^{2002 162} Beci

Вестник Брестского государственного технического университета. 2002. №2								
Таб.	лица 2	 Основные результаты эксперимента. 						
	N₂		Номер монолита					
	п.п	Наименование показателей	1	<u>3</u>	<u>5</u>	7	<u>9</u>	
			2	4	6	8	10	
	1	2	3	4	5	6	7	
	1	Начало эксперимента, час	$\frac{10^{50}}{11^{50}}$	$\frac{12^{10}}{12^{17}}$	$\frac{9^{35}}{9^{25}}$	$\frac{11^{20}}{11^{25}}$	$\frac{12^{00}}{12^{05}}$	
	2	Средняя влажность слоя 0-40см почвы, %	<u>76,77</u> 76,82	<u>47,75</u> 49,72	<u>70,50</u> 71,47	<u>52,25</u> 55,10	<u>43,50</u> 44,60	
	3	Средняя плотность слоя0-40 см почвы, %	$\frac{0,20}{0,20}$	<u>0,28</u> 0,28	<u>0,24</u> 0,24	$\frac{0.24}{0.24}$	$\frac{0,24}{0,24}$	
	4	Конец активной стадии впитывания, начало инфильтрации, час	-	$\frac{12^{50}}{13^{04}}$	$\frac{11^{05}}{11^{07}}$	$\frac{12^{31}}{12^{45}}$	$\frac{12^{42}}{12^{37}}$	
	5	Объем впитавшейся влаги до начала инфильтрации, мл	-	$\frac{3380}{2770}$	<u>870</u> 636	$\frac{830}{540}$	$\frac{4190}{4050}$	
	6	Время стабилизации процесса инфиль- трации, час	-	$\frac{15^{45}}{16^{30}}$	$\frac{19^{02}}{13^{40}}$	$\frac{17^{30}}{18^{08}}$	$\frac{16^{10}}{16^{28}}$	
	7	Осредненная величина установившей-	-	49,7	2,45	13,6	672	

Анализ результатов эксперимента позволил сделать следующие выводы:

ся инфильтрации, мм/сут

при равной или сравнимой плотности почвы величина инфильтрации тем выше, чем ниже влажность Для образцов с одинаковой плотностью по результатам эксперимента эта зависимость аппроксимируется уравнением

$I=exp(0.1896)W^{3.38}$,

где *W*- объемная влажность почвы в относительных единицах;

УДК 658.26

Северянин В.С.

ОПТИМИЗАЦИЯ ТЕМПЕРАТУРЫ УХОДЯЩИХ ГАЗОВ КОТЛОВ

1.

1996.-20C.

Параметром, определяющим коэффициент полезного действия котлов (как парогенераторов, так и водогрейных котлов, работающих на газообразном и жидком топливе), является температура уходящих газов, T_{yx} . При сжигании забалластированных твердых топлив в слое существенны также потери с мехнедожогом. Один из процессов, характеризующих действие котла, представляет собой удаление газообразных продуктов сгорания топлива в атмосферу, на этот процесс также влияет T_{vx} . Удаление топочных газов производится либо самотягой через дымовую трубу, либо при помощи тягодутьевых механизмов, либо использованием изохоричности горения (например, пульсирующее горение). Представляет интерес рассмотреть вопрос применительно к традиционным котлам: что энергетически и по другим затратам выгоднее использовать самотягу или механическую тягу? Ведь считается, что требуется всячески снижать T_{yx} (ограничение снизу

- точка росы t_p продуктов сгорания; другой ограничитель стоимость теплоутилизационных элементов котла). Но так как механическая тяга требует затрат электроэнергии, не проще ли повысить T_{yx} , чтобы эффективнее работала самотяга?

При механической тяге аэродинамическое сопротивление

-время впитывания тем короче, а объем впитывания

-высокая влажность почвы и незначительная отрица-

тельная температура способствуют формированию

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Глушко К.А. Инфильтрация талых вод на осушаемых торфяниках: Автореф. дисс. ...канд. техн. наук. – Мн.,

тем больше, чем ниже влажность;

водонепроницаемого слоя почвы.

