трального кондиционера обходится намного дороже и регулирование его мощности зачастую невозможно. При том, что при использовании сплитсистемы можно контролировать количество включенных внутренних и внешних блоков, а само обслуживание недорогое. Также нельзя не отметить и незаметность внутренних блоков кассетных кондиционеров, ведь в помещении видна лишь декоративная решетка, а равномерное распределение воздушного потока по четырём направлениям позволяет использовать один кассетный кондиционер для поддержания комфортных условий в большом помещении.

Из недостатков можно выделить неточное поддержание комфортных условий, так как почти все кассетные кондиционеры собираются на заводе и отсутствует возможность изменения оборудования в самом кондиционере. Невозможность изменять влажность воздуха является также большим недостатком, ведь зачастую требуется поддержание этого параметра на требуемом уровне. Таким образом, использование сплит-системы удешевляет обслуживование системы кондиционирования, но и ухудшает точность поддержания требуемых параметров внутреннего воздуха.

Список цитированных источников

- 1. Методические указания для выполнения курсового проекта по дисциплине «Кондиционирование воздуха и холодоснабжение» / Составители: С.Р. Сальникова, П.Ф. Янчилин. Брест, 2015. 53 с.
- 2. Отопление, вентиляция и кондиционирование воздуха: СНБ 4.02.01-03. Минск, 2004.
- 3. Здания жилые и общественные. Параметры микроклимата в помещениях: ГОСТ 30494-96. 1999. 7 с.
- 4. Кондиционирование воздуха и холодоснабжение: Учеб. пособие / П.И. Дячек. М.: Издательство АСВ, 2017. 676 с.
- 5. Методические указания к курсовому проектированию по курсу лекций «Кондиционирование воздуха и холодоснабжение» / Составители: П.Т. Крамаренко, С.С. Козлов, И.П. Грималовская. Нижний Новгород, 2009. 50с.

УДК [691.535:693.554]:666.193.2

Лемешевский Е. Ю.

Научный руководитель: м.т.н., ст. преподаватель Клюева Е. В.

ГЕНЕРАЦИЯ ШУМА ВОЗДУХОРАСПРЕДЕЛИТЕЛЯМИ. СРАВНЕНИЕ АКУСТИЧЕСКИХ ХАРАКТЕРИСТИК ВОЗДУХОРАСПРЕДЕЛИТЕЛЕЙ

Шум от воздухораспределителей (ВР) возникает непосредственно в вентилируемом помещении в результате обтекания потоком воздуха кромок, жалюзи, сеток и других элементов, находящихся в плоскости проходного сечения изделия. Этот шум, обусловленный пульсациями давления и скорости, наличием вихреобразования, зависит не только от скорости набегающего потока, местного сопротивления, размеров и конструкции элемента, но также от степени турбулентности набегающего потока, равномерности в поперечном сечении подводящего воздуховода и живом сечении воздухораспределителя. При наличии камеры статического давления шум возникает при резком изменении поперечного сечения подводящего воздуховода и камеры статического

давления. В некоторых случаях этот шум преобладает над шумом, излучаемым воздухораспределительной панелью [1, с. 18].

Не следует пренебрегать акустическими характеристиками ВР, т. к. с избыточным шумом от этого элемента, заключительного в вентиляционной системе, бороться практически невозможно.

Задача заключается в выборе подходящего для данных условий воздухораспределителя.

Для нашего случая воспользуемся программой «ArktosCFSelNoise» для акустического расчёта ожидаемых уровней шума.

Необходимо для зала заседаний (рисунок 1) с размерами 15х14х3 м подобрать вид воздухораспределителя при воздухообмене 4400 м3/ч с целью выбрать такой вариант, при котором акустические характеристики соответствуют нормативным значениям. Объемный расход воздуха через один BP -366 м3/ч.

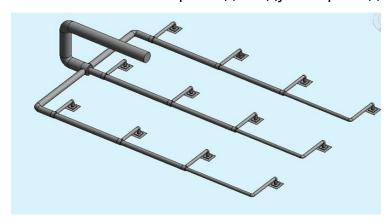


Рисунок 1 – 3D-план системы вентиляции зала заседаний

В каталоге «ArktosCFSelNoise» приведены акустические характеристики воздухораспределителей в виде корректированных уровней звуковой мощности LwA вдБ(A). Данный параметр позволяет проводить сравнительную оценку различных воздухораспределительных устройств по уровню шумоизлучения, приближенно оценить ожидаемый уровень звука и выбрать наиболее оптимальный вариант на стадии предварительной оценки ожидаемых уровней шума. Выбирали нормативные значения уровня звука в дБ(A) для зала заседаний (рисунок 2) при этом соответствующие значения в октавных полосах частот установятся автоматически.

