уравнения трехмерной краевой задачи термоупругости при переменном коэффициенте $\alpha(T)$.

Ключевые слова: термоупругость, неоднородность, напряжения, перемещения, интегральные уравнения, краевая задача.

ON THE SOLUTION OF THREE-DIMENSIONAL BOUNDARY VALUE PROBLEMS OF THERMOELASTICITY OF ISOTROPIC CONTINUOUSLY INHOMOGENEOUS BODIES BY THE METHOD OF BOUNDARY INTEGRAL EQUATIONS

A. I. Veremeichik, V. M. Hvisevich

Abstract

The article is devoted to the study of the stress-strain state of continuously inhomogeneous bodies using the method of boundary integral equations. Using the perturbation method, the three-dimensional boundary value problem of thermoelasticity of isotropic continuously inhomogeneous bodies is reduced to a sequence of boundary value problems of thermoelasticity and the theory of elasticity of homogeneous bodies. Singular integral equations of a three-dimensional boundary value problem of thermoelasticity with a variable coefficient are constructed.

Keywords: thermoelasticity, inhomogeneity, stresses, displacements, integral equations, boundary value problem.

Введение

Обычно все материалы, используемые для изготовления конструктивных элементов машин и механизмов, имеют определенную неоднородность, которую можно разделить на микронеоднородность (дефекты и неправильность кристаллической решетки, молекулярная структура полимеров и т. д.) и макронеоднородность (параметры, определяющие свойства среды). С позиции инженерной практики интерес представляет исследование напряженно-деформированного состояния (НДС) тел с макронеоднородностью (непрерывной неоднородностью). Неоднородность упругих свойств возникает в процессе формирования тела (различные температурные условия в технологическом процессе), в грунтах и горных выработках (естественная неоднородность), при эксплуатации конструкций под влиянием окружающей среды (термическое воздействие, радиационное облучение, воздействие активных жидкостей и газов). В статье рассматриваются задачи статики тел с непрерывной неоднородностью. Тела с этим видом неоднородности по способу описания механических свойств условно можно разделить на две группы: а) тела с прямой неоднородностью; б) тела с косвенной неоднородностью. К группе «а» относятся тела с неоднородностью, описанной выше в первых двух случаях, а к группе «б» относится третий случай (тела, в которых возникает неоднородность в процессе эксплуатации).

Функции, описывающие изменение механических свойств тел группы «а», строятся по результатам экспериментальных исследований. В телах группы «б» для описания изменения механических свойств необходимо знать не только зависимости свойств тел от причин, вызывающих неоднородность (радиационное облучение, температурное поле), но и распределение этих величин в теле. Таким образом, построение функций изменения свойств складывается из двух частей. Если первая часть определяется аналогично построению функций для тел с прямой неоднородностью, то вторая является результатом решения соответствующих задач, например, краевой задачи теплопроводности. Отметим, что в данной статье постановка задач термоупругости предполагает решение краевых задач Дирихле для определения температуры, поэтому трудности, обусловленные второй частью построения упомянутых функций изменения свойств, не возникают.

Для исследования НДС тел с непрерывной неоднородностью необходимо поставить краевую задачу теории упругости (термоупругости) и разработать эффективный метод ее реализации. Для тел со сложной геометрией области тел и граничных условий аналитическое решение такого рода задач

невозможно, поэтому используются численные методы, наиболее распространенным из которых является метод конечных элементов (МКЭ). В статье для решения задачи термоупругости используем метод граничных интегральных уравнений, с помощью которого дифференциальные уравнения (ДУ) сводятся к интегральным уравнениям [1, 2].

Постановка задачи

Задача термоупругости неоднородных тел формулируется аналогично задаче термоупругости однородных тел с учетом того, что в физических уравнениях параметры упругости и теплового расширения являются заданными непрерывными функциями координат (точнее, они зависят от температуры, которая является функцией координат) и для решения задачи необходимо знать зависимости этих параметров.

Рассмотрим статическую задачу о деформации изотропного однородного упругого тела, механические и тепловые свойства которого (коэффициенты теплопроводности $\lambda(T)$, линейного расширения $\alpha(T)$ и модуль упругости E(T)) являются непрерывными функциями температуры и определяются зависимостями [3, 4] при стационарном поле температуры T в декартовой системе координат (x_1, x_2, x_3) . Температура T определяется в результате решения краевой задачи теплопроводности (задача Дирихле). Предполагаем, что внутренние источники тепла отсутствуют. Температурное поле удовлетворяет уравнению теплопроводности:

$$div(\lambda gradT) = 0. (1)$$

Воспользуемся функцией теплопроводности [3]:

$$T^* = \int_0^T \lambda(T) dT, \qquad (2)$$

при этом
$$\frac{\partial T^*}{\partial x_i} = \lambda(T) \frac{\partial T}{\partial x_i}$$

В результате приходим к равнению Лапласа относительно функции $T^*:\Delta T^*=0$.

Определив $T^*\left(x_1,x_2,x_3\right)$ из выражения (2), которое дает неявную зависимость $T=T\left(T^*\right)$, можно определить температуру $T\left(x_1,x_2,x_3\right)$.