При самотяге естественное давление Δp_e так же должно преодолевать аэродинамическое сопротивление котла: $\Delta p_e \geq \Delta p_c$, при этом $\Delta p_e = h \cdot (\rho_o - \rho_c)$, где h - высота дымовой трубы, ρ_o , ρ_c - плотности окружающего воздуха и уходящих газов.

Для создания самотяги необходимо теплоты

$$Q_c = (T_{yx} - T_o) \cdot c \cdot V . \tag{1}$$

 $\frac{11}{12} \\ \frac{1}{8} \\ \frac{12^{40}}{12^{46}}$

38,50 40,4 0,24

 $\begin{array}{r}
 0,24 \\
 \underline{13^{26}} \\
 13^{00}
 \end{array}$

4875 4640 <u>13</u>00 $1\overline{3^{26}}$ 2760

Используя уравнение состояния и выражение для Δp , из (1) получаем для единицы объема газов

$$q_{c} = c \cdot \left[\frac{B}{R \cdot \left(\rho_{o} - \varDelta p / h \right)} - T_{o} \right], \qquad (2)$$

где С - теплоемкость газа, B - барометрическое давление,

котла *д р* преодолевается напором вентилятора (дымососа) H_{g} : $H_{g} \geq \Delta p$. Для этого извне затрачивается энергия $V \cdot H_{_{\it B}} \, / \, \eta_{_{\it B}}$, для производства этой энергии на тепловой электростанции, ТЭС, требуется теплоты $V \cdot H_{\mathfrak{s}} / (\eta_{\mathfrak{s}} \cdot \eta_t)$, где V - расход удаляемого газа, η_s - КПД вентиляторной установки, η_t - термический КПД ТЭС.

Северянин Виталий Степанович. Профессор каф. водоснабжения, водоотведения и теплотехники Брестского государственного технического университета.

R - газовая постоянная.

Для механической тяги (примем для сравнения воздушный наддув как более рациональный энергетически, чем дымососную тягу) необходимо теплоты:

$$\boldsymbol{Q}_{M} = \frac{\boldsymbol{V} \cdot \boldsymbol{\Delta} \boldsymbol{p}}{\boldsymbol{\eta}_{a} \cdot \boldsymbol{\eta}_{a}}, \qquad (3)$$

или для единицы объема газов

$$\boldsymbol{q}_{\boldsymbol{M}} = \boldsymbol{\Delta} \boldsymbol{p} / (\boldsymbol{\eta}_{\boldsymbol{\theta}} \cdot \boldsymbol{\eta}_{\boldsymbol{t}}). \tag{4}$$

Из (2) и (4) видно, что
$$q_c \langle q_M$$
 при
 $\Delta p \cdot R \left(\rho_o - c \cdot T_o \cdot \eta_e \cdot \eta_t / h - \Delta p / h \right) \rangle$, (5)
 $\langle c \cdot \eta_e \cdot \eta_t \left(B - T_o \cdot R \cdot \rho_o \right)$

т.е. q_c уменьшается при росте h, уменьшении Δp , а на q_M определяющее влияние оказывает η_t .

В котел как в энергетическую систему вводится теплота сожженного топлива BQ_n^p и энергия для прокачки газа E, а выводится теплота с рабочим телом $\mathcal{A}\Delta i$ (\mathcal{A} - расход его, Δi - приращение энтальпии) и уходящими газами \mathbf{I}_{yx} . При постоянной тепловой нагрузке $\mathcal{A}\Delta i$ для увеличения T_{yx} нужно сжечь больше топлива на ΔB , увеличиваются потери тепла на $\Delta \mathbf{I}_{yx}$, но уменьшается расход энергии на прокачку газа на ΔE , т.к. часть этой работы берет на себя самотяга:

$$\Delta B \cdot Q^p_{\mu} - \Delta E = \Delta \mathbf{I}_{yx}, \tag{6}$$

или: добавочная теплота топлива увеличивает потери с уходящими газами и уменьшает расход энергии на собственные нужды.