азмерь	і помещен	ия: 15	x14x3		м[?],			
	ещения:			еством лю	THE RESERVE OF THE PERSON NAMED IN COLUMN 1	кой мебел	тью	∀ [?]
	ия помеще				[?]			F03
редели	но допуст	имые	уровни ш	ума для і	вентилир	уемого і	помещен	ия [?]
		метри	ческие ча	стоты ок	тавных і	толос Гт	T.	
63	Среднегео	метри 250	ческие ча 500	1000	тавных I 2000	полос, Гі 4000	8000	$L_{pA\ { m доп}^\circ}$
	Среднегес		500	1				L _{pA доп} , дБ(A)

Рисунок 2 – Нормативные значения уровня звука в дБ(А)

Один из простейших видов воздухораспределителя – вентиляционная решетка 2АПН, представленная на рисунке 3, предназначена для подачи и удаления воздуха в жилых, административных, общественных и производственных помещениях. 2АПН - состоят из прямоугольного корпуса, в который при помощи пружин устанавливается блок из направляющих пластин.

Рисунок 3 – Вентиляционная решетка 2АПН

Второй вид - 2ВГК «Генератор комфорта», на рисунке 4, предназначен для подачи воздуха системами вентиляции и кондиционирования в небольших помещениях различного назначения (офисы, магазины, купе поезда, каюты кораблей и т. п.). Конструктивно 2ВГК состоит из алюминиевой жалюзийной решетки и корпуса в виде прямоугольного отвода с поворотом на 90°, выполненного из оцинкованной стали, внутри которого установлены рассекатель и отражающий экран. Жалюзи решётки жестко закреплены под определенным углом с целью формирования устойчивого настилающегося на потолок двухстороннего потока.

Рисунок 4 – 2BГК «Генератор комфорта»

Для выбора наиболее подходящего воздухораспределителя был произведен их расчет в программе «ArktosCFSelNoise». Акустические характеристики по обоим воздухораспределителям (рисунок 5) сопоставлялись между собой.

Название	L ₀ , M ³ /4	Среднегеометрические частоты октавных полос, Гц								7	
		63	125	250	500	1000	2000	4000	8000	$L_{W(A)}$	[?]
		$L_{\mathrm{w}^{\mathrm{s}}}$ дБ							дБ(А)		
2BГК 400х200 α=60° веерно	366	47	41	42	37	38	33	18	<10	42	+ 1 V X
2AПН 225x225	366	62	66	68	68	72	72	70	62	78	+ 1 V X

Рисунок 5 – Акустические характеристики воздухораспределителей 2АПН и 2ВГК «Генератор комфорта»

Вывод: Результаты расчетов сравнивались с нормируемыми значениями уровня звука в зале заседаний. Акустические характеристики 2ВГК «Генератор комфорта» в пределах нормы, а характеристики вентиляционной решетки 2АПН превышает нормируемое значение.

На основе сравнения акустических характеристик можно сделать вывод о том, что в данных условиях может быть использован 2ВГК «Генератор комфорта».

Список цитированных источников

1. Сальникова, С.Р. Необходимость технически грамотного проектировании систем вентиляции в снижении энергопотребления // Проблемы энергетической эффективности в различных отраслях: материалы научного семинара; Брест, 21 марта 2018г. – Брест: РУПЭ «БРЕСТЭНЕРГО», 2018. – С. 17-21.

УДК 502.51

Литвинюк В. В., Пешта М. А.

Научный руководитель: ст. преподаватель Кириченко Л. А.

ЭКОЛОГИЧЕСКОЕ СОСТОЯНИЕ ВОДОЕМОВ МАЛЫХ ГОРОДОВ ЮГО-ЗАПАДА БЕЛАРУСИ

Создание благоприятных условий жизнедеятельности людей во многом зависит от качества воды в водоемах. Экологическое состояние урбанизированных водоемов зависит от комплекса факторов, важнейшим из которых можно выделить антропогенное влияние. Антропогенное влияние выражается в происхождении водоема, его гидроморфологических характеристиках, вида и источников поступления поллютантов в воды водоемов городов, в степени рекреационной нагрузки, в виде водопользования и др. Это усложняет определение характера экологического статуса водоемов.

Согласно классификации водоемов по величине их водной поверхности, предложенной П. В. Ивановым (1948), среди водоемов Беларуси по площади преобладают очень малые и малые водоемы (около 90%) с максимальной глубиной до 5 м [1]. Большинство из них имеют антропогенное или природноантропогенное происхождение. Эти водоемы не включены в государственную сеть мониторинга экологического состояния водных объектов Беларуси. Поэтому исследование экологического состояния таких водных объектов особо актуально для выявления условий жизнедеятельности людей.

Целью данной работы является исследование экологического состояния водоемов урбанизированных территорий юго-запада Беларуси.

Объектом исследования являлись городские водоемы юго-запада Беларуси с разной степенью антропогенного влияния и площадью водного зеркала до 1 км².

Для достижения поставленной цели были определены следующие задачи:

- 1. Исследовать гидрохимические показатели качества воды водоемов урботерриторий;
- 2. Провести первичные исследования гидроморфологических характеристик городских водоемов:
- 3. Выявить состояние и основные экологические проблемы исследуемых водоемов.
- В процессе работы проводились гидрохимические и гидроморфологические исследования воды водоемов малых городов.

Оценка гидроморфологического состояния обводненного карьера проводилась методами ГИС-картирования и полевыми исследованиями. Проводи-