Согласно [5], напряжения могут быть записаны в виде:

$$\sigma_{ij} = \frac{E(T)}{1+\upsilon} \left[\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \frac{\upsilon}{1-2\upsilon} \frac{\partial u_k}{\partial x_k} \delta_{ij} - \frac{1+\upsilon}{1-2\upsilon} \int_0^T \alpha(T) dT \delta_{ij} \right]. (3)$$

Подставляя (3) в уравнения равновесия $\frac{\partial \sigma_{ij}}{\partial x_i} + \rho F_i = 0$,

получим ДУ равновесия в перемещениях без учета объемных сил:

$$\Delta u_{i} + \frac{1}{1 - 2\upsilon} \frac{\partial \Theta}{\partial x} - \frac{2(1 + \upsilon)}{1 - 2\upsilon} \frac{\partial}{\partial x_{i}} \left(\int_{0}^{\tau} \alpha(T) dT \right) +$$

$$+ \frac{1}{E} \frac{\partial E}{\partial x_{j}} \left[\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} + \frac{2\upsilon}{1 - 2\upsilon} \Theta \delta_{ij} - \frac{2(1 + \upsilon)}{1 - 2\upsilon} \int_{0}^{\tau} \alpha(T) dT \delta_{ij} \right] = 0,$$
где $\Theta = \frac{\partial u_{k}}{\partial x_{k}}$.

Согласно Тростелю [6], введем малый параметр ϕ , определяемый функцией E(T):

$$\frac{1}{E}\frac{dE}{dT} = \frac{d}{dT}\left[\ln\frac{E}{E_0}\right] = \varphi\Psi(T). \tag{5}$$

Учитывая, что

$$\frac{1}{E}\frac{\partial E}{\partial x_{j}} = \frac{1}{E}\frac{dE}{dT}\frac{\partial T}{\partial x_{j}} = \phi\Psi\left(T\right)\frac{\partial T}{\partial x_{j}} = \phi B_{j}\left(x_{s}\right), \text{ где}$$

$$B_{j}\left(\mathbf{x}_{\mathrm{s}}\right)=\Psi(T)rac{\partial T}{\partial \mathbf{x}_{i}}$$
 , уравнения равновесия запишутся в

виде

$$\Delta U_{i} + \frac{1}{1 - 2\upsilon} \frac{\partial \Theta}{\partial x_{i}} - \frac{2(1 + \upsilon)}{1 - 2\upsilon} \frac{\partial}{\partial x_{i}} \left(\int_{0}^{T} \alpha(T) dT \right) = -\varphi B_{j} \frac{2(1 + \upsilon)}{E} \sigma_{ij}, (6)$$

ипи

$$\Delta u_{i} + \frac{1}{1 - 2\upsilon} \frac{\partial \Theta}{\partial x_{i}} - \frac{2(1 + \upsilon)}{1 - 2\upsilon} \frac{\partial}{\partial x_{i}} \left(\int_{0}^{\tau} \alpha(T) dT \right) = \frac{2(1 + \upsilon)}{E^{2}} \frac{dE}{dT} \frac{\partial T}{\partial x_{i}} \sigma_{ij}.(7)$$

Граничные условия задачи в напряжениях или перемещениях имеют вид:

$$\sigma_{ii} n_i = q_i(x_s), \ u_i = f_i(x_s), \tag{8}$$

где n_j – компоненты единичного вектора внешней нормали к L; $q_i(\mathbf{x}_S)$ и $f_i(\mathbf{x}_S)$ – компоненты вектора контурных усилий и перемещений соответственно.

Если $\phi = 0$, $\alpha(T) = const$, то соотношения (6), (8) дают постановку задачи классической термоупругости [1, 4].

Решение трехмерной краевой задачи термоупругости с переменным коэффициентом линейного расширения

Одним из наиболее эффективных методов решения задач теории термоупругости неоднородных тел является метод возмущений, предложенный и разработанный В. А. Ломакиным [7], позволяющий свести краевую задачу термоупругости неоднородных тел к последовательности краевых задач однородной термоупругости и теории упругости однородных тел с фиктивными нагрузками.

Рассмотрим решение краевой задачи термоупругости, которая возникает на нулевом приближении при использовании метода возмушений:

$$\Delta u_{i}^{(0)} + \frac{1}{1 - 2\upsilon} \frac{\partial \Theta^{(0)}}{\partial x_{i}} - \frac{2(1 + \upsilon)}{1 - 2\upsilon} \frac{\partial}{\partial x_{i}} \left(\int_{0}^{T} \alpha(T) dT \right) = -\varphi B_{j} \frac{2(1 + \upsilon)}{E} \sigma_{ij},$$

$$\sigma_{ij}^{0} n_{j} = q_{i} \left(x_{s} \right), \tag{9}$$

$$\sigma_{ij}^{(0)} = \frac{E(T)}{1 + \upsilon} \left[\frac{1}{2} \left(\frac{\partial u_{i}^{(0)}}{\partial x_{j}} + \frac{\partial u_{j}^{(0)}}{\partial x_{i}} \right) + \frac{\upsilon}{1 - 2\upsilon} \Theta^{(0)} \delta_{ij} - \frac{1 + \upsilon}{1 - 2\upsilon} \int_{0}^{T} \alpha(T) dT \delta_{ij} \right],$$

$$i, j = 1, 2, 3.$$

Применим метод возмущений к краевой задаче (6), (8). Ее решение будем искать в виде степенного ряда:

$$u_i = \sum_{k=0}^{\infty} \varphi^k u_i^k \,. \tag{10}$$

Запишем дифференциальное уравнение равновесия задачи (6) в перемещениях:

$$\Delta u_i^{(0)} + \frac{1}{1 - 2\upsilon} \frac{\partial^2 u_j^{(0)}}{\partial x_i \partial x_j} = \frac{2(1 + \upsilon)}{1 - 2\upsilon} \frac{\partial}{\partial x_j} \int_0^T \alpha(T) dT, \quad (11)$$

где $u_i^{(0)}$ – вектор перемещений, соответствующий нулевому члену ряда (9).

Температура T считается найденной после решения уравнения (1) и она не является гармонической функцией.