Снижение T_{yx} требует увеличения поверхностей нагрева котла, т.е. стоимость C агрегата резко растет. Кроме того, выброс горячих газов означает потерю эксергии Ex, а также неблагоприятное воздействие на окружающую среду. Качественно T_{yx} действует на перечисленные факторы согласно рис. 1.

Следовательно, с учетом всех затрат \sum оптимальная температура уходящих газов T_{yx}^{onm} может быть существенно выше принимаемых ныне стандартных значений. Рассуждения относятся как к вновь проектируемым котлам, так и к совершенствованию существующих.

Водохозяйственное строительство, теплоэнергетика, экология

На рис. 2а показана традиционная схема с дымососом; \pmb{B}_1 - расход топлива, \pmb{Q}_1 - тепловая производительность. Здесь T_{vx} низкая, КПД котла высокий, большой расход электроэнергии на тягу. Рис. 26 - без дымососа, самотяга - за счет добавочного сжигания топлива B_3 перед трубой, в основные горелки - топливо **В**₂. Рис. 2в - нагрев уходящих газов большей подачей топлива **В**₄ в основные горелки, самотяга, КПД котла ниже. Рис. 2г - добавочные горелки в конвективных поверхностях нагрева, подача топлива в них **B**₅, в остальные B_6 . T_{yx} растет для самотяги. При $Q_1 = Q_2 = Q_3$ имеем: $B_1 = B_2$. Для рис. 2а: общий расход топлива $B_1 + B_6$ (B_6 - расход топлива для выработки электроэнергии на привод вентилятора), для рис. 2в общий расход топлива $B_4 + \Delta B$, для рис. 2б $B_2 + B_3$. Выше (5) показано, что $B_3 \langle B_6$. Для рис. 2г при $Q_4 = Q_1$ конвективный теплообмен увеличивается, а радиационный должен уменьшаться, т.е. снижается B_{6} . Тогда $B_{6} + B_{5} \langle B_{4} \rangle$ и особенно

$$(B_6 + B_5) \langle (B_1 + B_6) \rangle. \tag{7}$$

Кроме этого, улучшается работа котла, т.к. не допускается конденсация влаги, происходит очищение поверхностей нагрева, повышается равномерность температурного поля в котле.

Таким образом, некоторое снижение КПД котла может снизить общий (вместе с потребляемой извне энергией) расход топлива и улучшает эксплуатацию котельного агрегата. Метод особенно эффективен в зимнее время при низкой температуре окружающей среды, именно когда и работают водогрейные пиковые котлы.

Другой подход к проблеме снижения T_{yx} должен быть для случая изохорности горения. На рис. 3 дана схема котла с

УДК 621.438

Черников И.А.

пульсирующим горением в виде удлиненного канала, заполненного поверхностями нагрева, слева - камера горения с воздушным клапаном. Периодическое повышение давления позволяет реализовать энергию для прокачки топочных газов через поверхности нагрева, при этом

$$(B_1 + B_{\epsilon}) / B_7 = (1 - \eta^{\Pi\Gamma}) \cdot (1 + \eta^{\Pi\Gamma} / \eta), \quad (8)$$

и для реальных значений КПД пульсирующего горения $\eta^{II\Gamma}$

и общего термического η_t имеем

$$B_7 \langle (B_1 + B_{\theta}) \rangle$$

Кроме этого, из-за интенсификации горения и теплообмена габариты резко снижаются, поэтому T_{yx}^{onm} смещается влево согласно рис. 1. Известно, что котлы с пульсирующим горением небольшой мощности проектируются с учетом конденсации водяных паров из топочных газов, что ведет к общей экономии топлива.