Решение уравнения (11) будем искать в виде:

$$u_i^{(0)} = u_i^U + u_i^T \,, \tag{12}$$

где общее решение u_i^U соответствует решению [7] задачи теории упругости.

Частное решение u_i^{T} представляем аналогично в [4, 5] в виде:

$$u_i^{\mathsf{T}} = \frac{\partial W}{\partial x_i} \,. \tag{13}$$

Уравнение (11) обращается в тождество при подстановке в него (13), если принять

$$\Delta W = \frac{1+\upsilon}{1-\upsilon} \int_{0}^{T} \alpha(T) dT.$$
 (14)

Если выразить функцию W, можно получить формулы для температурных перемещений u_i^T , напряжений σ_{ij}^T , фиктивной температурной нагрузки p_i^T , построить сингулярные интегральные уравнения (СИУ) и решить поставленную краевую задачу.

Согласно [4], для большинства материалов коэффициент $\alpha(\mathcal{T})$ имеет зависимость:

$$\alpha = \alpha_0 \left(1 + \gamma T \right), \tag{15}$$

где $\,\alpha_0\,$ – значение коэффициента теплового расширения для исходного состояния, $\,\gamma\,$ – постоянная величина, определяемая из экспериментов.

Подставляя (15) в (14), имеем:

$$\Delta W = aT \left(1 + \frac{T}{2} \gamma \right), \tag{16}$$

где
$$a = \frac{1+\upsilon}{1-\upsilon}\alpha_0$$

Функция T связана с гармонической функцией T^* неявной зависимостью (2) при изменяющемся по закону [5] коэффициенте теплопроводности:

$$\lambda = \lambda_0 \left(1 - kT \right), \tag{17}$$

где k — определяется с помощью экспериментальных кривых, λ_0 — коэффициент теплопроводности при исходной температуре.

Определив $T^*\left(x_1,x_2,x_3\right)$ из выражения для функции теплопроводности, которое дает неявную зависимость $T=f\left(T^*\right)$, можно найти температуру $T\left(x_1,x_2,x_3\right)$, которая неявно выражается через гармоническую функцию T^* соотношением:

$$T = \frac{1}{k} \left(1 - \sqrt{1 - \frac{2k}{\lambda_0} T^*} \right). \tag{18}$$

Соотношение (18) подставляем в (16) и после элементарных преобразований получим:

$$\Delta W = abT - acT^*, \tag{19}$$

где $b=1+rac{\gamma}{k}$, $c=rac{\gamma}{k\lambda_0}$, или с учетом выражения для температуры, например, в случае внутренней области, $T\left(x\right)= \prod\limits_{S_i+S_o} \chi\left(y\right) \frac{\cos\phi}{r^2} \, dS_y + \sum\limits_{i=1}^n rac{A_i}{r_{A_i}} \,, \; \text{где} \;\; A_i \; - \; \text{мощность}$

простых источников, находящихся внутри поверхностей S_i $(i=1,\,2,...,n)$, r_{A_i} – расстояние до источника, имеем:

$$\Delta W = abT - ac \left[\iint_{S_i + S_n} \chi(y) \frac{\cos \varphi}{r^2} dS_y + \sum_{k=1}^n \frac{A_k}{r_{A_k}} \right]. \tag{20}$$

Представим первое слагаемое в правой части (20) объемным потенциалом [4], в результате получим:

$$\Delta W = -\frac{ab}{4\pi} \int_{V} T(y) \Delta \left(\frac{1}{r}\right) dV_{y} -$$

$$-ac \left[- \iint_{S_{x} + S_{x}} \chi(y) \Delta \left(\frac{d(r/2)}{dn(y)}\right) dS_{y} + \sum_{k=1}^{n} A_{k} \Delta \left(\frac{r_{A_{k}}}{2}\right) \right].$$
 (21)

Тогда функция W принимает вид:

$$W = -\frac{ab}{4\pi} \int_{V} T(y) \frac{1}{r} dV_{y} + \frac{ac}{2} \left[\sum_{k=1}^{n} \iint_{S_{i}+S_{n}} \chi(y) \cos \varphi dS_{y} - \sum_{k=1}^{n} A_{k} r_{A_{k}} \right].$$
(22)

Представим эту функцию в виде суммы $W=\stackrel{(N)}{W}+\stackrel{(G)}{W}$, при этом функция W имеет вид:

$$W^{(G)} = W^{(K)} + W^{(M)} = -a \iint_{S} \chi(y) \frac{\cos \varphi}{2} dS_{y} + \frac{a}{2} \sum_{k=1}^{n} A_{k} r_{A_{k}}, (23)$$

и с ее помощью выведены формулы температурных составляющих перемещений:

$$u_i^{T} = -\frac{a}{2} \left\{ \iint_{S} \chi(y) \frac{1}{r} \left[\beta_i \cos \varphi - n_i(y) \right] dS_y + \sum_{k=1}^{n} A_k \beta_i^{(A_k)} \right\}, (24)$$

и напряжений во внутренних точках области $V^{\scriptscriptstyle +}$:

$$\sigma_{ij}^{T}(x) = \sigma_{ij}^{(K)} + \sigma_{ij}^{T} =$$

$$= -\mu a \left\{ \prod_{S} \frac{\chi(y)}{r^{2}} \left[3\beta_{i}\beta_{j}\cos\varphi - n_{i}(y)\beta_{j} - n_{j}(y)\beta_{i} + \delta_{ij}\cos\varphi \right] dS_{y} + \sum_{k=1}^{n} A_{k} \frac{\beta_{i}^{(A_{k})}\beta_{j}^{(A_{k})} + \delta_{ij}}{r_{A_{k}}} \right\}.$$

$$(25)$$

Поэтому достаточно получить составляющие температурных добавок перемещений $\overset{(N)}{u}_i^T$ и напряжений $\overset{(N)}{\sigma}_i^T$, которые выражаются через $\overset{(N)}{W} = -\frac{ab}{4\pi}\int\limits_V T(y)\frac{1}{r}dV_y$. Для этого вне-

сем *W* в (13) и (26):

$$\sigma_{ij}^{T} = \frac{E}{1+\upsilon} \left(\frac{\partial^{2} W}{\partial x_{i} \partial x_{j}} - \Delta W \delta_{ij} \right). \tag{26}$$

Выполняя подстановку, необходимо иметь частные производные от объемного потенциала

$$Q = \int T(y) \frac{1}{r} dV_y \tag{27}$$

и вместе с тем возникает необходимость рассмотреть основные свойства этого потенциала и его частных производных.

Исследование свойств объемного потенциала

При рассмотрении потенциала (27) считаем, что плотность потенциала T(y) удовлетворяет условию Гёльдера [3]. При соблюдении этого условия плотность есть непрерывная функция координат и потенциал удовлетворяет уравнению Пуассона [4].

Продифференцируем (27):

$$\frac{\partial Q}{\partial x_i} = \int_V T(y) \frac{\beta_i}{r^2} dV_y , \qquad (28)$$

$$\frac{\partial^2 Q}{\partial x_i \partial x_i} = \int_V T(y) \frac{3\beta_i \beta_i - \delta_{ij}}{r^3} dV_y , \qquad (29)$$

сингулярную часть интеграла в (29) вычисляем следующим образом. Вокруг этой точки опишем сферу радиуса ε . Эта сфера выделит из области V^+ шаровую область B. Тогда

$$I = \int_{V} T(y) \frac{3\beta_{i}\beta_{i} - \delta_{ij}}{r^{3}} dV_{y} =$$

$$= \int_{V/B} T(y) \frac{3\beta_{i}\beta_{i} - \delta_{ij}}{r^{3}} dV + \int_{B} T(y) \frac{3\beta_{i}\beta_{i} - \delta_{ij}}{r^{3}} dV_{y}.$$
(30)

Предел первого слагаемого интеграла при $\varepsilon \to 0$ является главным значением по Коши сингулярного интеграла или его регулярной частью. Для вычисления второго слагаемого интеграла применим теорему Гаусса:

$$I = \int_{V} T(y) \frac{\partial^{2}(1/r)}{\partial x_{i}} dV_{y} = T(x) \iint_{S} n_{i}(x) \left(-\frac{\beta_{i}}{r^{2}}\right) dS_{y},$$

при этом учтем, что

$$-T(x)\iint_{S} \frac{\beta_{i}\beta_{j}}{r^{2}} dS_{y} = -T(x)\frac{1}{\varepsilon^{2}} \varepsilon^{2} \iint_{S} \beta_{i}\beta_{j} d\omega, (31)$$

где принято $dS = r^2 d\omega$, ω – телесный угол, i, j = 1, 2, 3.

Перейдем к полярной системе координат r, ϕ , ϑ . Учитывая, что $\beta_1=\sin\vartheta\cos\phi$, $\beta_2=\sin\vartheta\sin\phi$, $\beta_3=\cos\vartheta$, $d\omega=-d\phi d(\cos\vartheta)$, проинтегрировав (31), находим: при

$$i = j$$
 , $I(x) = -\frac{4}{3\pi}T(x)$; при $i \neq j$, $I(x) = 0$.

Таким образом, сингулярный интеграл примет вид:

$$I(x) = -\frac{4}{3}\pi T(x)\delta_{ij} + V.p.\int_{V} T(y)\frac{3\beta_{i}\beta_{i} - \delta_{ij}}{r^{3}}dV_{y}, (32)$$

где V.p. – означает главное значение сингулярного интеграла по Коши.

Рассмотрим ещё одно свойство объёмного потенциала. Оно характерно тем, что при пересечении поверхности *S* тела вторые частные производные потенциала (27) испытывают скачок. Величину этого скачка согласно [3] можно определить, воспользовавшись способом Вейнгартена:

$$I(x_{S}) = \eta 2\pi n_{i}(x) n_{j}(x) T(x) + V.p. \int_{V} T(y) \frac{3\beta_{i}\beta_{i} - \delta_{ij}}{r^{3}} dV_{y}. (33)$$

Здесь $\eta = -1$ при стремлении точки x к S изнутри (внутренняя задача) и $\eta = 1$ при $x \to S$ снаружи (внешняя

задача). Интегралы (32), (33) можно использовать для построения формул температурных добавок перемещений и напряжений.

Построение интегральных формул перемещений, напряжений и СИУ

Чтобы получить формулы термоупругих перемещений и напряжений краевой задачи (9), достаточно рассмотреть температурные добавки этих величин, которые выражаются че-

рез функцию $\stackrel{(N)}{W}$ и затем простым суммированием с уже определёнными выше другими слагаемыми перемещений и напряжений определить итоговые величины.

Температурные добавки перемещений определяем, подставив W в (13), тогда с учётом (32) получим:

$$u_{i}^{(N)} = -\frac{ab}{4\pi} \int_{V} T(y) \frac{\beta_{i}}{r^{2}} dV_{y} .$$
 (34)

Для определения температурных добавок напряжений используем формулу (26), которая является справедливой и в

этом случае. Внося в (26) функцию $\stackrel{(V)}{W}$, получим интегральные формулы добавок напряжений в точках внутри V^+ .

$$\overset{(N)}{\sigma}_{ij}^{T}(x) = -\frac{a_{i}E(T)}{4\pi} \left[\int_{V} T(y) \frac{3\beta_{i}\beta_{j} - \delta_{ij}}{r^{3}} dV_{y} + 4\pi T \delta_{ij} \right], (35)$$

где
$$a_1 = \frac{b\alpha_0}{1-\nu}$$
.