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА ФИЗИКО-МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПРЕРЫВИСТОЙ ПОДАЧИ ВОЗДУХА В ТОПКУ

При разработке физико-математической модели прерывистой подачи воздуха в топочный объем, была получена основная физическая зависимость данного процесса - мгновенная скорость потока W_{g} (изменение скорости во времени) [1]:

$$W_{e} = W_{2} \cdot \left| \frac{\rho_{2} \varsigma_{sblx} \cdot \left[\frac{\tau_{3} F \mu_{2} \psi_{2} \sqrt{R_{2} T_{2}} \cdot (n_{2} - 1)}{2V} + 1 \right]^{\frac{2n_{2}}{n_{2} - 1}}}{\rho_{e} \varsigma_{ex} \cdot \left[\frac{\tau f \mu_{e} \psi_{e} \sqrt{R_{e} T_{e}} \cdot (n_{e} - 1)}{2V} + 1 \right]^{\frac{2n_{e}}{n_{e} - 1}} \right|^{(1)}$$

где W - скорость потока, ρ - плотность потока, ζ_{ex} , ζ_{ebux} - коэффициенты местных сопротивлений входного и выходного отверстий, μ - коэффициент расхода отверстия, ψ - добавочный коэффициент, R - газовая постоянная, T - температура потока, V - топочный объем, n - показатель политропы, f - сечение входного отверстия, F - сечение выходного отверстия, τ_3 - время закрытого положения входного и закрытого положения воздушной заслонки). Индекс ε отражает газовые характеристики, индекс ε - характеристики воздуха.

Наличие многих аргументов в данной зависимости показывает сложность процесса, что значительно затрудняет решение вопроса экспериментальной проверки математической модели.

Для упрощения условий решения задачи процесс горения в эксперименте исключен. Соответственно все аргументы в формуле (1) запишутся с индексом **6**:

$$W_{g} = W_{2} \left\{ \frac{\rho_{g} \varsigma_{gblx} \cdot \left[\frac{\tau_{3} F \mu_{g} \psi_{g} \sqrt{R_{g} T_{g}} \cdot (n_{g} - 1)}{2V} + 1 \right]^{\frac{2n_{g}}{n_{g} - 1}}}{\rho_{g} \varsigma_{gx} \cdot \left[\frac{\tau_{3} f \mu_{g} \psi_{g} \sqrt{R_{g} T_{g}} \cdot (n_{g} - 1)}{2V} + 1 \right]^{\frac{2n_{g}}{n_{g} - 1}}} \right\}^{2} (2)$$

Подставив в зависимость (2) численные значения аргументов ($\rho_e = 1.3 \ \kappa 2 \ / \ M^3$, $\mu_e = 0.6$, $\psi_e = 0.685$, $R_e = 287$, $T_e = 295 \ K$, $n_e = 1.4$, $V = 1.4 \ M^3$), после преобразований получим

$$\left(\frac{W_{e}}{W_{e}}\right)^{0,286} \cdot \left(\frac{\zeta_{ebtx}}{\zeta_{ex}}\right)^{0,143} \cdot \frac{17.08 \cdot \tau_{n} \cdot f + 1}{17.08 \cdot \tau_{3} \cdot F + 1} = 1. \quad (3)$$

Исходя из уравнения (3), был изготовлен экспериментальный стенд обеспечивающий получение соответствующих физических параметров - $W_{_{6}}/W_{_{2}}$, $\tau_{_{n}}$, $\tau_{_{3}}$, f, F.

Стенд (рис. 1) представляет собой горизонтальный цилиндр 1; патрубок 2, с сечением F для входа воздуха в цилиндр; патрубок 3, с сечением f для выхода воздуха из цилиндра; вентилятор 4.

Для прерывания входящего воздушного потока патрубок 2 имеет воздушную заслонку 5. При закрытии заслонки замыкаются контакты 6, включая электронный секундомер. В патрубки 2, 3 вставлены трубки 7, одинаковые по геометрическим размерам и развернутые навстречу воздушному потоку. В качестве прототипа используются Г-образные напорные трубки системы Прандтля, но с одним отверстием, совмещающим полное и статическое давление [2]. На трубки 7, надеты гибкие шланги 8, одинаковые по диаметру и длине. Подставка 9 обеспечивает крепление концов шлангов на одинаковом удалении от стрелки 10, изготовленной из пенопласта. На подставке 9 закреплена шкала 11.

Черников Игорь Анатольевич. Инженер НИС Брестского государственного технического университета. Беларусь, БГТУ, 224107, г. Брест, ул. Московская, 267.