В особых точках напряжения определяем по формуле:

$$\sigma_{ij}^{(N)}(x_0) = -\frac{a_i E(T)}{4\pi} \left[\int_{V} T(y) \frac{3\beta_i \beta_j - \delta_{ij}}{r^3} dV_y + \frac{8}{3} \pi T(x) \delta_{ij} \right] . (36)$$

Добавки напряжений в граничных точках выражаются следующим образом:

$$\sigma_{ij}^{(N)}(x_{S}) = -\frac{a_{i}E(T)}{4\pi} \times \left\{ \int_{V} T(y) \frac{3\beta_{i}\beta_{j} - \delta_{ij}}{r^{3}} dV_{y} + 4\pi T(x_{S}) \left[\delta_{ij} - \frac{n_{i}(x_{S})n_{j}(x_{S})}{2} \right] \right\}^{(37)}$$

Если W подставим в формулу температурной нагрузки на поверхности S [4]:

$$\overline{p}_{T} = 2\mu \left(\alpha \frac{1+\upsilon}{1-\upsilon} \overline{n}_{0} T_{s} - grad \frac{dW}{dn} \right), \tag{38}$$

получим слагаемое фиктивной поверхностной нагрузки $f_i^{\mathsf{T}}\left(\mathbf{x}_{\mathsf{S}}\right)$:

$$f_{i}^{(N)}(x_{S}) = -\frac{a_{i}E(T)}{4\pi} \times \left\{ \int_{V} \frac{1}{r^{3}} \left[3\beta_{i}\cos\varphi - n_{i}(x_{S}) \right] dV_{y} + 4\pi T(x_{S}) n_{i}(x_{S}) \right\}. (39)$$

Полностью формулу для $f_i^{\mathsf{T}}(x_{\mathsf{S}})$ нетрудно получить суммированием (39) с другим слагаемым, которое выражается через W :

$$f_{i}^{T}(x_{S}) = \frac{a_{i}E(T)}{1-\upsilon} \left\{ \sum_{k=1}^{n} \prod_{S_{k}+S_{k}} \chi(y) \frac{1}{r^{2}} \left[3\beta_{i} \cos\varphi \cos\psi - \eta_{i}(y) \cos\psi - \beta_{i} \cos\xi + \eta_{i}(x_{S}) \cos\varphi \right] dS_{y} + \sum_{k=1}^{n} A_{k} \frac{\beta_{i}^{(A_{i})} \cos\varphi^{(A_{i})} + \eta_{i}(x_{S})}{r_{A_{i}}} \right\} c + (40)$$

$$+ \frac{b}{4\pi} \int_{V} \frac{1}{r^{3}} \left[3\beta_{i} \cos\varphi - \eta_{i}(x_{S}) \right] dV_{y} + 2\pi T(x_{S}) \eta_{i}(x_{S}) .$$

Полные перемещения $u_i^{(0)}$ определяются суммированием

(34) с выражением, которое получается подстановкой \widetilde{W} в (13) и перемещениями u_i^U :

$$u_{i}^{(0)} = u_{i}^{U} + u_{i}^{T} = u_{i}^{U} + u_{i}^{(G)} + u_{i}^{T} + u_{i}^{N} = u_{i}^{U} + \frac{a}{2} \left\{ \iint_{S} \chi(y) \frac{1}{r} \left[\beta_{i} \cos \varphi - \eta_{i}(y) \right] dS_{y} + \sum_{k=1}^{n} A_{k} \beta_{i}^{(A_{k})} - \frac{b}{2\pi} \int_{V} T(y) \frac{\beta_{i}}{r^{2}} dV_{y} \right\}.$$

$$(41)$$

Полные напряжения для внутренних точек области определяем по формуле:

$$\sigma_{ij}^{(0)}(x) = \sigma_{ij}^{U}(x) + \sigma_{ij}^{(S)'}(x) + \sigma_{ij}^{(N)'}(x) = \sigma_{ij}^{U}(x) + \frac{a_{i}E(T)}{2(1-v)} \times \left[c \left\{ \iint_{S} \frac{\chi(y)}{r^{2}} \left[3\beta_{i}\beta_{j} \cos\varphi - n_{i}(y)\beta_{j} - n_{j}(y)\beta_{i} + \delta_{ij} \cos\varphi \right] dS_{y} + (42) \right\} \right\}$$

$$+\sum_{k=1}^{n} A_{k} \frac{\beta_{i}^{(A_{k})} \beta_{j}^{(A_{k})} + \delta_{ij}}{r_{A_{k}}} \left\{ -\frac{b}{2\pi} \int_{V} T(y) \frac{3\beta_{i} \beta_{j} - \delta_{ij}}{r^{3}} dV_{y} + 4\pi T \delta_{ij} \right\},$$

где $\sigma_{ij}^U(x)$ – напряжения, которые соответствуют решению и определяются в соответствии с [3] без неинтегральных слагаемых.

При вычислении напряжений в особых точках, возникающих для последнего слагаемого в правой части (42), вместо этого слагаемого используем формулу (36).

Полные напряжения в граничных точках определяются по формуле:

$$\sigma_{ij}^{(0)}(x_{S}) = \sigma_{ij}^{U}(x_{S}) + \frac{a_{j}E(T)}{2(1-v)} \left(4\pi\chi(x_{S}) \left[\delta_{ij} - \eta_{i}(x_{S}) \eta_{j}(x_{S}) \right] c + + V_{i} \rho_{ij}^{(0)}(x_{S}) - \frac{b}{2\pi} \left\{ \int_{V} T(y) \frac{3\beta \beta_{j} - \delta_{ij}}{r^{3}} dV_{y} + 4\pi T(x_{S}) \left[\delta_{ij} - \frac{\eta_{i}(x_{S}) \eta_{j}(x_{S})}{2} \right] \right\}. \tag{43}$$

Систему СИУ получаем подстановкой (43) в граничные условия задачи (9). Система имеет следующий вид:

$$v_{i}(x) + \frac{1}{4\pi(1-v)} \iint_{S} \frac{v_{k}(y)}{r^{2}} \{ (1-2v) \left[\delta_{ik} \cos \psi + n_{k}(x) \beta_{i} - \frac{1}{(44)} \right] - n_{i}(x) \beta_{k} + 3\beta_{i} \beta_{i} \cos \psi \} dS_{v} = f_{i}(x_{S}) + f_{i}^{T}(x_{S}).$$

СИУ (44), а также интегральные формулы (41)–(43) дают решение трехмерной краевой задачи термоупругости в случае $\alpha=\alpha(T)$. Эти формулы являются также решением в нулевом приближении трехмерной краевой задачи термоупругости неоднородного тела.

Решение краевой задачи теории упругости однородного тела с учетом фиктивных массовых сил

Применив метод возмущений [7] для полного решения краевой задачи, необходимо решить в последующих прибли-

жениях последовательность задач теории упругости: краевую задачу для u_i^1

$$\Delta u_{i}^{(1)} + \frac{1}{1 - 2\upsilon} \frac{\partial \Theta^{(1)}}{\partial x_{i}} = -\frac{2(1 + \upsilon)}{E^{2}} \frac{dE}{dT} \frac{\partial T}{\partial x_{j}} \sigma_{ij}^{(0)},$$

$$\sigma_{ij}^{1} n_{j} = 0, \qquad (45)$$

$$\sigma_{ij}^{(1)} = \frac{E(T)}{1 + \upsilon} \left[\frac{1}{2} \left(\frac{\partial u_{i}^{(1)}}{\partial x_{j}} + \frac{\partial u_{j}^{(1)}}{\partial x_{i}} \right) + \frac{\upsilon}{1 - 2\upsilon} \Theta^{(1)} \delta_{ij} \right],$$

и последовательность краевых задач для u_i^k (k = 2, 3,...)

$$\Delta u_{i}^{k} + \frac{1}{1 - 2\upsilon} \frac{\partial \Theta^{(k)}}{\partial x_{i}} = -\frac{2(1 + \upsilon)}{E^{2}} \frac{dE}{dT} \frac{\partial T}{\partial x_{j}} \sigma_{ij}^{(k-1)},$$

$$\sigma_{ij}^{k} n_{j} = 0$$
(46)

$$\sigma_{ij}^{(k)} = \frac{E(T)}{1+\upsilon} \left[\frac{1}{2} \left(\frac{\partial u_i^{(k)}}{\partial x_j} + \frac{\partial u_j^{(k)}}{\partial x_i} \right) + \frac{\upsilon}{1-2\upsilon} \Theta^{(k)} \delta_{ij} \right],$$

где
$$\Theta^k = \frac{\partial u_j^k}{\partial x_i}$$
, $k = 0, 1, 2, \dots$

Напишем, например, ДУ равновесия задачи (45) для 1-го приближения:

$$\Delta u_i^{(1)} + \frac{1}{1 - 2\upsilon} \frac{\partial^2 u_j^{(1)}}{\partial x_i \partial x_i} = -\frac{2(1 + \upsilon)}{E^2} \frac{dE}{dT} \frac{\partial T}{\partial x_i} \sigma_{ij}^{(0)} . \tag{47}$$

В правой части (47) присутствует модуль упругости *E* как функция температуры, производная модуля упругости от температуры, частная производная температуры и тензор напряжений, компоненты которого должны быть определены на предыдущем приближении. Такая же структура правой части остается и в уравнениях последующих приближений. Таким образом, методика решения задачи первого приближения распространяется и на следующие задачи.

Представим решение уравнения (47) как общее решение однородного уравнения теории упругости без учёта объёмных и массовых сил и частного решения неоднородного уравнения:

$$u_i^{(1)} = u_i^U + u_i^N. (48)$$

Частное решение представим объёмным интегралом, в котором правая часть (47) является плотностью массовых сил:

$$u_i^N = -\int_{V} \left[\frac{2(1+v)}{E^2} \frac{dE}{dT} \frac{\partial T}{\partial x_p} \sigma_{jp}^{(0)} \right] u_{ij} dV_y , \qquad (49)$$

а u_{ij} – фундаментальное решение Кельвина трёхмерной задачи теории упругости [7].

Формулу (49) с учетом фундаментального решения Кельвина запишем в виде:

$$u_i^N = -\frac{\left(1+\upsilon\right)^2}{4\pi(1-\upsilon)} \int_{V} \left(\frac{1}{E^2} \frac{dE}{dT} \frac{\partial T}{\partial x_p} \sigma_{jp}^{(0)}\right) \frac{\left(3-4\upsilon\right)\delta_{ij} - \beta_i \beta_j}{Er} dV_y . (50)$$

Напряжения $\sigma_{ii}^{(1)}$ также представим в виде суммы:

$$\sigma_{ij}^{(1)} = \sigma_{ij}^U + \sigma_{ij}^N. \tag{51}$$

Здесь слагаемое σ_{ii}^{U} соответствует вектору u_{i}^{U} .

Учитывая зависимость модуля упругости от температуры и координат, можно получить напряжения в произвольной точке P, обусловленные единичной сосредоточенной нагрузкой, приложенной в точке y и направленной вдоль k-ой оси:

$$\sigma_{ij}^{k} = \frac{1}{4\pi(1-\upsilon)} \left(\frac{1}{E(T)r^{2}} \left[(1-2\upsilon) \left(\delta_{ik}\beta_{j} + \delta_{kj}\beta_{i} - \delta_{ij}\beta_{k} \right) + 3\beta_{i}\beta_{j}\beta_{k} \right] - \frac{dE}{dT} \frac{1}{2E^{2}(T)r} \left\{ \frac{\partial T}{\partial x_{i}} \left[(3-4\upsilon)\delta_{jk} + \beta_{j}\beta_{k} \right] + \frac{\partial T}{\partial x_{j}} \left[(3-4\upsilon)\delta_{ik} + \beta_{i}\beta_{k} \right] + (52) + \frac{2}{1-2\upsilon}\delta_{ij} \sum_{m=1}^{3} \frac{\partial T}{\partial x_{m}} \left[(3-4\upsilon)\delta_{mk} + \beta_{m}\beta_{k} \right] \right\} \right).$$

Для определения слагаемого σ_{ij}^N внесем (50) в уравнения закона Гука, которые представлены последним выражением в (45). Дифференцируя, учитываем, что ядровая функция в (50) является сложной функцией. Выражение для напряжений σ_{ij}^N имеет вид:

$$\begin{split} \sigma_{ij}^{N}(x) &= \frac{E(T)(1+\upsilon)}{4\pi(1-\upsilon)} \int_{V} \left(\frac{1}{E^{2}} \frac{dE}{dT} \frac{\partial T}{\partial x_{\rho}} \sigma_{\rho k}^{(0)} \right) \left(\frac{1}{E(T)r^{2}} \left[(1-2\upsilon) \left(\delta_{ik}\beta_{j} + \delta_{kj}\beta_{i} - \delta_{ik}\beta_{k} \right) \right] \right) \\ &- \delta_{ij}\beta_{k} + 3\beta_{i}\beta_{j}\beta_{k} - \frac{dE}{dT} \frac{1}{2E^{2}(T)r} \left\{ \frac{\partial T}{\partial x_{i}} \left[(3-4\upsilon) \delta_{jk} + \beta_{j}\beta_{k} \right] + \frac{\partial T}{\partial x_{i}} \left[(3-4\upsilon) \delta_{ik} + \beta_{i}\beta_{k} \right] + \frac{2}{1-2\upsilon} \delta_{ij} \sum_{m=1}^{3} \frac{\partial T}{\partial x_{m}} \left[(3-4\upsilon) \delta_{mk} + \beta_{m}\beta_{k} \right] \right\} dV_{y}, \end{split}$$

или окончательно:

$$\begin{split} \sigma_{ij}^{N}(x) &= \xi E(T) \int_{V} \rho_{k}(y) \frac{dE}{dT} \frac{1}{E^{3}(T)} \bigg(\frac{1}{r^{2}} \Big[(1-2\upsilon) \Big(\delta_{ik}\beta_{j} + \delta_{kj}\beta_{i} - \\ -\delta_{ij}\beta_{k} \Big) + 3\beta_{i}\beta_{j}\beta_{k} \Big] - \frac{dE}{dT} \frac{1}{2E^{2}(T)r} \bigg\{ \frac{\partial T}{\partial x_{i}} \Big[(3-4\upsilon) \delta_{jk} + \beta_{j}\beta_{k} \Big] + \\ &\quad + \frac{\partial T}{\partial x_{j}} \Big[(3-4\upsilon) \delta_{ik} + \beta_{i}\beta_{k} \Big] + \\ &\quad + \frac{2}{1-2\upsilon} \delta_{ij} \sum_{m=1}^{3} \frac{\partial T}{\partial x_{m}} \Big[(3-4\upsilon) \delta_{mk} + \beta_{m}\beta_{k} \Big] \bigg\} \bigg] dV_{y}, \end{split}$$
 ГДе
$$\xi = \frac{1+\upsilon}{4\pi(1-\upsilon)}, \ \rho_{k}(y) = \frac{\partial T}{\partial x_{n}} \sigma_{pk}^{(0)}. \end{split}$$

Интегралы в (53) не являются особенными, т. к. согласно [8] интегралы по n -мерному пространству E_n с особенностью порядка $1/r^{n-1}$ являются слабыми и эти интегралы существуют в обычном смысле. Все величины, входящие в (53), определяются в предыдущем приближении, исключение составляет лишь вычисление частной производной от температуры. Эта производная представляет сомножитель в плотности массовых сил $\rho_k(y)$ и ее определение рассматривается в [4, 5].

Распределяя силовые воздействия с плотностью потенциала простого слоя [3] по поверхности S в бесконечной изотропной упругой среде, строятся эластопотенциалы простого слоя с плотностью $\upsilon(y)$

$$\overline{u} = \iint_{S} v(y) u dS.$$
 (54)

Подставляя (50) в (48) и учитывая, что u_i^U можно определить с использованием формулы (54), получим полные перемещения задачи теории упругости с фиктивными массо-

выми силами. Полные напряжения получим, подставляя (53) в (51), в которой σ_{ij}^U определяем по формуле (55) без учета неинтегральных слагаемых:

$$\begin{split} &\sigma_{ij} = n_i\left(x\right)\upsilon_j\left(x\right) + n_j\left(x\right)\upsilon_i\left(x\right) - \frac{n_i\left(x\right)n_j\left(x\right) - \upsilon\delta_{ij}}{1 - \upsilon}\upsilon_n\left(x\right) + \\ &+ \frac{1}{4\pi(1 + \upsilon)}\int_{S}^{\upsilon_k\left(y\right)} \left[(1 - 2\upsilon)\left(\delta_{ik}\beta_j + \delta_{kj}\beta_i - \delta_{ij}\beta_k\right) + 3\beta_i\beta_j\beta_k \right] dS_y, (55) \end{split}$$
 где $\upsilon_n\left(x\right) = n_m\left(x\right)\upsilon_m\left(x\right)$.

Чтобы получить систему СИУ задачи, подставим полные напряжения в граничные условия (45). В её правой части присутствуют вектора заданной механической и фиктивной нагрузки. Фиктивную поверхностную нагрузку можно определить следующим образом:

$$f_i^N(x_S) = -\sigma_{ii}^N(x_S) n_i(x_S). \tag{56}$$

Если использовать интегральный оператор интегральных уравнений трёхмерной теории упругости [8], то система СИУ принимает вид:

$$I_{ii}(v_i) = f_i(x_S) + f_i^N(x_S). \tag{57}$$

Уравнения (57) такие же, как и для задачи теории упругости [3], но содержат фиктивные поверхностные нагрузки $f_i^N(x_S)$, обусловленные неоднородностью механических свойств материала.

Отметим, что полученные формулы остаются справедливыми и для задач на последующих (n+1) приближениях. Сумма напряжений (51), вычисленных на n приближении и частных производных от температуры, используется как плотность массовых сил при вычислении добавок напряжений (53) и фиктивной нагрузки (56) на (n+1)-м приближении.

Заключение

В статье рассмотрено применение метода граничных интегральных уравнений к решению трехмерной краевой задачи неоднородной термоупругости. С помощью метода возмущений решение краевой задачи термоупругости изотропных непрерывно-неоднородных тел сведено к решению последовательности краевых задач изотермической термоупругости и теории упругости с учетом фиктивных массовых сил. Построены интегральные формулы перемещений, напряжений и СИУ краевой задачи.

Список цитированных источников

- Методы граничных элементов / К. Бреббия, Ж. Теллес,
 Л. Вроубел. М.: Мир, 1987. 524 с.
- Steinbach, O. Numerical approximation methods for elliptic boundary value problems / O. Steinbach. – New York: Springer Science, 2008. – 386 p.
- 3. Копейкин, Ю. Д. Применение бигармонических потенциалов в краевых задачах статики упругого тела: дисс. ... доктора физ.-мат. наук 01.02.04 / Ю. Д. Копейкин. М., 1969. 280 с.

- 4. Хвисевич, В. М. Прямое решение трехмерных краевых задач несвязанной стационарной термоупругости мето-дом интегральных уравнений теории потенциала: дис. ... канд. техн. наук: 01.02.04 / В. М. Хвисевич. М. : МИСИ, 1980. 230 с.
- Хвисевич, В. М. Численное решение двухмерных краевых задач термоупругости неоднородных тел / В. М. Хвисевич, А. И. Веремейчик // Перспективные материалы и технологии: монография: в 2 томах / Под. ред. чл.-корр. Рубаника В. В. – Витебск: УО «ВГТУ», 2019. – Т. 2. – Гл. 7. – С. 87–104.
- Trostel, R. Stationare Warmspannungen mit temperaturabhangigen Stofwerten / R. Trostel // Ingenieur-Archiv, 26. – 1958.
- 7. Ломакин, В. А. Теория упругости неоднородных тел / В. А. Ломакин. М.: Ленанд, 2014. 367 с.
- 8. Михлин, С. Г. Приложения интегральных уравнений к некоторым проблемам механики математической физики и техники / С. Г. Михлин. – М. – Л. : Гостехиздат, 1947. – 304 с.

References

1. Metody granichnyh elementov / K. Brebbiya, ZH. Telles, L. Vroubel. – M.: Mir, 1987. – 524 s.

- Steinbach, O. Numerical approximation methods for elliptic boundary value problems / O. Steinbach. – New York: Springer Science, 2008. – 386 p.
- Kopejkin, YU. D. Primenenie bigarmonicheskih potencialov v kraevyh zadachah statiki uprugogo tela: diss. ... doktora fiz.mat. nauk 01.02.04 / YU. D. Kopejkin. – M., 1969. – 280 s.
- 4. Hvisevich, V. M. Pryamoe reshenie trekhmernyh kraevyh zadach nesvyazannoj stacionarnoj termouprugosti metodom integral'nyh uravnenij teorii potenciala: dis. ... kand. tekhn. nauk: 01.02.04 / V. M. Hvisevich. M.: MISI, 1980. 230 s.
- Hvisevich, V. M. CHislennoe reshenie dvuhmernyh kraevyh zadach termouprugosti neodnorodnyh tel / V. M. Hvisevich, A. I. Veremejchik // Perspektivnye materialy i tekhnologii: monografiya: v 2 tomah / pod. red. chl.-korr. Rubanika V. V. – Vitebsk: UO «VGTU», 2019.– T. 2. – Gl. 7. – S. 87–104.
- Trostel, R. Stationare Warmspannungen mit temperaturabhangigen Stofwerten / R. Trostel // Ingenieur-Archiv, 26.

 1958.
- 7. Lomakin, V. A. Teoriya uprugosti neodnorodnyh tel / V. A. Lomakin. M.: Lenand, 2014. 367 s.
- 8. Mihlin, S. G. Prilozheniya integral'nyh uravnenij k ne-kotorym problemam mekhaniki matematicheskoj fiziki i tekhniki / S. G. Mihlin. M. L. : Gostekhizdat. 1947. 304 s.

Материал поступил в редакцию 04.01.2021